
Systems� Views
and
Models of UML�

Ruth Breu� Radu Grosu� Franz Huber�

Bernhard Rumpe� Wolfgang Schwerin

email� fbreur�grosu�huberf�rumpe�schwering
�informatik�tu�muenchen�de

Technische Universit�at M�unchen
Arcisstr� ��

D��	�
	 M�unchen� Germany

Abstract

In this paper we show by using the example of UML� how a soft�
ware engineering method can bene�t from an integrative mathemat�
ical foundation� The mathematical foundation is given by a mathe�
matical system model� This model provides the basis both for inte�
grating the various description techniques of UML and for implement�
ing methodical support� After describing the basic concepts of the
system model� we give a short overview of the UML description tech�
niques� Then we show how they �t into the system model framework
and sketch an approach to structure the UML development process
such that it provides methodological guidance for developers�

� Introduction � Why Formalization�

�The nice thing about graphical description techniques is that everyone un�
derstands them� the bad thing� however� is that everyone understands them
in a di�erent way� This often heard quote captures a main property of mod�
eling techniques using semi�formal� mostly graphical notations� beginning
with the early structured modeling techniques and prevalent until today�s
object�oriented methods� The diagrammatic notations used here seem easily

� This paper originates from the SysLab project� which is supported by the DFG
under the Leibnizprogramme and by Siemens�Nixdorf�

[BGH+98b] R. Breu, R. Grosu, F. Huber, B. Rumpe, W. Schwerin.
Systems, Views and Models of UML.
In: The Unified Modeling Language, Technical Aspects and Applications.
Martin Schader, Axel Korthaus (eds.)
Physica Verlag, Heidelberg. 1998.
www.se-rwth.de/publications

comprehensible for everyone dealing with software development� Experience
shows� however� that� except from obvious properties� these notations do in
fact bear a great number of possible divergent interpretations� To gain a
deeper and more exact understanding of the notations used� the need for
providing a stringent formal foundation for them has long been recognized
and has lead to considerable advances in the recent past� Many of these
e�orts aim at providing a formal semantics for single notations� Considering
the di�erent aspects of a system� described by di�erent notations� captured
in a system development process� providing isolated semantics� possibly even
using di�ent models as a basis� does not seem to be adequate� The complete
description of such a system is given only by the assembly of all di�erent
views� It is therefore desirable to have a common semantic basis for all no�
tations used in a development method� This allows both to provide an exact
interpretation for diagrams in a single notation and to inter�relate diagrams
in di�erent notations on a common basis�

The SysLab method �Breu et al� ��

��b� builds upon such an integrated
semantic framework� which we call the System Model� The foundations
and the basic mathematical concepts of this system model will be intro�
duced in Section �� The SysLab method� just like the Uni�ed Method� is
a view�oriented� integrated� and object�oriented development method� Its
description techniques are deliberately similar to those used in the UML�
Thus it seems worthwile to apply SysLab�s system model to the UML in
order to embed its description techniques into the system model�s mathe�
matical framework� What can be gained by this e�ort is� quite obviously�
a deeper understanding of the single notations and� as outlined above� the
possibility to more tightly intergrate the UML description techniques on a
sound mathematical basis� The bene�ts hereof can be enormous� especially
for tool developers� resp� tool vendors� and methodologists� Tool developers
are enabled to provide a much larger set of precise consistency conditions
than currently possible by using just the UML Meta Model which basically
represents only the abstract syntax of UML�s description techniques� Us�
ing the semantic properties of diagrams produced in di�erent stages of a
development project and their inter�relationships� transformation tools can
be provided� which tranform� either automatically or with a human devel�
oper�s assistance� documents from one notation into another� On this ba�
sis� methodological guidelines for software developers can be elaborated and
eventually implemented in CASE tools�
The rest of the paper is organized as follows� In Section � we present the
basic concepts of the SysLab system model and in Section � we give a brief
overview of the UML description techniques� We then outline methodolog�
ical aspects in Section �� where we de�ne general properties of a software
development method and show how a development process using UML de�
scription techniques can be structured and supported by a tool� Finally� an
outlook on further steps in formalization and tool support is given in Section
��

� Models of Systems

In general� a system is a technical or sociological structure consisting of
a group of elements combined to form a whole and to work� function or
move interdependently and harmoniously� A system model represents certain
aspects of systems in a certain way� using certain concepts� e�g� OO�concepts�
such as classi�cation� encapsulation etc� � One way to formulate system
models is to use mathematical techniques �e�g� sets� functions� relations�
predicates�� This leads to the notion of mathematical system models�
In the following we �rst motivate the use of a system model and then describe
the one on which the SysLab method is based and which is also appropriate
for UML�

��� Motivation of the System Model

In the introduction we have motivated� why a formalization of UML descrip�
tion techniques is useful� We argued that a precise semantics is important
not only for the developer� but also for tool vendors� methodologists �people
that create the method� and method experts �people that use the method
and know it in detail��
We get the following requirements for a formalization�

�� A formalization must be complete� but as abstract and understandable
as possible�

�� The formalization of a heterogeneous set of description techniques has
to be integrated to allow the de�nition of relations between them�

This does not mean that every syntactical statement must have a formal
meaning� Annotations or descriptions in prose are always necessary for
documentation� although they do not have a formal translation� They may
however eventually be translated into formal descriptions or even into code
in the course of a software development process�
As soon as one uses description techniques with a �xed syntax and semantics�
one no longer describes systems in general but models of systems� Using
UML� for example� one models systems in terms of objects� classes etc� To
manage the complexity of formalization� we introduce a layer between the
syntactic description techniques and pure mathematics as shown in Figure
��
This intermediate layer is the mathematical system model� On this layer�
various aspects of systems such as structure� behavior and interaction are
formulated by mathematical techniques� We call the representation of a
system� formulated solely in terms of the system model� a model of a system�
Furtheron� the set of all models that can be described in terms of a certain
system model is called the universe of this system model� Figure � illustrates
the ideas that are explained below�

endclass

class Account ;

 owner :: string;

 open(o::string, a::Int);
 credit(a::Int, rec::Account);

 amount :: Int;

 debit(a::Int, d::Account);

System Model

Class diagrams

Sequence diagrams Class descriptions

State diagrams

Mathematics Formal Foundation

Figure �� Layered formalization of description techniques

Description techniques o�er syntactical elements that allow the speci�cation
of certain views� i�e�� certain aspects� of systems� One way to de�ne a se�
mantics is to express the meaning of syntax in terms of a system model�
Using a unique system model for a set of description techniques results in an
integrative semantics for the di�erent techniques� An integrative semantics
allows reasoning about interrelations between di�erent views expressed by
di�erent techniques� Notions like re�nement� consistency and completeness
can be precisely de�ned�
A mathematical system model provides terms with a formal semantics� e�g�
functions� and can therefore serve as a basis for a formal semantics for a set
of description techniques�
With the above de�nitions� one can de�ne the semantics of a document
�which is a kind of a module on the syntactical level� of a given description
technique as the set of all those models� that have the properties that are
expressed in the document�
Using a set of models and not a single one as the basis of the proposed
semantics has several advantages� For example� re�nement of documents
corresponds to set inclusion� Furthermore� we get the meaning of di�er�
ent documents modeling di�erent aspects of the system by intersection of
their respective semantics� But the main reason is that� in contrast to fully
executable programming languages� description techniques allow underspec�
i�cation of system properties in many di�erent ways� A proper semantics
cannot be therefore captured by a single model� For the same reason� it is
not possible to give an operational semantics in the sense that a document
speci�es a single abstract machine that �executes it�

semantics of1

*

...

terms of

CNMSGSTATEID M�

input

speci�es

Document

system model

described in

Speci�cation

model X�

model X�

model Xn

�to be developed�

System abstract description of

� v �class output state

behaviorid

medium

communication

statesid

Figure �� System Model� Models and Speci�cation

��� De�nition of the System Models

The system characterisation given below is a re�nement of the SysLab

system model as presented in Klein et al� ��

�� and Grosu et al� ��

��� and
it is rather similar to the one used in Breu et al� ��

��b� Each document�
for instance an object diagram� is regarded as a constraint on the system
model�s universe�
The system model introduced below is especially adapted for the formal�
ization of UML� Thus� relevant aspects of UML like classes� objects� states�
messages etc� are explicitly included� A precise formalization of our UML
system model is currently under development�
Our system model is very general� covering various kinds of object�oriented
systems such as conventional object�oriented software systems� systems in�
cluding hardware components� embedded systems and real�time systems�
For the formalization of the current set of UML notations� we will only need
a specialized version of the system model� which is brie�y presented below�
In the following� we describe the most important elements of our system
model�
The structure of a system is� according to object�orientation� given by a set of
objects� each with a unique identi�er� Therefore� we regard the enumerable
set ID of object identi�ers as an element of each model�

In any system objects interact by means of call message passing� By this
term we express that objects on the one hand communicate via a sequential
call�return mechanism� but on the other hand have the possibility to send
messages asynchronously� which means that the receiver may neither deny
messages nor block the sender of a message� Both communication mecha�
nisms are treated within one framework in detail in Paech � Rumpe ��

���
Asynchronous communication models provide the most abstract models for
systems with message exchange� since deadlock problems as in synchronous
systems do not occur� To model communication between objects we use the
theory of timed communication histories as given in Broy et al� ��

��� The
notion of explicit time in the system model allows us to deal with real time�
as proposed in UML�
We regard our objects as spatially or logically distributed and as interacting
in parallel� As described in UML� sequential systems are just a special case�
where always exactly one object is �active�

Object

Object

Object

Object

Message

communication medium

System sys

return

call

Figure �� Objects in the UML system model

Interaction between objects occurs through the exchange of messages� as
shown in Figure �� Let MSG be an element of the system model� denoting
the set of all possible messages in a system� An object with identi�er id � ID
accepts a unique set of messages� Its input interface is de�ned by
msg

id
� MSG

The behavior of an object is the relationship between the sequences of mes�
sages it receives and the sequences of messages it emits as a reaction to
incoming messages� We allow our objects to be nondeterministic� such that
more than one reaction to an input sequence is possible�
According to Broy et al� ��

��� Broy � St�len ��

��� the set of timed com�
munication histories over M is denoted by M�� A communication history
is basically an in�nite sequence containing �possibly only a �nite number
of� messages and time stamps inbetween� that mark time progress� Thus
the messages occurring in a communication history are in linear order� A
communication history models the observable sequence of incoming or out�

going messages of one object� The behavior of a nondeterministic object
id is then given by the mapping of its input stream to the set of possible
ouput streams� Using relations� the behavior of an object id is given by the
relation between its input and output streams
behaviorid � msg�

id
�MSG�

Objects encapsulate data as well as processes� Encapsulation of data means
that the state of an object is not directly visible to the environment� but can
be accessed using explicit communication� Encapsulation of process means
that the exchange of a message does not imply the exchange of control� each
object can be regarded as a separate process� Note� that this view on object
controls also works in conventional sequential programs� Objects get active
when receiving a message and fall asleep after emitting a message� Given
the set of possible states STATE of objects in a system� the function states
assigns a subset of possible states to every object id�
statesid � STATE

Furthermore� a state transition system is associated with each object� model�
ing the connection between the behavior and the internal state of an object�
We use a special kind of automata �Grosu � Rumpe ��

��� for this purpose�
An automaton of an object with identi�er id consists of a set of input mes�
sages msg

id
� a set of output messages MSG� a set of states statesid� and a

set of initial states states�
id
� statesid� The nondeterministic transition rela�

tion �id de�nes the behavior of the automaton� From the state�box behavior�
given for the automaton in terms of state transitions� the black�box behavior
in terms of the behavior�relation can be derived �Grosu � Rumpe ��

����
Messages are delivered by a communication medium� which is an abstraction
of message passing as it is done in real systems by the runtime system of
the programming language in combination with the operating system� The
communication medium bu�ers messages as long as necessary� Each message
contains the receiver�s identi�er� so that the communication medium con�
tains of a set of message bu�ers� one for each object� The order of messages
between two particular objects is always preserved by the communication
medium� The contents of messages are not modi�ed� Messages cannot be
duplicated or lost� No new messages are generated by the communication
medium� This is formalized in Grosu et al� ��

���
Each system allows a possible set of system runs� A system run is charac�
terized by the messages exchanged between all the objects and the sequence
of their states� We thus characterize a system run by the following three
functions�
input � ID�MSG�

output � ID�MSG�

state � ID� STATE�

associating with each object identi�er the stream of messages the object
receives in a run� the stream of messages the object emits in a run� and
the stream of states the object has during the run� Of course� this trace
like view on a system is strongly interconnected with the automaton based

view given previously� The use of this trace like view is only possible� if
objects are regarded as process capsules and therefore each computational
step equals one step of an automaton �of the above characterized type� for
exactly one object� Furthermore� as objects don�t share common variables�
computational steps of di�erent objects cannot interfere and can therefore
be serialized�
Objects are grouped into classes� We assume that each system owns a set CN
of class names� CN may� for instance� be derived from UML class diagrams�
In object�oriented systems� each object identi�er denotes an object that
belongs to exactly one class� This fact is represented by the function
class � ID� CN�

Classes are structured by an inheritance relation� which we denote by � v �
�read� �subclass of�� The inheritance relation is transitive� antisymmetric
and re�exive� as usual� With every class c � CN a signature �c is associated�
containing all attributes and methods together with their argument and
result types� The signature induces a set of input messages and a set of states
for each object of the class� One impact of inheritance is that signatures are
only extended� c v d� �d � �c�
Another concept of object�orientation is the dynamic creation of objects�
Deletion need not be modeled� as we assume that our objects are garbage
collected in the usual way� However� we may de�ne a special �nalize���
method that may be used to clean up objects� as� for instance� in Java�
Initially� a �nite subset of objects �usually one main�object� exists and is
active� We regard all other objects to be created in the course of a system run
and to be active after having received a �rst message� Thus� the creation of a
new object essentially consists of a message transmission from the creator to
the created object� To allow this� each object is equipped with a su�ciently
large �usually in�nite� set of object identi�ers denoting the set of all object
identi�ers the object may create�
creatables � ID� P�ID�

To prevent multiple creation� these sets of identi�ers have to be pairwise
disjoint� and objects that are initially active are not creatable at all�

� Views

In the following section� we explore the meaning of a �view� Afterwards�
we brie�y explore which UML notation describes which aspects of a system�

��� Views and projections

A view of a system is a projection of the system on one of its relevant aspects�
Such a projection emphasizes certain aspects and ignores others� Therefore
it is useful to have di�erent views of a system� This also allows each stage of
the development to concentrate on relevant aspects and to delay others� that

are at the moment less important� In general di�erent kinds of projections
can be found� that are rather orthogonal and therefore constitute di�erent
dimensions�

� Projection on development phases� The same �thing may have di�er�
ent appearances during analysis� design and implementation phases�
and therefore described by di�erent notations� or even not appear at
all�

� Projection on structural� behavioral� interface and data aspects�

In general a projection can be any combination of the above mentioned
kinds�
A document describes such a projection� As each document is of a cer�
tain kind� it projects certain aspects of the system� that can be described
within the document� UML therefore uses multiple notations� that focus on
di�erent aspects� therefore exhibiting di�erent �views of the system�
Basically there are four main views�

� The structural view focuses on the structure of a system� It describes
layout between objects and classes� their associations and their possible
communication channels�

� The behavioral view focuses on the behavioral aspect of the system
components� It describes how they interact� and characterizes the
response to external system operations�

� The data view focuses on the data aspects of the system� It describes
the state of the system units �objects�� as well as their relationships�

� The interface view focuses on the encapsulation of system parts� and
the possible usage from outside� e�g�� through characterizing signa�
tures�

Although these four views focus on di�erent aspects� there are close rela�
tionships between them� Therefore it can be expected� that the notations�
describing these views are also related� and that there are context conditions
between them� This is currently one of the major problems of UML�

��� Notations of UML

UML currently has as many as eleven di�erent and partly overlapping nota�
tions� which constitute di�erent views of UML designs� In the following� we
will discuss brie�y� which notation can be used to describe certain aspects�
without introducing the notations �this can be found in one of the various
UML books� e�g� Burkhardt ��

��� Booch et al� ��

����

Class diagrams are the central notation for structural aspects� They de�
�ne classes� their associations and how they are aggregated� However
it is also possible to add data information� as each class can have an
attribute section� Furthermore the connection to behavioral aspects
is given by a method signature section� that can also be attached to
classes�

Besides de�ning structural aspects� a class diagram may be used as
source of data information� when transforming it into a database schema
de�nition�

Object diagrams describe the actual layout of a part of the system within
a certain situation� They clearly focus on structure� partly on con�
tained data� and have to be compatible with the class diagrams� They
can serve as a basis for behavioral descriptions�

Packages group classes �resp� their implementations� together� Their main
focus is the de�nition of interfaces� They also de�ne structure� but on
a di�erent level than class or object diagrams do� A package structures
interfaces and implementations and is important during development�
Relationships between packages are usually rather independent from
the relationships between their included classes� Also due to the dy�
namics of object�orientation� this is again� to some extent� independent
of the structure of the instantiated objects� Therefore we have di�erent
levels of structural views to be served�

Use case diagrams show the relationships among actors and use cases
within a system� Although the concept of use cases seems to be very
helpful� the actual use of this notation is to some extent unclear and
will heavily depend on the method� which is still in development� How�
ever� use cases deal with interface and behavioral aspects at the border
of the system� They exhibit possible actions to be taken� and who is
allowed to undertake these actions� This means that there is also some
structural aspect within the current UML use case notation�

Sequence diagrams describe a pattern of interaction among objects� In�
teractions between participating objects are arranged in timed se�
quences similar to Message Sequence Charts �MSC�� Sequence dia�
grams therefore clearly de�ne behavioral aspects but are based on
structural and interface views�

Object lifelines are somewhat similar to sequence diagrams� but focus
more on the control structure of an object and its related thread� They
deal with the lifetime of a single object� They are used for describing
behavioral aspects of a single object and are therefore more implemen�
tation oriented than ordinary sequence diagrams�

Collaboration diagrams are based on object diagrams� exhibiting a cer�
tain �numbered� �ow of messages between objects in order to describe

interaction between the participants� Collaboration diagrams and se�
quence diagrams are very similar in content� and it seems it is to some
extent a matter of taste� which notation is to be preferred� Collabora�
tion diagrams therefore also focus on behavior pattern�

Design patterns as introduced in UML comprehend a compact notation
for collaboration patterns and are incorporated into class and object
diagrams�

State diagrams are the central notation for describing behavior of a single
object� This behavior description is based on the state space the ob�
ject has� and it is also related to the message interface� State diagrams
are therefore the central notation to relate data aspects and behavioral
aspects of objects� It was therefore natural to enhance state diagrams
with many features for di�erent purposes� Examples are hierarchical
structuring of the state space� state activities� entry and exit actions�
state dependent attributes� or the history mechanism� Also hierar�
chical structuring of the event set and complex transitions have been
de�ned� However� these newly added concepts interact with each other
in ways� that have not yet been fully explored� and it seems advisable
not use them too much�

Activity diagrams are de�ned as �a special case of a state diagrams
�Booch et al� ��

���� where the occurring states are named as �ac�
tion states� However� there are serious doubts about that� It could be
wise to regard activity diagrams as a form of data �ow diagrams with
additional components for control �ow� Therefore activity diagrams
could be useful for describing internal processing of operations �or use
cases�� Thus they clearly focus on behavioral aspects of individual
components� but more on its functional decomposition into di�erent
actions�

Swimlanes in activity diagrams� furthermore allow the decomposition
and regrouping of a series of actions for implementation by di�erent
objects�

Other notations exist� that are more implementation oriented� and thus
mainly deal with the physical structure of a system� These notations only
partly deal with some of the above mentioned views�

Component diagrams show the dependencies among software components�

Deployment diagrams show the con�guration of runtime processing ele�
ments� processes and the objects that live on them�

� Methodological Aspects

At the current stage� UML is not more than a syntactic framework for
system speci�cation� What is missing to make UML to a full��edged software

engineering method is what the word method is characterizing� a set
of rules that guide the designer to obtain a runnable and correct system
implementation�
In this section we will discuss in more detail what aspects a method should
cover and identify three kinds of methodological rules �subsection ����� Sub�
section ��� sketches our view of the design process and its interconnection
with the methodological rules� We give an idea of document graphs doc�
umenting design decisions and the dependencies between the speci�cations
developed during design�

��� What a method is

It is not easy to de�ne what a method is and we do not want to give an
exact de�nition here� It is however certain that a method consists� apart
from the notations themselves� of a set of rules and steps guiding through the
design process� The design process is generally de�ned to be the sequence of
speci�cations developed during the lifetime of the software system �including
documents specifying extensions and modi�cations of the system��
The design process for large systems is very complex and thus the method�
ological rules deal with many di�erent aspects and activities during design�
In order to come closer to the kernel aspects of a method� we distinguish
rules at three levels of abstraction�

� process models

� procedural guidelines and

� technical steps� �

Process Models� Rules on a high level of abstraction structure the design
process as a whole� Typically they de�ne design phases and the kind of
documents that have to be produced in these phases� We call a set of such
rules a process model�
Examples of process models are the classic waterfall model or the spiral
model �cf� Boehm ��

���� A characteristic of these models and of pro�
cess models in general is that they are independent of notations and even
independent of the underlying system view �function oriented or object ori�
ented��
Nevertheless it can be observed that process models in an object oriented
setting follow a di�erent design philosophy than the classic models and sup�
port a more activity oriented design process than a phase oriented design
process� Such activities during the development are analysis� implementa�
tion and testing� but also prototyping and reuse� In this way� the design
process becomes more �exible and adaptable to particular needs�

�The latter two terms have been taken from Hussmann �����	� however with a slightly
di
erent meaning

Procedural Guidelines� Process models are mainly concerned with the
question of when particular speci�cations have to be produced� In addition�
rules at a lower level of abstraction support the designer how to produce a
speci�cation� These kinds of rules are in most cases of a heuristic� informal
nature� They are formulated in the terminology of the underlying system
view but independently of particular notations �e�g� types of diagrams�� In
the sequel we will call these rules procedural guidelines�
As an example� many object oriented methods give procedural guidelines to
support the designer in identifying objects� methods and attributes in the
application domain� Moreover the paradigm of design with use cases also
comes along with a set of procedural guidelines�
Technical Steps� Rules at the lowest level of abstraction are both depen�
dent of the system view and of the notations used� We call them technical
steps�
Technical steps deal with the transformation of documents during the design
process and with the interrelation of di�erent notations� As an example�
technical steps give rules for the re�nement of diagrams or rules that ensure
the consistency of a speci�cation� Technical steps thus support the designer�s
understanding of the use of the description techniques and the production
of a sound and complete system speci�cation�
In contrast to their importance� technical steps are the most neglected kind
of rules in today�s methods� since they require a deep understanding of both
the system view and the description techniques� While process models and
procedural guidelines are less amenable to a formal treatment due to their
heuristic nature� a formal foundation of the system view and the notations
like our model is an eminent basis for studying technical steps in a systematic
way�
In subsection ��� we sketch our view of the design process and clarify the
semantic treatment of technical steps within the semantic model� Before�
table � summarizes the concepts discussed in this section�

��� A View of the Design Process

A system speci�cation in UML consists of a set of documents like sequence
diagrams� class diagrams or free text� In order to support the e�ective
management of a large number of documents� we extend this simple view
and consider a system speci�cation to be a document graph containing the
following kind of information�

� The nodes of the document graph are UML documents�

� Each document in the graph has a state documenting its stage of de�
velopment�

� A set of relationships between nodes describe dependencies between
documents�

Document state� The document state is intimately connected with the
notion of a document lifecycle� Apart from information� by whom and when
some document has been created or updated� the document state reports
whether the document has been validated �in case of informal and formal
documents�� veri�ed �in case of formal documents� or tested �in case of pro�
grams��
Further attributes determining the state of a document are the redundancy of
a document or its consistency� A document is redundant if all the properties
of the system it describes can be derived by other documents in the graph�
Document relationships� Documents in UML have been syntactically
decoupled as far as possible in order to support a �exible use during design�
Thus� it is the meta level that has to document the structure of speci�cations�
There are two main kinds of relationships in the document graph�
The �rst one is a kind of import or clientship relation� We call it the refers
to relation� The refers to relation is directed and relates a document with
the set of documents that have to be known in order to understand the
document� For instance� a sequence diagram always has to refer to some
class diagram in order to understand the labels of the object lifelines� As
a further example� a state diagram may refer to a class diagram or to a
method speci�cation�
The second kind of relationship between documents is the transform rela�
tion� Also the transform relation is directed and relates speci�cations that
are involved in some transformational step during design� A document A
transforming a document B is the result of some technical step and describes
some aspect of the system in more detail than document B� More generally�
a technical step and the transform relation� respectively� may be based on
more than one document and may produce several documents�
In our semantic framework� the transform relation has its counterpart in
a semantic re�nement relation on the semantic domain of documents� The
re�nement relation guarantees that the system properties speci�ed in earlier
stages are preserved during the development� Hence the technical steps
formulate conditions at the syntactic level of UML that ensure that the
re�nement relation holds at the semantic level� The rules of the technical
steps have to be formulated for every kind of document and have to be
proved correct with respect to the semantic re�nement relation�
In the current stage of development we have developed technical steps for the
development of class diagrams and state diagrams �Rumpe ��

���� Rules
concerning the interrelation between sequence diagrams and state diagrams
are currently under investigation �Breu et al� ��

��a�� Table � sketches
the main idea of these technical steps� Figure � depicts a sample document
graph� It has to be stressed again that the depicted diagram is not an
UML document itself but a concept at the meta level� e�g� produced and
administrated by a tool� Moreover� document graphs are rather used as
a paradigm for managing the design process than as a kind of document
suitable for graphical representation�

Source of transformation� Class diagram�s	

Produced documents� Class diagram

Description

Allowed activities for the design of class diagrams are

the introduction of new classes� attributes and methods�

the introduction of new associations and inheritance relations�

the strengthening of invariants and

the integration of several class diagrams�

Source of transformation� State diagram

Produced documents� State diagram

Description

Allowed activities for the design of state diagrams are

the introduction of new states�

the re�nement of states�

the introduction of new transitions under certain conditions�

the deletion of transitions�

The exact rules can be found in Rumpe ����	�

Source of transformation� Sequence diagram�s	

Produced documents� State diagram�s	

Description

Sequence diagrams describe exemplary event traces that may be

synthesized to complete descriptions in state diagrams� Sequence diagrams

roughly correspond to paths in the synthesized state diagram�

Table �� Technical Steps for UML documents

Integrating the transform relation� a document graph does not only repre�
sent a system speci�cation at a single stage of development but represents
the whole design process� Compared to the traditional view of the design
process as a sequence of system speci�cations the document graph view is
advantageous for several reasons�
First� the notion of document graphs supports a design which does not have
to be strictly phase oriented and homogeneous but enables the prototyping
of subsystems and the reuse of documents� In this respect� the notion of
document graphs is particularly suitable in an object oriented design envi�
ronment�
Second� a system speci�cation in any case consists of documents at di�erent
levels of abstraction �e�g� for documentation or communication purposes��
Thus� the representation of the whole design process in the document graph
is only a matter of consequence� It is clear that an explicit versioning concept
for documents is not needed in our framework since the sequence of design
steps is represented by a sequence of transform relations in the document
graph�

Doc2

type: sequence diagram
state: validated

Doc5

type: state diagram
state: -

Doc4

type: use case diagram
state: -

Doc1

type: class diagram
state: validated

Doc3

type: sequence diagram
state: -

Legend

D UML Document with name D

D1 D2

D1 D2 D1 refers to D2

D2 transforms D1

Figure �� A Sample Document Graph

� Outlook and Further Work

In this paper� we have outlined directions for a stronger integration of the
description techniques provided by the Uni�ed Modeling Language� The
underlying basis used for the integration is a mathematical model developed
in the SysLab method� the system model�
This setting provides a rich �eld for future research activities� As a start�
precise mappings of the UML description techniques onto the mathematical
system model have to be de�ned� Based on them� notions of consistency
between development documents of the same or di�erent description tech�
niques can be de�ned� Consequently� a further step of research would be to
use the interrelationships between the UML description techniques de�ned
on the basis of the system model to soundly integrate them methodically�
particularly on the level of the technical steps introduced in Section ���� The
last step� building upon such an integration framework� would be to develop
appropriate tools that support these techniques and the methodology�

References

BOEHM� B�W� �	

��� A spiral model of software development and enhance�

ment� Software engineering notes� ������

BOOCH� G�� RUMBAUGH� J�� � JACOBSON� I� �	

�� The Uni�ed Mod�
eling Language for Object�Oriented Development� Version 	���

BREU� R�� GROSU� R�� HOFMANN� CH�� HUBER� F�� KR�UGER� I��
RUMPE� B�� SCHMIDT� M�� � SCHWERIN� W� �	

�a�� Describ�
ing Object Interaction� From Exemplary to Complete Descriptions� TUM�I

���� Technische Universit�at M�unchen�

BREU� R�� GROSU� R�� HUBER� F�� RUMPE� B�� � SCHWERIN� W�
�	

�b�� Towards a precise semantics for object�oriented modeling tech�
niques� In� Kilov� Haim� � Rumpe� Bernhard �eds�� Proceedings
ecoop��	 workshop on precise semantics for object
oriented modeling tech

niques� TUM�I
����

BROY� M�� � ST�LEN� K� �	

��� Speci�cation and re�nement of �nite
data�ow networks � a relational approach� Tech� rept� TUM�I
�	�� Technis�
che Univerit�at M�unchen�

BROY� M�� DEDERICH� F�� DENDORFER� C�� FUCHS� M��
GRITZNER� TH�� � WEBER� R� �	

��� The design of distributed sys�
tems � an introduction to FOCUS � revised version �� Tech� rept� SFB�Bericht
��������
�A� Technische Universit�at M�unchen�

BURKHARDT� R� �	

��� UML � uni�ed modelling language � objektorientierte
Modellierung f�ur die Praxis� Addison Wesley�

GROSU� R�� � RUMPE� B� �	

��� Concurrent timed port automata� Tech�
rept� TUM�I
���� Technische Univerit�at M�unchen�

GROSU� R�� KLEIN� C�� � RUMPE� B� �	

�� Enhancing the syslab system
model with state� TUM�I
�	� Technische Universit�at M�unchen�

HUSSMANN� H� �	

��� Formal Foundations for SSADM� Technische Univer�
sit�at M�unchen� Habilitationsarbeit�

KLEIN� C�� RUMPE� B�� � BROY� M� �	

�� A stream�based mathemat�
ical model for distributed information processing systems � SysLab system
model � � Pages ������ of� Elie Naijm� Jean�Bernard Stefani �ed��
Fmoods��� formal methods for open object
based distributed systems� ENST
France Telecom�

PAECH� B�� � RUMPE� B� �	

��� State based service description� In� Der�
rick� John �ed�� Formal methods for open object
based distributed systems�
Chapman�Hall�

RUMPE� B� �	

�� Formale Methodik des Entwurfs verteilter objektorientierter
Systeme� Herbert Utz Verlag Wissenschaft� PhD thesis� Technische Univer�
sit�at M�unchen�

