

http://www.se.rwth-aachen.de/

Department of Software Engineering

RWTH Aachen University

Prof. Dr.-Ing. Manfred Nagl, Emeritus,

Dipl.-Math. Michael von Wenckstern

(vonwenckstern@se-rwth.de)

Exercise course: Ada

WS 2014 / 15

October 10, 2014

Exercise Sheet 1

Submission:

 When: Monday, October 20, 2014. 11:59 pm

 Where: L
2
P-eLearning room of Ada or e-mail

Organization
Exercise sheets must be submitted in groups of two to four students. The submission must

be delivered electronically via the L
2
P-eLearning room of Ada.

Exercise 1.1 Development Environment
During the exercise courses there will be programming tasks. Therefore, get familiar with a

development environment for Ada. Install an Ada compiler and a graphical IDE supporting

Ada.

The standard compiler for Ada is GNAT (Gnu Ada Translator) which is available for different

platforms. GNAT Programming Studio is a recommendable graphical IDE for Windows. For

Linux the Emacs-based GLIDE is recommendable and already included in the GNAT distribu-

tion. In http://en.wikibooks.org/wiki/Ada_Programming/Installing you will find download

links, instructions for installation, and some helpful information in programming with Ada.

For Mac OS X there are on http://www.macada.org/macada/Welcome.html plugins for Ap-

ples IDE “XCode”.

GNATbench, an Ada Plug-in for Eclipse, can be downloaded with the GNAT GPL Edition at

http://libre.adacore.com/download/. It requires Eclipse Platform Version 3.6 - 3.7 or 4.2.

Exercise 1.2 Programming Task (1 Point)
Write a „Hello World!“-program to test your development environment.

Commit the source code and a screenshot of your running IDE.

http://www.se.rwth-aachen.de/

Exercise 1.3 Derivation Tree (6 Points)
Get familiar with the Ada EBNF and write down the derivation tree according to the Ada

EBNF for the following package.

WITH Ada.Text_IO;

PACKAGE BODY Mobile IS

 FUNCTION transmit (

 msg : IN string)

 RETURN integer IS

 BEGIN

 Ada.Text_IO.Put_Line("Sending Message ...");

 RETURN 0;

 END transmit;

END Mobile;

For that use the XML-notation. In the following, the beginning of the solution is presented.

Here, you can detect the desired structure. All nonterminal symbols are XML-tags, all termi-

nal symbols are contents of the tags. You can find the syntax in Appendix 6 of the Ada-book

or at http://www.seas.gwu.edu/~adagroup/ada95-syntax/ ,

http://www.dwheeler.com/lovelace/s2s4.htm

<compilation_unit>
 <context_clause>
 <with_clause>
 WITH
 <library_unit_name>Ada.Text_IO</library_unit_name>
 ;
 </with_clause>
 </context_clause>
 <library_item>

 ...

 </library_item>
</compilation_unit>

To save work you can end with the parsing if the nonterminal symbol ends with name,
identifier or expression (e.g., for <library_unit_name>).

It is suggested to this work with an XML-Editor and copy the solution later on into the text

document in order to avoid spelling errors.

http://www.se.rwth-aachen.de/

Exercise 1.4 Relations in the Ada EBNF (6 Points)
The Ada EBNF is divided into sections describing syntactical constructs which belong togeth-

er. Inside one section there are numerous relations between such constructs. But there are

also relations between different sections. Draw a diagram for sections 2 to 13, similar to the

following one, containing all direct relations derived from the syntax rules.

3
Declarations and

Types

7
Packages

An arrow goes from section 3: Declarations and Types to section 7: Packages, because rule

3.11 references the nonterminal package_body of rule 7.2:

3.11: proper_body ::=
 subprogram_body
 | package_body � from 7.2: Package Bodies
 | task_body
 | protected_body

Vice versa an arrow goes from section 7 to section 3, because rule 7.1 Package Specifications

and Declarations refers basic_daclarative_item of rule 3.11:

7.2: package_specification ::=
 PACKAGE defining_program_unit_name IS
 {basic_declarative_item} � from 3.11: Declarative Parts
 [private {basic_declarative_item}]
 END [[parent_unit_name.]identifier]

