
A Case Study of the Component and Connector
Modeling Language EmbeddedMontiArc

Philipp Haller, Malte Heithoff
Supervised by: Michael von Wenckstern and Bernhard Rumpe

Software Engineering, RWTH Aachen University

Abstract

(Abstract by Philipp Haller) The magnitude and quantity of software projects
rises constantly, as software development needs spread among scientific and
technical disciplines. Domain Specific Languages (DSLs) show to provide solu-
tions for specialized contexts. EmbeddedMontiArc is a DSL for cyber physical
systems. This paper represents a case-study, evaluating the ease of use and re-
usability of EmbeddedMontiArc for reactive systems by presenting models for
the games Pacman and Supermario. Games are highly reactive systems were
entities controlled by the player react to a changing environment and try to
reach goals, thus can provide a good testing ground for actual systems. From
the models presented it is concluded that EmbeddedMontiArc is suitable for
cyber-physical systems, but still not flawless.

Keywords: EmbeddedMontiArc, Component & Connector Models, Case
Study, Supermario, Pacman

?

Preprint submitted to Elsevier September 8, 2018

This paper is a seminar paper of two students; the seminar teaches students to write scientific papers.

This paper has NOT been submitted!



1. Introduction (by Philipp Haller)

The magnitude and quantity of software projects rises constantly, as software
development needs spread among scientific and technical disciplines. Since not
all languages are suitable for all occasions and others may provide too much
features to be efficient for a specific purpose, Domain Specific Languages (DSLs)5

are developed. DSLs are languages tailored specifically to a certain objective.
EmbeddedMontiArc, a specific DSL for cyber-physical systems is evaluated in
this paper. It will be introduced in more detail in section 2 together with
the used tools. This section forms a general introduction and will present the
research questions. Thereafter the approach will be presented in section 3.10

Section 4 depicts the simulator integration and the developed models. In section
5 the evaluation is presented, concluded by a conclusion in section 6.

In general most problems can be sorted into two categories. The first being
data based problems, where huge amounts of data are processed and no hard
real time capabilities are necessary. An example for such a problem is Google’s15

or Amazon’s search system. The other problem category consists of reactive
systems which operate on very little data and must return output with hard
time constraints. In this paper EmbeddedMontiArc is evaluated towards its
capabilities for the second category. The language is well tested on the autopilot
project of a self driving car (see [1]), but has few other running examples. The20

following research questions were formulated to specify evaluation topics:

• RQ1: Is EmbeddedMontiArc suitable reactive systems in domains other
than the automotive industry?

• RQ2: Is it possible to integrate other simulators in a recent amount of
work?25

• RQ3: What kind of background knowledge is needed to model C&C in
EmbeddedMontiArc?

• RQ4: What features are good and what are not suited?

To answer these research questions two groups are formed who develop dif-
ferent models in EmbeddedMontiArc and share their experience while doing so.30

To ensure a similar experience to real reactive cyber physical systems, two games
were selected. Games were selected, because most games are real-time problems
with a changing environment and limited inputs, while requiring immediate re-
sponses. The games chosen for this paper are Pacman and Supermario. Both
games are 2D arcade games where a figure is controlled by a player in a setting35

where some types of enemy entities exist. In the case of Pacman the level is
completely visible and enemies consist of four ghosts roaming the level. The
level is failed once the ghosts touch the player. Goal of the game is to collect
or ”eat” all dots in the level. Supermario is a side-scrolling platform game were
the level is revealed as the player progresses. Main goal of Supermario is to40

bring the player figure all the way through to the end of the level, while either
evading or defeating the different enemy types. The players progress is rated

2



via a scoring system, where enemy defeats and collectibles are assessed. Goal
for both models developed in this paper is to solve a level in their respective
game.45

The finished models can be observed playing Pacman and Supermario au-
tonomouosly on the websites
https://embeddedmotiarc.github.io/SuperMario/Pacman/ [2]
and
https://embeddedmontiarc.github.io/SuperMario/supermario/simulation.50

html

A video explanation for Pacman and Supermario can be found here: https:
//www.youtube.com/watch?v=f7YKCsSB_Tg [3]
and55

https://www.youtube.com/watch?v=LZ3rp8KgdHI&t=43s [4].

2. Context (by Philipp Haller)

The following section consists of three parts. The first one is a brief intro-
duction to C&C models. The tools used for this study follow up second. Lastly,
the used case study method is presented.60

2.1. C & C models
In the following a short introduction in Connector and Component (C&C)

model based software development is given. C&C modeling divides a task into
Components and Connectors.

A Component represents a computation. It has predefined inputs and out-65

puts, where the output data is obtained by some kind of mathematical trans-
formation of the input data. A Connector represents interaction mechanisms
by connecting outputs with inputs. By making this division, the paradigm en-
sures modularity and therefore re-usability. It can be used for modeling software
with high demands for testing and verification such as software for self-driving70

vehicles [5][6]. Another benefit is that a graphical representation is always pos-
sible and more efficiently obtainable compared to other text based development,
especially non model driven development. The structure of C&C models also
benefits code generation techniques in order to transform models into source
code for various target systems. Well established examples of C&C modeling75

and development are SysML[7], AADL[8], Simulink[9] and Labview[10]. The
latter two are used in the automotive domain to model behaviour of Electronic
Control Units (ECUs) and test their functionality.

2.2. MontiCore and EmbeddedMontiArc
MontiCore [11], MontiCAR [12] and EmbeddedMontiArc [13] are tools de-80

veloped by the Chair of Software Engineering of RWTH Aachen University[14].
MontiCore is a language workbench intended for agile and model-driven soft-
ware development. Its primary objective is to enable efficient development of

3

https://embeddedmotiarc.github.io/SuperMario/Pacman/
https://embeddedmontiarc.github.io/SuperMario/supermario/simulation.html
https://embeddedmontiarc.github.io/SuperMario/supermario/simulation.html
https://embeddedmontiarc.github.io/SuperMario/supermario/simulation.html
https://www.youtube.com/watch?v=f7YKCsSB_Tg
https://www.youtube.com/watch?v=f7YKCsSB_Tg
https://www.youtube.com/watch?v=f7YKCsSB_Tg
https://www.youtube.com/watch?v=LZ3rp8KgdHI&t=43s


Domain Specific Languages (DSLs) which enhance the development process for
Domain Experts. MontiCAR is a composition of such DSLs, used as an language85

set for Cyber-Physical Systems [15]. Figure 1 shows the DSLs which are part
of MontiCar and their respective connections. The components directly used in
this studies implementation are EmbeddedMontiArc, EmbeddedMontiArcMath
and Stream. EmbeddedMontiArc represents the core language of MontiCar. It
implements a C&C DSL which can be used to write C&C models, verify, test90

and deploy them to another architecture. Due to its modularity different simu-
lators and Stream tests can be integrated. See the chapter modeling for more
information. Figure 2 depicts a usage of the EmbeddedMontiArc DSL.

EmbeddedMontiArcMath is a DSL for implementing mathematical expres-
sions, thus used for transforming the input values of a Component into its95

output values. It is also able to declare other variables than the defined inputs
and logical structures like if-statements and loops. Example usage of Embed-
dedMontiArcMath is shown in figure 3.

The Stream DSL allows to implement test cases by defining the expected
output values for a given input. Multiple values can be tested in one Stream100

test, as shown in figure 4 which shows an example stream test for a sum function.
Thy syntax of this DSL holds the following items:

• The package which also holds the component (de.rwth...)

• The test’s name (Sum)

• The name of the component to test (Sum)105

• Values for each input port (t1 and t2)

• A line with the values for at least one output port (result)

The values for one port are separated by ticks. Each tick stands for one ex-
ecution cycle. This way a component can be tested over several cycles which
gets important if the component’s behavior is dependent on previous execution110

cycles. In addition the +/- allows inaccuracy in the results.

2.3. Performing a Case Study in Software Engineering
This study roughly follows the guidelines stated by Runeson and Hoest [16]

by presenting the objective, the specific case, method and acquiring both quan-
titative and qualitative data. Quantitative data is acquired by asking a set of115

predefined questioned and answering them on a scale from 1 to 10. The qual-
itative data is obtained via requiring subjects to formalize how they gave the
quantitative rating. The quantitative data is analyzed by calculating the mean
of each question, and the quantitative by summarizing the subject’s writings.

3. Approach120

To address RQ1 and RQ3 two groups were assigned the task to model a
controller for Pacman and Supermario respectively and interview the results

4



Figure 1: Composition of MontiCAR language family[15]

Figure 2: Example Component with Connectors

afterwards. The first group (Pacman) consists of a subject who is familiar
with EmbeddedMontiArc and the second group (Supermario) consists a subjects
who have no experience with EmbeddedMontiArc. These groups were selected125

random among the students of a computer science seminar.

3.1. Stream Testing (by Heithoff)
EmbeddedMontiArc comes along with stream tests in order to check a com-

ponent against a condition as stated in the previous chapter. We can use those
tests to define the conditions the controllers need to fulfill. Those conditions are130

5



Figure 3: Example EmbeddedMontiArcMath implementation

Figure 4: Example Stream implementation]

taken from use cases scenarios. For Pacman the most general acceptance test
would be to never let the Pacman die. Due to the fact that stream tests cannot
be defined unlimited and that this test might be hard to fulfill the following
deterministic tests for Pacman and Supermario were defined.

3.1.1. Pacman (by Heithoff)135

The tests are taken from use case scenarios as stated before. In this section
the process of deriving the stream test from a scenario is presented once and
then a few conditions are framed.

6



Deriving a Stream Test140

In fig. 5 a scenario is shown where the only option for Pacman is to flee to
the left in order to not collide with the pink and blue ghost. The values of the
ghosts and Pacman are partially listed in listing 1. Together with the remaining
values this concludes to the stream test shown below 2.

145

Some other tests
To formulate just some tests, here are a few examples:

• If Pacman is located at an intersection and ghosts are coming from two
sides, Pacman should walk to a safe path.

• If Pacman is located at an intersection and ghosts are at the top path and150

are all eatable, Pacman should walk this path.

• If Pacman is located at an intersection and there are ghosts from 3 direc-
tions and in the other direction there is a ghost facing away from Pacman,
Pacman should walk this direction.

• If there are no ghosts nearby, Pacman should walk the direction with the155

largest biscuit/coin value.

Those scenarios can be tested easily within a few ticks via stream testing.

3.1.2. Supermario (by Philipp Haller)
The goal for the Supermario model is to solve a level successfully. The first

level was chosen since it provides a diverse environment with different enemy160

types and obstacles, while not being too skill intensive to solve. Prior to mod-
eling some assumptions were made to fulfill time and complexity constraints.
Only a fixed number of enemies and obstacles in the path of the player are con-
sidered in order to ensure a static input size. For this number, five has proved
to be sufficient for the first level and the implemented strategy. There are rarely165

more than 3 enemies in scene. For the same reason only the next hole in the
ground is considered. In order to develop the model, different situations were
assessed and according tests derived. Both the scenarios which a Supermario
model has to master and the derived tests are listed below.

Figure 6 depicts the player next to an obstacle. In order to jump over it he170

has to move right and jump at the same time. He needs to keep jumping until
he is higher than the obstacle.

Figure 7 shows two situations. In the first one, mario jumps to evade an
enemy. The second depicts him landing on top of enemies to kill them.

In Figure 8 the player is seen standing next to holes in the ground. In the175

first picture he is on the ground level, in the second he is standing on an obstacle.
The stream tests derived from the scenarios are introduced in the following.

If a enemy gets closer than 80 pixels (two blocks) and is on the same height
as the player, the player has to jump in order to evade the enemy (listing 59).

7



Listing 1: Values for the stream test
(a)

Pacman: (15m, 17.2m)
Pink Ghost: (17m, 19m)
BlueGhost: (15m, 14.8m)
newDir: 0

(b)
Pacman: (15m, 17m)
Pink Ghost: (16.8m, 19m)
BlueGhost: (15m, 15m)
newDir: 0

(c)
Pacman: (14.8m, 17m)
Pink Ghost: (16.6m, 19m)
BlueGhost: (15m, 15.2m)
newDir: 2

(d)
Pacman: (14.6m, 17m)
Pink Ghost: (16.4m, 19m)
BlueGhost: (15m, 15.4m)
newDir: 2

Listing 2: Stream test for the scenario above
package de.rwth.Pacman;
stream Test1 for PacmanWrapper {

ghostX: [5.4m,15m,17m,7m] tick [5.2m,15m, ...
ghostY: [21m,14.8m,19m,17.2m] tick [21m,15m, ...
ghostDirection: [2,1,2,1] tick [2,1,2,1] tick ...
ghostEtable: [false, false, false, false] tick ...
ghostEaten: [false, false, false, false] tick ...
PacmanX: 15m tick 15m tick 14.8m tick 14.6m;
PacmanY: 17.2m tick 17m tick 17m tick 17m;
PacmanEaten: false tick false tick false tick false;
PacmanLives: 3 tick 3 tick 3 tick 3;
PacmanScore: 0 tick 0 tick 0 tick 0;
map: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; ...
newPacmanDirection: 0 tick 0 tick 2 tick 2;

}

8



(a) (b)

(c) (d)

Figure 5: Pacman has to move left to avoid colliding with the ghosts

The units for the EnemyDistX and EnemyDistY values are pixels, while the180

velocities are given in pixels per time frame. The output values are of type
boolean.

9



Listing 3: Enemy watcher stream test
package de.rwth.supermario.haller.environment;

stream Env_EnemyWatcher_Evade for EnemyWatcher {
EnemyDistX: 200 tick 100 tick 75;
EnemyDistY: 0 tick 0 tick 0;
EnemyVelocityX: −10 tick −10 tick −10;
EnemyVelocityY: 0 tick 0 tick 0;

movesTowardsPlayer: 1 tick 1 tick 1;
inJumpRange: 0 tick 0 tick 1;

}

Listing 4: Enemy watcher stream test
package de.rwth.supermario.haller.environment;

stream Env_EnemyWatcher_FromAbove for EnemyWatcher {
EnemyDistX: 200 tick 100 tick 5;
EnemyDistY: 128 tick 128 tick 32;
EnemyVelocityX: −10 tick −10 tick −10;
EnemyVelocityY: 0 tick 0 tick 0;

movesTowardsPlayer: 1 tick 1 tick 1;
inJumpRange: 0 tick 0 tick 0;

}

10



Figure 6: Mario has to jump and move right to overcome the obstacle

(a) Mario evades a enemy by jump-
ing

(b) Mario defeats enemies by landing on them

Figure 7: Mario has to jump over/to enemies

The stream in listing 60 covers the case when the player is above enemies
and shall drop on them while he is above.

If there is no enemy near the player, the enemy watcher object shall give no185

jump advice (listing 61).
If a obstacle is in front of the player, he shall jump until he has passed

it(listing 62). The distances are given in pixels, and the obstacle in this text is
of 70px height.

In listing 63 the stream test for jumping over holes is given. In this case, the190

player shall start jumping close to the hole and only stop once he is over.

3.2. Preparations (by Haller and Heithoff)
The code of the Pacman emulator [17] and Supermario emulator [18] is

available in HTML5 and JavaScript. C&C-Components in EmbeddedMontiArc
can be translated to C++ code and then to a web assembly [19] which uses195

JavaScript. This JavaScript file can be given inputs according to the compo-
nent and calculates the outputs on execution. To combine these two files, there
is an additional interface needed to extract the information for the inputs out
of the emulator and then give the calculated outputs into the emulator. For
the purpose of implementing the controllers the subjects were assigned to use200

the EmbeddedMontiArcStudio. EmbeddedMontiArcStudioV1.6.2 did neither
support a simulator for Pacman nor a simulator for Supermario. So an ad-
ditional step to answer RQ2 Is it possible to integrate other simulators in a

11



(a) Mario and a hole in the ground

(b) Mario and a hole with obstacles

Figure 8: Mario has to jump over a hole

Listing 5: Enemy watcher stream test
package de.rwth.supermario.haller.environment;

stream Env_EnemyWatcher_FromAbove for EnemyWatcher {
EnemyDistX: −1 tick;
EnemyDistY: −1 tick;
EnemyVelocityX: 0 tick;
EnemyVelocityY: 0 tick;

movesTowardsPlayer: 0 tick;
inJumpRange: 0 tick;

}

Listing 6: Obstacle watcher stream test
package de.rwth.supermario.haller.environment;
stream Env_ObstacleWatcher for ObstacleWatcher {

ObstacleDistX: 200 tick 100 tick 75 tick 50 tick 25 tick 0;
ObstacleDistX: 0 tick 0 tick 0 tick 25 tick 50 tick 75;

inJumpRange: 0 tick 0 tick 1 tick 1 tick 1 tick 0;
}

12



Listing 7: Hole watcher stream test
package de.rwth.supermario.haller.environment;
stream Env_ObstacleWatcher for ObstacleWatcher {

holeDistance: 200 tick 100 tick 10 tick 0 tick 1200;

inJumpRange: 0 tick 0 tick 1 tick 1 tick 0;
}

recent amount of work it for the groups to integrate the simulators into the
EmbeddedMontiArcStudio.205

In order to be able to do so, group Pacman is instructed by an expert (Jean-
Marc) which files need modification and what to add. After that this group
instructed the second group the same way.

4. Case Study Execution

In this chapter the case study execution is described. First, the necessary210

steps for integrating a new Simulator into the IDE are shown. In the second
part the modeling of the controllers for Pacman and Supermario are discussed.

4.1. Integration of Simulator into IDE (Introduction by Philipp Haller)
As the participants of the use-case study were divided into two groups, the

first group dealt with the IDE integration of the Pacman simulator after being215

instructed by an EMA professional. After successful integration this first group
wrote a step-by-step instruction list. The second group used this list to integrate
the Supermario simulator into the IDE. Details are given in the following.

4.1.1. Integration at the example of Pacman (by Malte Heithoff)
To integrate a simulator into the EmbeddedMontiArcStudio several steps220

were necessary. In figure 9 you can see the top view of the EmbeddedMontiArc’s
IDE. The five added features here are as follows:

1. Open a new tab where you can play a normal game of Pacman

2. Generate the WebAssembly of the main component

3. Open a new tab in which the simulation of the component takes place225

4. Generates the visualization of the main component and shows it in a new
tab

Figure 9: Main options for the Pacman project in the ide

13



5. Generates the reporting of all components and shows it in a new tab

6. Generates the reporting of all components with stream test results and
shows it in a new tab230

7. Run all tests in the repository and show their results

8. Run a single test and show its result

The features needed to be implemented properly in different places in order to
work along the logic of the ide. Each one calls a batch script which again runs
the jar for the demanded task for the specific files. In addition, for feature 1235

and 2 extra plugins were required which got implemented by the expert group
Pacman and could be reused for Supermario.

4.2. Modeling (by Heithoff)
This chapter introduces the models of Pacman and Supermario respectively.

The models should always follow certain rules defined in the EmbeddedMontiArc240

documentation (see [20]). The math implementation of all atomic components
should be short and have a short runtime. This way not only the clarity of
the code is enhanced but also the runtime of the components is fixed. C&C
models should, at some point, be runnable on microchips and due to the fact
that those models are designed for real-time systems the runtime has to be fix.245

To achieve this a lot of functionality can be extracted into subcomponents. In
general, loops should be avoided and split up into subcomponents if possible.
Because while loops are not ensured to terminate, those should never be used.

4.3. Pacman (by Heithoff)
In the following the model for the Pacman controller is presented. The goal250

is to collect as many biscuits and coins as possible and to avoid the ghosts.
After introducing the interface which is used here two controllers for Pacman
are shown. There is a simple controller which was used in the early stages of
the IDE integration to test everything and then a more complex controller that
can actually survive a few levels.255

4.3.1. Interface
The project’s main component is PacmanWrapper. The main task of the

wrapper is to provide a shared interface. Listing 8 shows the input and output
ports. As for the inputs, the ghosts’ and the Pacman’s position are given, the
direction the ghosts are facing, information about the ghosts’ vulnerability, as260

well as the current map. The only output port is the new direction the Pacman
should walk.
The wrapper also holds the current controller. This way the controller is easily
exchangeable without changing any of the code needed for the ide. All input
ports of the wrapper are connected to the corresponding ports of the controller265

and the output port of the controller is also connected to the output port of the
wrapper.

14



Figure 10: Visualization of the Pacman wrapper

Listing 8: Interface of the Pacman Wrapper
ports

in (0cm: 180cm) ghostX[4],
in (0cm: 210cm) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],
in B ghostEaten[4],
in (0cm: 180cm) pacManX,
in (0cm: 210cm) pacManY,
in B pacManEaten,
in (0:oo) pacManLives,
in (0:oo) pacManScore,
in Z^{22,19} map,
out (0 : 1 : 3) newPacmanDirection;

To connect the web assembly of the main component with the Pacman emulator
a new JavaScript file was created. Its main functionalities is to extract the
needed informations out of the emulator, pass it to the web assembly, execute270

it and then give the output back to the emulator. In order to be able to extract
needed information out of the emulator some modifications were needed. In its
original state the emulator did not offer access to the current game object, thus
the Pacman class was extended by these functions. Due to the fact Pacman
is a playable game, its input is given as a key-press-event in JavaScript. So275

the output of the web assembly, which is a number from 0 to 3, is mapped
to a corresponding key-press-event which then gets triggered. The emulator is
running with 30 frames per second, which also leads to 30 iterations of the game
per second. Because the emulator is running asynchronously the component is
executed at a double of that rate in order to track every position change.280

4.3.2. C&C modeling - Pacman (simple)
In figure 11 the design of a simple controller is shown. It has four subcom-

ponents:

• nearestGhost: Is given the x - and y - position of every ghost and the
x - and y - position of the Pacman. It then iterates over all ghosts and285

15



Figure 11: Visualization of the Pacman controller (simple)

calculates the nearest ghost and gives back its index.

• picker: Is given all ghost informations as input as well as an index and
gives back the ghost information of the ghost at this index.

• away: Is given one ghost’s informations as well as Pacman’s and calculates
a new direction for the Pacman facing away from the ghost. The output290

is one of the four possible directions mapped from the numbers 0 to 3.

• tryDir: Gets as input the position of Pacman, the current map as well as
a direction the Pacman should try to walk. If there is no wall blocking
the way the initial direction is outputted. On the other hand, if there is a
wall blocking the way it tries to walk orthogonally left or up. If it fails it295

will walk right or down respectively.

The controller connects the subcomponents in the shown order: It calculates
the nearest ghost, passes its index to the picker which then again passes the
corresponding ghost to the away component. This calculates the direction facing
away from said ghost and the tryDir component then avoids running into walls.300

This leads to a controller that runs away from the ghosts with some success but
it is only determined by the nearest ghost and has no other goals. Due to the
fact that tryDir always tries to walk to the left (or top) first, this can lead to
some stuttering as soon as the Pacman walked enough to the right that there is
again space to the left.305

This design is very simple and not very successful. It shows the concept of C&C
modeling in its basics and is therefore listed here. The next controller is a lot
more complex and can easily beat up to 10 levels.

16



4.3.3. C&C modeling - Pacman (complex)
The more complex Pacman controller is shown in figure 12. It has three310

main subcomponents:
• safePaths: This component is responsible for checking all the paths leading

from Pacman into the labyrinth for safety. This is done by searching in
each of the four possible directions until a wall or intersection is found.

• coneSearch: Searches in cones in each of the four directions for enemies315

and coins and gives back a score for each direction.

• decision: The decision component evaluates all data from the other two
components. Based on those values it decides which direction the Pacman
should go next.

The last component normalize not listed here is only responsible for increas-320

ing all position values from the ghosts and Pacman by 1 to fit the indexation
from the math library. We will now go into detail for the three main component.

Safe Paths
In figure 13 the safePaths component is shown. It contains a subcomponent325

for each direction and some starting values. It gives back whether the four
directions are safe or not. A direction is safe if there is a wall blocking it (no
path) or there is no enemy on its path until the next intersection. This is
calculated by “going” the path. This could be done with a single component
looping through the path to the next intersection. Due to the fact that this330

would contradict the conditions on C&C components stated before it is split up
into subcomponents. Each path in this labyrinth has a length of at most 10.
So the task is divided into 10 components as one can partially see in fig. 14.
Each of those checks whether the current position is safe and then calculate the
position to check for the next component. This way the runtime is fixed and335

the code is better parallelizable.
The task of one of the 10 subcomponents is again split up into 5 subtasks

(see fig. 15):
• reenterMap: If the previous component calculated a position outside of

the map (e.g. leaving the map on the right through the tunnel), reenter340

the map on the other side.

• safeFinished: The search is finished if it is marked as finished by a previous
search component or a wall is found (only when there is no path).

• safePosition: Loops through the four ghosts and check whether their po-
sition matches the current position. If an unsafe tile is found, the search345

is marked as finished and not safe.

• calcNewPosition: Looks for free ways in the adjacent tiles. If there are
more than two free tiles (no wall), an intersection is reached and the search
can be marked finished. Otherwise this component gives back the next
position which is different from the previous one.350

17



Figure 12: Visualization of the Pacman controller (complex)

• control: The control unit evaluates all data from the other components
and gives back a corresponding new position and whether the search until
now is safe or not.

Cone Search
The ConeSearch component searches through the map in cones (see figure 16).355

This way each direction can be given a value which increases when biscuits and
coins are found and decreases when ghosts are found. The following weights are
used in the most current version:

• biscuit: 50

• coin: 200360

• enemy (facing towards Pacman): -10

• enemy (facing a different direction): -4

• enemy (eatable): 1000

The values shrink with the distance to Pacman. The biscuit/coin value shrink
squared and the enemy value linear with the distance. This way near objectives365

are valued more and Pacman does not go for only far away biscuits/coins if there
already are nearby ones. But if all biscuit/coin values are small the maximum

18



Figure 13: Visualization of Safe Paths

19



Figure 14: Visualization of one Search

Figure 15: Visualization of one Single Search Component

20



Figure 16: Visualization of Cone Search

21



gets increased by a fix amount, so Pacman goes for far away biscuits/coins
if there are no around. In the end for each direction a value is returned by
combining the biscuits/coins value and the enemy value.370

In the visualization of the component (see fig. 17) one can see the different
kind of subcomponents:

• enemiesWeights and coinWeights: some constants for weighting biscuits,
coins and ghost values. This design allows easy adjustments.

• enemies(Top): searches for enemies in the (top) cone and gives back its375

value.

• coins(Top): searches for biscuits/coins in the (top) cone and gives back
its value.

• enhancer : increases the maximum biscuits/coins value if it is small.

• combine: combines the values for biscuits/coins and enemies for a direc-380

tion.

Decision
The decision component gets all data from safePaths and coneSearch and makes
a final decision on where to go. Beside the maximum value for a direction and
whether it is safe or not, the decision is based on a few additional information.385

E.g. the top direction has the maximum value from the cone searches but it is
blocked by a wall or not safe. Then another direction has to be chosen. Here
an orthogonal direction (left or right) is preferred to stay near to the desired
one (top). In addition, to prevent stuttering a new path is only chosen if the
current one is not safe anymore or an intersection is reached. In fig. 18 one can390

see the four subcomponents of safePaths:

• intersection: Gives back whether Pacman is located on a tile with more
than 2 Paths leading from it.

• possibleWays: Gives back which directions are not blocked by a wall.

• compareValues: Calculates the safe direction with the maximum value. If395

this direction is blocked, a new direction has to be chosen.

• verifyDirection: Checks whether the chosen direction is opposing the pre-
vious one. This is only allowed if the previous direction is not safe anymore
or an intersection is reached.

22



Figure 17: Visualization of Cone Search

Figure 18: Visualization of Cone Search

23



4.4. Modeling - Supermario (by Philipp Haller)400

This part discusses the model used to solve a level of the Supermario game.
First a general introduction on model types is given. Thereafter, the different
models are discussed step by step, beginning at the most abstract.

4.4.1. Model Types
In this context the following model types used were:405

Watcher
The watcher model type takes a position as input and returns a boolean value
which indicates if it is in a certain range.

410

Selector
The selector model type uses a raw array and an index as input and returns the
corresponding array entry.

Strategy415

A strategy model type can take different inputs and performs a action decision
based on its inputs.

Controller
The controller model type combines the other defined model types to refine the420

inputs of the simulation and executes a strategy.

Filter
The filter model type is intended to perform filtering like debouncing and plau-
sibility checks.425

4.4.2. Models
The presented model visualizations are generated from the EmbeddedMon-

tiArc Studio. Therein, a grey component indicates that the component uses
additional subcomponents, whereas a white component marks atomic compo-
nents. As stated before, the modeling was performed in such a way, that small430

components with few lines of code were preferred to bigger components.
The first and most abstract entity modeled was the Supermario wrapper

which is closely related to the outputs and inputs of the simulator. Therefore it
receives all necessary values as input with the aim to forward them to the actual
controller and its corresponding sub-components. After computation the results435

of the controller are handed back into the wrapper, which forwards the data to
the simulator. Figure 19 shows the graphical representation, while listing 9
shows the actual EMA interface definition.

The player figure’s position, velocity and height were chosen as inputs, to-
gether with the positions of the next five enemies and obstacles. Furthermore,440

the position of the next hole in the ground, the position of the next five loot
crates, the tick size (the time between model executions) and the information if

24



Figure 19: Visualisation of the Supermario wrapper model

Listing 9: Interface of the Supermario Wrapper
component SuperMarioWrapper {

ports
in Z^{1,2} marioPosition,
in Z^{1,2} marioVelocity,
in Z marioHeight,
in Z^{5,2} nextEnemyPositions,
in Z^{5,2} nextObstaclePositions,
in Z nextHole,
in Z^{5,2} nextLootCrates,
in Q tickSize,
in Z marioResting,
out (−1 : 1 : 1) marioDirection,
out Z marioJump,
out Z marioDown,
out Z marioShoot;

}

25



the player is resting on a tile is given. The outputs consist of the direction the
player shall go in combination with the action instructions jumping, crouching
and shooting. The data type for most values is integer, indicated by a ”Z” in445

the code. This is due to the circumstance that the simulator uses a number of
pixels as a measure for distance. Only exception being the ”tickSize” which can
be fractions of a second.

The controller used (Figure 20) consists of five parts. There are sub-controllers
tasked to cope with the evaluation of enemies and obstacles respectively, named450

enemyController and obstController. They return an advice to indicate if the
player should jump or not. The genStrategy is an atomic component which is
currently used to provide a general strategy like moving in another direction,
jumping or crouching if the player is stuck.

The action advices of the controllers and the strategy are combined via a455

logical or-relation, as indicated by the ”orR” block. Additionally, the jumpDe-
cider filters the output of the combined value and forwards it, if the player
can jump in that time frame. This is necessary to prohibit side-effects like
the player only jumping once because the jump key remains pressed constantly
and the simulator only accepts distinct jump activations, opposed to continuous460

jumping.
The enemy controller (Figure 21) handles the enemy position evaluation and

assesses if an action has to be initiated. As the input data from the simulator
is a array with five positions, it contains a enemy selector component which
returns the corresponding x and y values from a given index. For purposes of465

overview and readability of the EMA code a component ”enemyIndexes” was
used to feed these indexes into the selectors.

The enemy component (Figure 22) is used to compute a velocity from the x
and y positions by comparing the former positions with the current ones.

The enemy strategy (Figure 23) uses the distances and velocities from the470

enemy components to watch them for their distance to the player and whether
they can get dangerous. If an enemy comes too close and is on the player’s

Figure 20: Visualization of the Supermario controller model

26



Figure 21: Visualization of the Supermario enemy controller model

Figure 22: Visualization of the Supermario enemy model

27



Figure 23: Visualization of the Supermario enemy strategy model

plane, a jump advice is given. The jump advices are again combined via a
logical or-relation and returned.

The obstacle controller is modeled very similar to the enemy controller, ex-475

tracting positions from the raw input array and feeding them into a obstacle
strategy. The main difference to the enemy controller is the presence of another
input. This additional input is the distance to the next hole in the ground
plane of the level. It is forwarded into the obstacle strategy (Figure 24) where
a watcher component checks the player’s proximity to the hole and computes a480

jump advice. All advices are again combined by a or relation.

4.4.3. Future Modeling
The models presented in this chapter were developed with modularity and

extensibility in mind, such that in future work more complex strategies can be
used to solve more levels and to lay more attention to the score. The presented485

model utilizes that the player always runs into the right direction, thus it can’t
solve levels which require the player to move backwards. A future model should
be able to solve those situations too. This behavior could be modeled in the
general strategy component or a ”movement controller”. Another issue could
be, that currently all advices are combined via or relations. This can lead to490

side effects where the player jumps to early because of an enemy and drops into
a hole he would have avoided without the enemy. To achieve a better model,
the or relations could be swapped with a weighted decision making process.

5. Evaluation (by Malte Heithoff)

The two developers of Pacman and Supermario were interviewed in the man-495

ner mentioned in the introduction. In this section the results of this interviews
are collected and summarized.

28



Figure 24: Visualization of the Supermario enemy strategy model

29



5.1. RQ1 - Is EmbeddedMontiArc suitable for other systems?
The tasks were both based on real-time problems which the EmbeddedMon-

tiArc language is designed for. Both developers were able to model a controller500

which can beat a level in their specific domain. The code for the models is
clearly and good readable. The generated Javascript code is fast enough to be
executed every tick of the simulation (30 fps/ 60 fps). Based on the examples of
Pacman and Supermario it is clear that real-time problems can be solved with
EmbeddedMontiArc.505

5.2. RQ2 - Is it possible to integrate other simulators in a recent amount of
work?

To integrate the Pacman- and Supermario simulators two tasks had to be
completed: integrate into the integrated development environment(IDE) and
then link the simulator to the web assembly. The integration into the IDE was510

quite simple for both systems as soon as the instructions were handed out. But
as there was no infrastructure for generating the web assembly before this led to
some extra effort by installing emscripten and writing the needed scripts. The
Simulator for Pacman was easily adjustable so that the extraction of the needed
information (e.g., Pacman position) was done in short time. In contrast, the515

underlying structure of the Supermario project in use was way more complex and
needed a lot more effort to understand it. Linking the web assembly with the
simulator was done within little work as soon as the interface for extracting the
data from the simulators and inputting the computed results was implemented.
Just the data had to be transformed into the correct format and then the web520

assembly needed to be executed.
Therefore, the answer to this question is dependent on the complexity of the

system and on whether the is a working interface for extracting data. Pacman
was fairly easy to integrate but Supermario needed more time than calculated.

5.3. RQ3 - What kind of background knowledge is needed to model C&C in525

EmbeddedMontiArc?
One of the developers had some experience with EmbeddedMontiArc while

the other had not. Both are computer science students and are therefore fa-
miliar with programming concepts and the modular programming that Em-
beddedMontiArc requires. For the more experienced developer the concept of530

C&C was easy to understand and he could easily make use some of the tooling
the language offers. The less experienced developer had a few problems in the
beginning but after overcoming those he had no further problems with imple-
menting what he was trying to. Both developers benefited from being familiar
with programming languages so the math library was easy to understand.535

Having experience with programming concepts is necessary to model C&C
in EmbeddedMontiArc but specific knowledge about the EmbeddedMontiArc
language is optional and can be obtained in a short time.

30



5.4. RQ4 - What features are good and what are not suited?
This section will be split up into the question about the tools around the540

language and the question about the features the language itself is offering.

5.4.1. Tools
The onlineIDE coming with the EmbeddedMontiArcStudio is powerful enough

to help with the modeling process. But it is also missing a lot of tools a modern
IDE is offering. The safe option was also one of the weak points of the IDE, only545

after running a plugin all the files are saved to the hard drive. Syntax checking
was sufficient for the non-atomic components but missing for the atomic compo-
nents. The other tools integrated into the IDE, such as generating a report with
semantical checks of the models or generating a visualization could be utilized
for error checking and planning the model. But most of the tools had a long550

runtime and need optimization.

5.4.2. Language Features
The option to import other components and to have a package hierarchy

were used all the time and are well suited for the purpose of the language. Also
connecting arrays of ports with a [:] is very convenient, but this option is not555

nested which made the code at some point larger than necessary. What was
missing in this version of the code generator is the ability to use structs as a
port type which led to unclear port interface for some components.

All in all, the features the IDE and the language were offering helped with
the modeling process and are well suited for the language purpose.560

5.5. Other Problems
Although in theory there are no major problems with modeling the two

groups had to fight some bugs in the code generation process. Most of those
bugs are fixed by now, but at the time of modeling led to some considerable
time losses. Due to the fact that the transformation from the C++ code to565

Javascript had a really long runtime, testing the code needed a lot of time as
well.

6. Conclusion (by Haller and Heithoff)

In this paper, the question after the suitability of the DSL EmbeddedMon-
tiArc for other systems different from the autopilot project is answered. For that570

reason the four research questions mentioned in the beginning were formulated.
Those questioned are approached by assigning two groups the task to model a
controller for the two real-time problems Pacman and Supermario. After suc-
cessful modeling the development experience was condensed and presented. It
showed that EmbeddedMontiArc as a language is suitable and intuitive, while575

the used integrated development environment and some bugs did cost a lot of
time. Given a modern development environment is used, EmbeddedMontiArc
has great potential towards reactive cyber-physical systems.

31



Appendix A. Pacman EmbeddedMontiArc Code

Figure A.25: Pacman package outline

32



Listing 10: PacmanWrapper
580

package de.rwth.pacman;
import de.rwth.pacman.heithoff2.Controller;
import de.rwth.pacman.structs.Ghost;

// UP = 0585

// DOWN = 1
// LEFT = 2
// RIGHT = 3

component PacManWrapper {590

ports
in (−1m: 19m) ghostX[4],
in (0m: 21m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],595

in B ghostEaten[4],
in (−1m: 19m) pacManX,
in (0m: 21m) pacManY,
in B pacManEaten,
in (0:oo) pacManLives,600

in (0:oo) pacManScore,
in Z^{22,19} map,

out (0 : 1 : 3) newPacManDirection;
605

//Replace this with your own custom controller
instance Controller controller;

connect ghostX[:] → controller.ghostX[:];
connect ghostY[:] → controller.ghostY[:];610

connect ghostDirection[:] → controller.ghostDirection[:];
connect ghostEatable[:] → controller.ghostEatable[:];
connect ghostEaten[:] → controller.ghostEaten[:];
connect pacManX → controller.pacManX;
connect pacManY → controller.pacManY;615

connect pacManEaten → controller.pacManEaten;
connect pacManLives → controller.pacManLives;
connect pacManScore → controller.pacManScore;
connect map → controller.map;

620

connect controller.newPacManDirection → newPacManDirection;
}

33



Listing 11: Controller
package de.rwth.pacman.heithoff2;625

import de.rwth.pacman.heithoff2.BFS.Paths;
import de.rwth.pacman.heithoff2.decision.Decision;
import de.rwth.pacman.heithoff2.coneSearch.ConeSearches;

630

component Controller {
ports

in (−1m: 19m) ghostX[4],
in (0m: 22m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],635

in B ghostEatable[4],
in B ghostEaten[4],
in (−1m: 19m) pacManX,
in (0m: 22m) pacManY,
in B pacManEaten,640

in (0:oo) pacManLives,
in (0:oo) pacManScore,
in Z^{22,19} map,
out (0 : 1 : 3) newPacManDirection;

645

instance Paths safePaths; // gives back whether certain paths are safe
instance Decision decision; // main strategy
instance ConeSearches coneSearch; // searches for coins and enemies
instance NormalizePosition normalize;

650

connect ghostX[:] → normalize.ghostX[:], coneSearch.ghostX[:];
connect ghostY[:] → normalize.ghostY[:], coneSearch.ghostY[:];
connect ghostDirection[:] → safePaths.ghostDirection[:], coneSearch.

ghostDirection[:];
connect ghostEatable[:] → safePaths.ghostEatable[:], coneSearch.655

ghostEatable[:];
connect pacManX → normalize.pacManX, decision.pacManX,

coneSearch.currentX;
connect pacManY → normalize.pacManY, decision.pacManY,

coneSearch.currentY;660

connect map → safePaths.map, decision.map, coneSearch.map;
connect normalize.newPacManX → safePaths.pacManX;
connect normalize.newPacManY → safePaths.pacManY;
connect normalize.newGhostX[:] → safePaths.ghostX[:];
connect normalize.newGhostY[:] → safePaths.ghostY[:];665

connect safePaths.topSafe → decision.topSafe;
connect safePaths.bottomSafe → decision.bottomSafe;
connect safePaths.leftSafe → decision.leftSafe;

34



connect safePaths.rightSafe → decision.rightSafe;670

connect coneSearch.topValue → decision.topValue;
connect coneSearch.bottomValue → decision.bottomValue;
connect coneSearch.leftValue → decision.leftValue;
connect coneSearch.rightValue → decision.rightValue;675

connect decision.newPacManDirection → newPacManDirection;
}

35



Listing 12: NormalizePosition
680

package de.rwth.pacman.heithoff2;

component NormalizePosition {
ports

in (−1m: 19m) pacManX,685

in (0m: 22m) pacManY,
in (−1m: 19m) ghostX[4],
in (0m: 22m) ghostY[4],
out (−1m: 19m) newPacManX,
out (0m: 22m) newPacManY,690

out (−1m: 19m) newGhostX[4],
out (0m: 22m) newGhostY[4];

implementation Math {
newPacManX = pacManX + 1;695

newPacManY = pacManY + 1;
for i = 1:4

newGhostX(i) = ghostX(i) + 1;
newGhostY(i) = ghostY(i) + 1;

end700

}
}

36



Listing 13: BFS.BFSearch
package de.rwth.pacman.heithoff2.BFS;705

import de.rwth.pacman.heithoff2.BFS.start.StartValues;

// search along the current path whether there are ghosts facing to pacman
// bfssingle1 is given the start values which then calculates the next710

coordinates
// for bffsingle2
// the path ends when an intersection is reached
// then check again whether the surrounding tiles are safe
component BFSearch{715

ports
in (0m: 20m) ghostX[4],
in (1m: 23m) ghostY[4],
in (0m: 20m) pacManX,
in (1m: 23m) pacManY,720

in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],
in Z^{22,19} map,
in (0m: 20m) startX,
in (1m: 23m) startY,725

in Z startDirection,

out B safe;

instance StartValues start;730

instance BFSSingle bfssingle1;
instance BFSSingle bfssingle2;
instance BFSSingle bfssingle3;
instance BFSSingle bfssingle4;
instance BFSSingle bfssingle5;735

instance BFSSingle bfssingle6;
instance BFSSingle bfssingle7;
instance BFSSingle bfssingle8;
instance BFSSingle bfssingle9;
instance BFSSingle bfssingl9;740

instance EndSafe endSafe;

connect pacManX → bfssingle1.oldX;
connect pacManY → bfssingle1.oldY;

745

connect startX → bfssingle1.currentX, bfssingle2.oldX;
connect startY → bfssingle1.currentY, bfssingle2.oldY;
connect start.startSafe → bfssingle1.oldSafe;
connect start.startSafeFound → bfssingle1.oldSafeFound;

37



connect startDirection → bfssingle1.oldDirection;750

connect bfssingle1.newX → bfssingle2.currentX, bfssingle3.oldX;
connect bfssingle1.newY → bfssingle2.currentY, bfssingle3.oldY;
connect bfssingle1.safe → bfssingle2.oldSafe;
connect bfssingle1.safeFound → bfssingle2.oldSafeFound;755

connect bfssingle1.newDirection → bfssingle2.oldDirection;

connect bfssingle2.newX → bfssingle3.currentX, bfssingle4.oldX;
connect bfssingle2.newY → bfssingle3.currentY, bfssingle4.oldY;
connect bfssingle2.safe → bfssingle3.oldSafe;760

connect bfssingle2.safeFound → bfssingle3.oldSafeFound;
connect bfssingle2.newDirection → bfssingle3.oldDirection;

connect bfssingle3.newX → bfssingle4.currentX, bfssingle5.oldX;
connect bfssingle3.newY → bfssingle4.currentY, bfssingle5.oldY;765

connect bfssingle3.safe → bfssingle4.oldSafe;
connect bfssingle3.safeFound → bfssingle4.oldSafeFound;
connect bfssingle3.newDirection → bfssingle4.oldDirection;

connect bfssingle4.newX → bfssingle5.currentX, bfssingle6.oldX;770

connect bfssingle4.newY → bfssingle5.currentY, bfssingle6.oldY;
connect bfssingle4.safe → bfssingle5.oldSafe;
connect bfssingle4.safeFound → bfssingle5.oldSafeFound;
connect bfssingle4.newDirection → bfssingle5.oldDirection;

775

connect bfssingle5.newX → bfssingle6.currentX, bfssingle7.oldX;
connect bfssingle5.newY → bfssingle6.currentY, bfssingle7.oldY;
connect bfssingle5.safe → bfssingle6.oldSafe;
connect bfssingle5.safeFound → bfssingle6.oldSafeFound;
connect bfssingle5.newDirection → bfssingle6.oldDirection;780

connect bfssingle6.newX → bfssingle7.currentX, bfssingle8.oldX;
connect bfssingle6.newY → bfssingle7.currentY, bfssingle8.oldY;
connect bfssingle6.safe → bfssingle7.oldSafe;
connect bfssingle6.safeFound → bfssingle7.oldSafeFound;785

connect bfssingle6.newDirection → bfssingle7.oldDirection;

connect bfssingle7.newX → bfssingle8.currentX, bfssingle9.oldX;
connect bfssingle7.newY → bfssingle8.currentY, bfssingle9.oldY;
connect bfssingle7.safe → bfssingle8.oldSafe;790

connect bfssingle7.safeFound → bfssingle8.oldSafeFound;
connect bfssingle7.newDirection → bfssingle8.oldDirection;

connect bfssingle8.newX → bfssingle9.currentX, bfssingl9.oldX;
connect bfssingle8.newY → bfssingle9.currentY, bfssingl9.oldY;795

38



connect bfssingle8.safe → bfssingle9.oldSafe;
connect bfssingle8.safeFound → bfssingle9.oldSafeFound;
connect bfssingle8.newDirection → bfssingle9.oldDirection;

connect bfssingle9.newX → bfssingl9.currentX;800

connect bfssingle9.newY → bfssingl9.currentY;
connect bfssingle9.safe → bfssingl9.oldSafe;
connect bfssingle9.safeFound → bfssingl9.oldSafeFound;
connect bfssingle9.newDirection → bfssingl9.oldDirection;

805

connect bfssingl9.newX → endSafe.currentX;
connect bfssingl9.newY → endSafe.currentY;
connect bfssingl9.safe → endSafe.oldSafe;
connect bfssingl9.safeFound → endSafe.oldSafeFound;
connect bfssingl9.newDirection → endSafe.oldDirection;810

connect endSafe.safe → safe;

connect ghostX[:] → bfssingle1.ghostX[:];
connect ghostX[:] → bfssingle2.ghostX[:];815

connect ghostX[:] → bfssingle3.ghostX[:];
connect ghostX[:] → bfssingle4.ghostX[:];
connect ghostX[:] → bfssingle5.ghostX[:];
connect ghostX[:] → bfssingle6.ghostX[:];
connect ghostX[:] → bfssingle7.ghostX[:];820

connect ghostX[:] → bfssingle8.ghostX[:];
connect ghostX[:] → bfssingle9.ghostX[:];
connect ghostX[:] → bfssingl9.ghostX[:];
connect ghostX[:] → endSafe.ghostX[:];
connect ghostY[:] → bfssingle1.ghostY[:];825

connect ghostY[:] → bfssingle2.ghostY[:];
connect ghostY[:] → bfssingle3.ghostY[:];
connect ghostY[:] → bfssingle4.ghostY[:];
connect ghostY[:] → bfssingle5.ghostY[:];
connect ghostY[:] → bfssingle6.ghostY[:];830

connect ghostY[:] → bfssingle7.ghostY[:];
connect ghostY[:] → bfssingle8.ghostY[:];
connect ghostY[:] → bfssingle9.ghostY[:];
connect ghostY[:] → bfssingl9.ghostY[:];
connect ghostY[:] → endSafe.ghostY[:];835

connect ghostDirection[:] → bfssingle1.ghostDirection[:];
connect ghostDirection[:] → bfssingle2.ghostDirection[:];
connect ghostDirection[:] → bfssingle3.ghostDirection[:];
connect ghostDirection[:] → bfssingle4.ghostDirection[:];
connect ghostDirection[:] → bfssingle5.ghostDirection[:];840

connect ghostDirection[:] → bfssingle6.ghostDirection[:];

39



connect ghostDirection[:] → bfssingle7.ghostDirection[:];
connect ghostDirection[:] → bfssingle8.ghostDirection[:];
connect ghostDirection[:] → bfssingle9.ghostDirection[:];
connect ghostDirection[:] → bfssingl9.ghostDirection[:];845

connect ghostDirection[:] → endSafe.ghostDirection[:];
connect ghostEatable[:] → bfssingle1.ghostEatable[:];
connect ghostEatable[:] → bfssingle2.ghostEatable[:];
connect ghostEatable[:] → bfssingle3.ghostEatable[:];
connect ghostEatable[:] → bfssingle4.ghostEatable[:];850

connect ghostEatable[:] → bfssingle5.ghostEatable[:];
connect ghostEatable[:] → bfssingle6.ghostEatable[:];
connect ghostEatable[:] → bfssingle7.ghostEatable[:];
connect ghostEatable[:] → bfssingle8.ghostEatable[:];
connect ghostEatable[:] → bfssingle9.ghostEatable[:];855

connect ghostEatable[:] → bfssingl9.ghostEatable[:];
connect ghostEatable[:] → endSafe.ghostEatable[:];
connect map → bfssingle1.map;
connect map → bfssingle2.map;
connect map → bfssingle3.map;860

connect map → bfssingle4.map;
connect map → bfssingle5.map;
connect map → bfssingle6.map;
connect map → bfssingle7.map;
connect map → bfssingle8.map;865

connect map → bfssingle9.map;
connect map → bfssingl9.map;

}

40



Listing 14: BFS.BFSSingle
870

package de.rwth.pacman.heithoff2.BFS;
import de.rwth.pacman.heithoff2.BFS.single.∗;
// check whether the current tile is safe and then calculate the next tile

position
component BFSSingle {875

ports
in (0m: 20m) ghostX[4],
in (1m: 23m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],880

in Z^{22,19} map,
in (0m: 20m) currentX,
in (1m: 23m) currentY,
in (0m: 20m) oldX,
in (1m: 23m) oldY,885

in B oldSafe,
in B oldSafeFound,
in Z oldDirection,
out (0m: 20m) newX,
out (1m: 23m) newY,890

out B safeFound,
out B safe,
out Z newDirection;

instance ControlFlow control;895

instance ReenterMap reenterMap;
instance SearchFinished searchFinished;
instance SafePosition safePosition;
instance CalcNewPosition calcNewPosition;
connect currentX → reenterMap.currentX;900

connect currentY → reenterMap.currentY;
connect oldX → reenterMap.oldX;
connect oldY → reenterMap.oldY;
connect reenterMap.newCurrentX → searchFinished.currentX,

safePosition.currentX, calcNewPosition.currentX, control.currentX;905

connect reenterMap.newCurrentY → searchFinished.currentY,
safePosition.currentY, calcNewPosition.currentY, control.currentY;

connect map → searchFinished.map, calcNewPosition.map;
connect oldSafe → searchFinished.oldSafe;
connect oldSafeFound → searchFinished.oldSafeFound;910

connect ghostX[:] → safePosition.ghostX[:];
connect ghostY[:] → safePosition.ghostY[:];
connect ghostDirection[:] → safePosition.ghostDirection[:];
connect ghostEatable[:] → safePosition.ghostEatable[:];
connect oldDirection → safePosition.oldDirection, control.oldDirection;915

41



connect reenterMap.newOldX → calcNewPosition.oldX;
connect reenterMap.newOldY → calcNewPosition.oldY;
connect searchFinished.finished → calcNewPosition.searchFinished;
connect safePosition.safe → calcNewPosition.positionIsSafe;
connect searchFinished.finished → control.searchFinished;920

connect searchFinished.safe → control.safeFromSearchFinished;
connect searchFinished.safeFound → control.

safeFoundFromSearchFinished;
connect safePosition.safe → control.positionIsSafe;
connect calcNewPosition.safeFound → control.925

safeFoundFromNewPosition;
connect calcNewPosition.newX → control.newXFromNewPosition;
connect calcNewPosition.newY → control.newYFromNewPosition;
connect calcNewPosition.newDirection → control.

newDirectionFromNewPosition;930

connect control.newX → newX;
connect control.newY → newY;
connect control.safeFound → safeFound;
connect control.safe → safe;
connect control.newDirection → newDirection;935

}

42



Listing 15: BFS.EndSafe
package de.rwth.pacman.heithoff2.BFS;

940

// check whether the surrounding tiles are safe
component EndSafe {

ports
in (0m: 20m) currentX,
in (1m: 23m) currentY,945

in (0m: 20m) ghostX[4],
in (1m: 23m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],
in B oldSafe,950

in B oldSafeFound,
in Z oldDirection,

out B safe;
955

implementation Math {
Z^{1,4} xOffSet = [0,0,−1,1];
Z^{1,4} yOffSet = [−1,1,0,0];

safe = 1;960

if oldSafe
for i = 1:4

if (ghostEatable(i) == 0)
Z xG = round(ghostX(i));
Z yG = round(ghostY(i));965

Z xC = currentX;
Z yC = currentY;
if (xG == xC) && (yG == yC)

safe = 0;
end970

for j = 0:3
xC = currentX + xOffSet(0,j);
yC = currentY + yOffSet(0,j);
if (xG == xC) && (yG == yC) && (ghostEatable(i

) == 0) && (ghostDirection(i) != j)975

safe = 0;
end

end
end

end980

else
safe = 0;

end

43



}
}985

44



Listing 16: BFS.Paths
package de.rwth.pacman.heithoff2.BFS;
import de.rwth.pacman.heithoff2.BFS.start.∗;

990

// check whether the four directions are safe to go
// a directions is not safe to go if there is a ghost on its path
component Paths {

ports
in (0m: 20m) ghostX[4],995

in (1m: 23m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],
in (0m: 20m) pacManX,
in (1m: 23m) pacManY,1000

in Z^{22,19} map,

out B topSafe,
out B bottomSafe,
out B leftSafe,1005

out B rightSafe;

instance BFSearch searchLeft;
instance BFSearch searchRight;
instance BFSearch searchTop;1010

instance BFSearch searchBottom;
instance StartLeft startLeft;
instance StartRight startRight;
instance StartTop startTop;
instance StartBottom startBottom;1015

connect pacManX → startLeft.pacManX, startRight.pacManX, startTop.
pacManX, startBottom.pacManX;

connect pacManY → startLeft.pacManY, startRight.pacManY, startTop.
pacManY, startBottom.pacManY;1020

connect ghostX[:] → searchLeft.ghostX[:], searchRight.ghostX[:],
searchTop.ghostX[:], searchBottom.ghostX[:];

connect ghostY[:] → searchLeft.ghostY[:], searchRight.ghostY[:],
searchTop.ghostY[:], searchBottom.ghostY[:];1025

connect ghostDirection[:] → searchLeft.ghostDirection[:], searchRight.
ghostDirection[:], searchTop.ghostDirection[:], searchBottom.
ghostDirection[:];

connect ghostEatable[:] → searchLeft.ghostEatable[:], searchRight.
ghostEatable[:], searchTop.ghostEatable[:], searchBottom.1030

ghostEatable[:];
connect map → searchLeft.map, searchRight.map, searchTop.map,

45



searchBottom.map;

connect pacManX → searchLeft.pacManX, searchRight.pacManX,1035

searchTop.pacManX, searchBottom.pacManX;
connect pacManY → searchLeft.pacManY, searchRight.pacManY,

searchTop.pacManY, searchBottom.pacManY;
connect startLeft.startX → searchLeft.startX;
connect startLeft.startY → searchLeft.startY;1040

connect startLeft.startD → searchLeft.startDirection;
connect startRight.startX → searchRight.startX;
connect startRight.startY → searchRight.startY;
connect startRight.startD → searchRight.startDirection;
connect startTop.startX → searchTop.startX;1045

connect startTop.startY → searchTop.startY;
connect startTop.startD → searchTop.startDirection;
connect startBottom.startX → searchBottom.startX;
connect startBottom.startY → searchBottom.startY;
connect startBottom.startD → searchBottom.startDirection;1050

connect searchLeft.safe → leftSafe;
connect searchRight.safe → rightSafe;
connect searchTop.safe → topSafe;
connect searchBottom.safe → bottomSafe;1055

}

46



Listing 17: BFS.StartBottom
package de.rwth.pacman.heithoff2.BFS;

1060

component StartBottom{
ports

in (−1m: 19m) pacManX,
in (0m: 22m) pacManY,
out (−1m: 19m) startX,1065

out (0m: 22m) startY,
out Z startD;

implementation Math {
startX = pacManX;1070

startY = round(pacManY + 0.51);
startD = 1;

}
}

1075

47



Listing 18: BFS.StartValues
package de.rwth.pacman.heithoff2.BFS;

component StartValues{
ports1080

out B startSafe,
out B startSafeFound,
out Z startValue;

implementation Math {1085

startSafe = 1;
startSafeFound = 0;

}
}

1090

48



Listing 19: BFS.single.CalcNewPosition
package de.rwth.pacman.heithoff2.BFS.single;

component CalcNewPosition {
ports1095

in (0m: 20m) currentX,
in (1m: 23m) currentY,
in (0m: 20m) oldX,
in (1m: 23m) oldY,
in Z^{22,19} map,1100

in B searchFinished,
in B positionIsSafe,
out (0m: 20m) newX,
out (1m: 23m) newY,
out Z newDirection,1105

out B safeFound;

implementation Math {
newX = currentX;
newY = currentY;1110

newDirection = 0;
safeFound = 0;
if (searchFinished == 0) && (positionIsSafe == 1)

// check for intersection or calculate the next tile
Z^{1,4} xOffSet = [0,0,−1,1];1115

Z^{1,4} yOffSet = [−1,1,0,0];
safeFound = 0;
Z newPathsFound = 0;
for i = 0:3

Z indexY = 0;1120

Z indexX = i;
Z xOff = xOffSet(indexY, indexX);
Z yOff = yOffSet(indexY, indexX);
Q xT = currentX + xOff;
Q yT = currentY + yOff;1125

if (abs(xT − oldX) >= 1) || (abs(yT − oldY) >= 1)
Z nextTile = map(yT, xT);
if (nextTile != 0) && (nextTile != 3) // a non−blocking

tile was found1130

newPathsFound = newPathsFound + 1;
newX = xT;
newY = yT;
newDirection = i;
if newPathsFound > 11135

safeFound = 1;

49



newX = currentX;
newY = currentY;

end
end1140

end
end

end
}

}1145

50



Listing 20: BFS.single.ControlFlow
package de.rwth.pacman.heithoff2.BFS.single;

component ControlFlow {1150

ports
in (0m: 20m) currentX,
in (1m: 23m) currentY,
in B searchFinished,
in B safeFromSearchFinished,1155

in B safeFoundFromSearchFinished,
in Z oldDirection,
in B positionIsSafe,
in B safeFoundFromNewPosition,
in (0m: 20m) newXFromNewPosition,1160

in (1m: 23m) newYFromNewPosition,
in Z newDirectionFromNewPosition,

out (0m: 20m) newX,
out (1m: 23m) newY,1165

out B safeFound,
out B safe,
out Z newDirection;

implementation Math {1170

newDirection = oldDirection;
newX = currentX;
newY = currentY;

if searchFinished == 11175

safe = safeFromSearchFinished;
safeFound = safeFoundFromSearchFinished;

elseif positionIsSafe == 0
safe = 0;
safeFound = 0;1180

else
safe = 1;
safeFound = safeFoundFromNewPosition;
newX = newXFromNewPosition;
newY = newYFromNewPosition;1185

newDirection = newDirectionFromNewPosition;
end

}
}

1190

51



Listing 21: BFS.single.ReenterMap
package de.rwth.pacman.heithoff2.BFS.single;

component ReenterMap {
ports1195

in (0m: 20m) currentX,
in (1m: 23m) currentY,
in (0m: 20m) oldX,
in (1m: 23m) oldY,

1200

out (0m: 20m) newCurrentX,
out (1m: 23m) newCurrentY,
out (0m: 20m) newOldX,
out (1m: 23m) newOldY;

1205

implementation Math {
newCurrentX = currentX;
newCurrentY = currentY;
newOldX = oldX;
newOldY = oldY;1210

if currentX < 2
newCurrentX = 18;
newOldX = 19;

elseif currentX > 18
newCurrentX = 2;1215

newOldX = 1;
end

}
}

1220

52



Listing 22: BFS.single.SafePosition
package de.rwth.pacman.heithoff2.BFS.single;

component SafePosition {
ports1225

in (0m: 20m) ghostX[4],
in (1m: 23m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],
in (0m: 20m) currentX,1230

in (1m: 23m) currentY,
in Z oldDirection,

out B safe;
1235

implementation Math {
safe = 1;

// check whether the current tile is safe
for i = 1:41240

Z xG = round(ghostX(i));
Z yG = round(ghostY(i));
if (abs(xG − currentX) < 1) && (abs(yG − currentY) < 1) && (

ghostEatable(i) == 0) && (ghostDirection(i) != oldDirection
)1245

safe = 0;
end

end
}

}1250

53



Listing 23: BFS.single.SearchFinished
package de.rwth.pacman.heithoff2.BFS.single;

component SearchFinished {1255

ports
in Z^{22,19} map,
in (0m: 20m) currentX,
in (1m: 23m) currentY,
in B oldSafe,1260

in B oldSafeFound,

out B safeFound,
out B safe,
out B finished;1265

implementation Math {
safeFound = oldSafeFound;
safe = oldSafe;
finished = 0;1270

Z currentTile = 0;//map(currentY, currentX);
if (currentY < 23) && (currentY > 0) && (currentX < 20) && (

currentX > 0)
currentTile = map(currentY, currentX);

end1275

if (currentTile == 0) || (currentTile == 3) // begin within a
wall−tile, nothing to check
safeFound = 1;
safe = 1;
finished = 1;1280

elseif (oldSafeFound == 1) || (oldSafe == 0) // already at an
intersection or a ghost was found
finished = 1;

end
}1285

}

54



Listing 24: coneSearch.CombineValues
package de.rwth.pacman.heithoff2.coneSearch;

1290

// a simple add

component CombineValues {
ports

in Z valueCoins,1295

in Z valueEnemies,

out Z value;

implementation Math {1300

// some weightning here

value = valueCoins + valueEnemies;
}

}1305

55



Listing 25: coneSearch.ConeSearches
package de.rwth.pacman.heithoff2.coneSearch;

import de.rwth.pacman.heithoff2.coneSearch.coinSearch.∗;1310

import de.rwth.pacman.heithoff2.coneSearch.enemySearch.∗;

// Search in cones to all four directions for coins/buiscuits and enemies

component ConeSearches {1315

ports
in Z^{22,19} map,
in (−1m: 19m) currentX,
in (0m: 22m) currentY,
in (−1m: 19m) ghostX[4],1320

in (0m: 22m) ghostY[4],
in (0 : 1 : 3) ghostDirection[4],
in B ghostEatable[4],

out Z topValue,1325

out Z bottomValue,
out Z leftValue,
out Z rightValue;

instance SearchCoinsTop coinsTop;1330

instance SearchCoinsBottom coinsBottom;
instance SearchCoinsLeft coinsLeft;
instance SearchCoinsRight coinsRight;
instance CoinWeights coinWeights;

1335

instance SearchEnemiesTop enemiesTop;
instance SearchEnemiesBottom enemiesBottom;
instance SearchEnemiesLeft enemiesLeft;
instance SearchEnemiesRight enemiesRight;
instance EnemyWeights enemiesWeights;1340

instance EnhanceCoinValue enhancer;

instance CombineValues combine1;
instance CombineValues combine2;1345

instance CombineValues combine3;
instance CombineValues combine4;

connect map → coinsTop.map, coinsBottom.map, coinsLeft.map,1350

coinsRight.map;
connect ghostX[:] → enemiesTop.ghostX[:], enemiesBottom.ghostX[:],

56



enemiesLeft.ghostX[:], enemiesRight.ghostX[:];
connect ghostY[:] → enemiesTop.ghostY[:], enemiesBottom.ghostY[:],

enemiesLeft.ghostY[:], enemiesRight.ghostY[:];1355

connect currentX → coinsTop.currentX, enemiesTop.currentX,
coinsBottom.currentX, enemiesBottom.currentX, coinsLeft.currentX,
enemiesLeft.currentX, coinsRight.currentX, enemiesRight.currentX;

connect currentY → coinsTop.currentY, enemiesTop.currentY,
coinsBottom.currentY, enemiesBottom.currentY, coinsLeft.currentY,1360

enemiesLeft.currentY, coinsRight.currentY, enemiesRight.currentY;
connect ghostEatable[:] → enemiesTop.ghostEatable[:], enemiesBottom.

ghostEatable[:], enemiesLeft.ghostEatable[:], enemiesRight.
ghostEatable[:];

connect ghostDirection[:] → enemiesTop.ghostDirection[:],1365

enemiesBottom.ghostDirection[:], enemiesLeft.ghostDirection[:],
enemiesRight.ghostDirection[:];

connect coinWeights.buiscuitWeight → coinsTop.buiscuitWeight,1370

coinsBottom.buiscuitWeight, coinsLeft.buiscuitWeight, coinsRight.
buiscuitWeight;

connect coinWeights.coinWeight → coinsTop.coinWeight, coinsBottom.
coinWeight, coinsLeft.coinWeight, coinsRight.coinWeight;

connect enemiesWeights.normal → enemiesTop.ghostNormalWeight,1375

enemiesBottom.ghostNormalWeight, enemiesLeft.ghostNormalWeight,
enemiesRight.ghostNormalWeight;

connect enemiesWeights.towardsPacMan → enemiesTop.
ghostFacingPacManWight, enemiesBottom.ghostFacingPacManWight,
enemiesLeft.ghostFacingPacManWight, enemiesRight.1380

ghostFacingPacManWight;
connect enemiesWeights.eatable → enemiesTop.ghostEatableWeight,

enemiesBottom.ghostEatableWeight, enemiesLeft.ghostEatableWeight
, enemiesRight.ghostEatableWeight;

1385

connect coinsTop.value → enhancer.valueIn[1];
connect coinsBottom.value → enhancer.valueIn[2];
connect coinsLeft.value → enhancer.valueIn[3];
connect coinsRight.value → enhancer.valueIn[4];

1390

connect enhancer.valueOut[1] → combine1.valueCoins;
connect enhancer.valueOut[2] → combine2.valueCoins;
connect enhancer.valueOut[3] → combine3.valueCoins;
connect enhancer.valueOut[4] → combine4.valueCoins;
connect enemiesTop.value → combine1.valueEnemies;1395

connect enemiesBottom.value → combine2.valueEnemies;
connect enemiesLeft.value → combine3.valueEnemies;
connect enemiesRight.value → combine4.valueEnemies;

57



connect combine1.value → topValue;1400

connect combine2.value → bottomValue;
connect combine3.value → leftValue;
connect combine4.value → rightValue;

}
1405

58



Listing 26: coneSearch.EnhanceCoinValue
package de.rwth.pacman.heithoff2.coneSearch;

// enhance the buiscuit and coin value if they are too far away
// this way pacman finds distant buiscuits and coins as well1410

component EnhanceCoinValue {
ports

in Z valueIn[4],
out Z valueOut[4];1415

implementation Math {
Z max = −1;
Z index = −1;

1420

for i = 1:4
if max < valueIn(i)

max = valueIn(i);
index = i;

end1425

valueOut(i) = valueIn(i);
end
if max < 10

valueOut(index) = 100;
end1430

}
}

59



Listing 27: coneSearch.coinSearch.CoinWeights
package de.rwth.pacman.heithoff2.coneSearch.coinSearch;1435

component CoinWeights {
ports

out Z buiscuitWeight,
out Z coinWeight;1440

implementation Math {
buiscuitWeight = 50;
coinWeight = 200;

}1445

}

60



Listing 28: coneSearch.coinSearch.SearchCoinsBottom
package de.rwth.pacman.heithoff2.coneSearch.coinSearch;

1450

component SearchCoinsBottom {
ports

in Z^{22,19} map,
in (−1m: 19m) currentX,
in (0m: 22m) currentY,1455

in Z buiscuitWeight,
in Z coinWeight,

out Z value;
1460

implementation Math {
value = 0;
for i = 1:21

Z indexY = round(currentY) + i + 1;
if indexY < 221465

for j = (−i):i
Z indexX = round(currentX) + j + 1;
if (indexX > 0) && (indexX < 19)

Z nextTile = map(indexY, indexX);
if (nextTile == 1) || (nextTile == 4)1470

Z multBy = 1;
if nextTile == 1

multBy = buiscuitWeight;
elseif nextTile == 4

multBy = coinWeight;1475

end
Q dist = sqrt(i∗i + j∗j);
value = value + multBy/(dist∗dist);

end
end1480

end
end

end
}

}1485

61



Listing 29: coneSearch.enemySearch.EnemyWeights
package de.rwth.pacman.heithoff2.coneSearch.enemySearch;

component EnemyWeights {1490

ports
out Z normal,
out Z towardsPacMan,
out Z eatable;

1495

implementation Math {
normal = −4;
towardsPacMan = −10;
eatable = 5000;

}1500

}

62



Listing 30: coneSearch.enemySearch.SearchEnemiesBottom
package de.rwth.pacman.heithoff2.coneSearch.enemySearch;

1505

component SearchEnemiesBottom {
ports

in (−1m: 19m) currentX,
in (0m: 22m) currentY,
in (−1m: 19m) ghostX[4],1510

in (0m: 22m) ghostY[4],
in Z ghostDirection[4],
in B ghostEatable[4],
in Z ghostNormalWeight,
in Z ghostFacingPacManWight,1515

in Z ghostEatableWeight,

out Z value;

implementation Math {1520

value = 0;
for i = 1:8

Z indexY = round(currentY) + i;
if indexY < 22

for j = (−i):i1525

Z indexX = round(currentX) + j;
if (indexX > 0) && (indexX < 19)

for i = 1:4
Z xG = round(ghostX(i));
Z yG = round(ghostY(i));1530

if (abs (xG − indexX) < 0.1) && (abs(yG −
indexY) < 0.1)
Z multiplyer = ghostNormalWeight;
if ghostDirection(i) == 0 // Facing towards

PacMan1535

multiplyer = ghostFacingPacManWight;
end
if ghostEatable(i)

multiplyer = ghostEatableWeight;
end1540

Q dist = sqrt(i∗i + j∗j);
value = value + (multiplyer/dist);

end
end

end1545

end
end

end

63



}
}1550

64



Listing 31: decision.CompareValues
package de.rwth.pacman.heithoff2.decision;

// compares all values of the safe directions and takes the maximum1555

// if the desired direction is blocked (not possible) it tries a direction
orthogonal to it

// if those directions are not safe or blocked too, it tries to go the opposite
direction

// left is prefered over right and up is prefered over down1560

component CompareValues {
ports

in B topSafe,
in B bottomSafe,
in B leftSafe,1565

in B rightSafe,
in Z topValue,
in Z bottomValue,
in Z leftValue,
in Z rightValue,1570

in B topPossible,
in B bottomPossible,
in B leftPossible,
in B rightPossible,

1575

out Z newPacManDirection;

implementation Math {
// search maximum
Z maxValue = −1;1580

Z newDirection = 0;
if topSafe && (topValue > maxValue)

maxValue = topValue;
end
if bottomSafe && (bottomValue > maxValue)1585

maxValue = bottomValue;
newDirection = 1;

end
if leftSafe && (leftValue > maxValue)

maxValue = leftValue;1590

newDirection = 2;
end
if rightSafe && (rightValue > maxValue)

newDirection = 3;
end1595

// check whether the desired direction is blocked
if ((newDirection == 0) && (topPossible == 0)) || ((newDirection

65



== 1) && (bottomPossible == 0))
// pick a direction orthogonal to up/down
if leftPossible && leftSafe && ((leftValue >= rightValue) || (1600

rightPossible == 0) || (rightSafe == 0))
newDirection = 2;

elseif rightPossible && rightSafe
newDirection = 3;

// pick the direction opposite to the original direction1605

elseif topPossible && topSafe && ((topValue >= bottomValue)
|| (bottomPossible == 0) || (bottomSafe == 0))
newDirection = 0;

else
newDirection = 1;1610

end
elseif ((newDirection == 2) && (leftPossible == 0)) || ((

newDirection == 3) && (rightPossible == 0))
if topPossible && topSafe && ((topValue >= bottomValue) || (

bottomPossible == 0) || (bottomSafe == 0))1615

newDirection = 0;
elseif bottomPossible && bottomSafe

newDirection = 1;
elseif leftPossible && leftSafe && ((leftValue >= rightValue) || (

rightPossible == 0) || (rightSafe == 0))1620

newDirection = 2;
else

newDirection = 3;
end

end1625

newPacManDirection = newDirection;
}

}

66



Listing 32: decision.Decision
1630

package de.rwth.pacman.heithoff2.decision;

// Main strategy
component Decision {

ports1635

in B topSafe,
in B bottomSafe,
in B leftSafe,
in B rightSafe,
in Z topValue,1640

in Z bottomValue,
in Z leftValue,
in Z rightValue,
in (−1m: 19m) pacManX,
in (0m: 22m) pacManY,1645

in Z^{22,19} map,

out Z newPacManDirection;

instance CompareValues compareValues; // gives back the desired1650

direction
instance PossibleWays possibleWays; // gives back whether certain

directions are blocked
instance VerifyDirection verifyDirection; // prevent stuttering
instance NextIntersection intersection; // gives back whether an1655

intersection (more than 3 non−blocked paths) is reached

connect pacManX → possibleWays.pacManX, intersection.pacManX;
connect pacManY → possibleWays.pacManY, intersection.pacManY;
connect map → possibleWays.map, intersection.map;1660

connect topSafe → compareValues.topSafe, verifyDirection.topSafe;
connect bottomSafe → compareValues.bottomSafe, verifyDirection.

bottomSafe;
connect leftSafe → compareValues.leftSafe, verifyDirection.leftSafe;1665

connect rightSafe → compareValues.rightSafe, verifyDirection.rightSafe;
connect topValue → compareValues.topValue;
connect bottomValue → compareValues.bottomValue;
connect leftValue → compareValues.leftValue;
connect rightValue → compareValues.rightValue;1670

connect possibleWays.topPossible → compareValues.topPossible,
verifyDirection.topPossible;

connect possibleWays.bottomPossible → compareValues.bottomPossible,
verifyDirection.bottomPossible;

connect possibleWays.leftPossible → compareValues.leftPossible,1675

67



verifyDirection.leftPossible;
connect possibleWays.rightPossible → compareValues.rightPossible,

verifyDirection.rightPossible;

connect intersection.interSectionReached → verifyDirection.interSection;1680

connect compareValues.newPacManDirection → verifyDirection.
tryDirection;

connect verifyDirection.newPacManDirection → newPacManDirection;
}

1685

68



Listing 33: decision.NextIntersection
package de.rwth.pacman.heithoff2.decision;

// check whether an intersection (3 or more non−blocked paths) is reached
1690

component NextIntersection {
ports

in (−1m: 19m) pacManX,
in (0m: 22m) pacManY,
in Z^{22,19} map,1695

out B interSectionReached;

implementation Math {
Z pacX = round(pacManX);1700

Z pacY = round(pacManY);
interSectionReached = 0;
if (abs(pacManX − pacX) < 0.01) && (abs(pacManY − pacY) <

0.01)
pacX = pacX + 1;1705

pacY = pacY + 1;
Z^{1,4} xOffSet = [0,0,−1,1];
Z^{1,4} yOffSet = [1,−1,0,0];
Z newPathsFound = 0;
for i = 0:31710

Z indexY = 0;
Z indexX = i;
Z xOff = xOffSet(indexY, indexX);
Z yOff = yOffSet(indexY, indexX);
Q xT = pacX + xOff;1715

Q yT = pacY + yOff;

Z nextTile = map(yT, xT);
if (nextTile == 0) || (nextTile == 3)

newPathsFound = newPathsFound;1720

else
newPathsFound = newPathsFound + 1;
if newPathsFound > 2

interSectionReached = 1;
end1725

end
end

end
}

}1730

69



Listing 34: decision.PossibleWays
package de.rwth.pacman.heithoff2.decision;

// check which directions are not blocked1735

component PossibleWays {
ports

in (−1m: 19m) pacManX,
in (0m: 22m) pacManY,1740

in Z^{22,19} map,

out B topPossible,
out B bottomPossible,
out B leftPossible,1745

out B rightPossible;

implementation Math {
Q^{1,4} xOffSet = [0,0,−0.51,0.51];
Q^{1,4} yOffSet = [0.51,−0.51,0,0];1750

topPossible = 0;
bottomPossible = 0;
leftPossible = 0;
rightPossible = 0;

1755

for i = 0:3
Z indexX = round(pacManX + xOffSet(0, i)) + 1;
Z indexY = round(pacManY + yOffSet(0, i)) + 1;
Z nextTile = map(indexY, indexX);
if (nextTile != 0) && (nextTile != 3)1760

if i == 0
bottomPossible = 1;

elseif i == 1
topPossible = 1;

elseif i == 21765

leftPossible = 1;
else

rightPossible = 1;
end

end1770

end
if abs(pacManX − round(pacManX)) > 0.01

topPossible = 0;
bottomPossible = 0;

elseif abs(pacManY − round(pacManY)) > 0.011775

leftPossible = 0;
rightPossible = 0;

70



end
}

}1780

71



Listing 35: decision.VerifyDirection
package de.rwth.pacman.heithoff2.decision;

component VerifyDirection {1785

ports
in Z tryDirection,
in B interSection,
in B topSafe,
in B bottomSafe,1790

in B leftSafe,
in B rightSafe,
in B topPossible,
in B bottomPossible,
in B leftPossible,1795

in B rightPossible,

out Z newPacManDirection;

implementation Math {1800

static Z lastDirection = −1;
newPacManDirection = tryDirection;

if interSection
lastDirection = −1;1805

elseif ((tryDirection == 0) && (lastDirection == 1)) || ((
tryDirection == 1) && (lastDirection == 0))
if leftSafe && leftPossible

newPacManDirection = 2;
elseif rightSafe && rightPossible1810

newPacManDirection = 3;
end
if (tryDirection == 1) && topPossible && topSafe

newPacManDirection = 0;
elseif (tryDirection == 0) && bottomPossible && bottomSafe1815

newPacManDirection = 1;
end

elseif ((tryDirection == 2) && (lastDirection == 3)) || ((
tryDirection == 3) && (lastDirection == 2))
if topSafe && topPossible1820

newPacManDirection = 0;
elseif bottomSafe && bottomPossible

newPacManDirection = 1;
end
if (tryDirection == 3) && leftPossible && leftSafe1825

newPacManDirection = 2;
elseif (tryDirection == 2) && rightPossible && rightSafe

72



newPacManDirection = 3;
end

end1830

lastDirection = newPacManDirection;
}

}
1835

73



Appendix B. Pacman Stream Test Code

Listing 36: decision.TestCompareValues
package de.rwth.pacman.heithoff2.decision;

stream TestCompareValues for CompareValues {1840

topSafe: 1 tick 1 tick 1 tick 1 tick 1 tick 1;
bottomSafe: 0 tick 1 tick 1 tick 1 tick 1 tick 1;
leftSafe: 0 tick 0 tick 0 tick 0 tick 1 tick 1;
rightSafe: 0 tick 0 tick 0 tick 0 tick 1 tick 1;
topValue: 0 tick 0 tick 0 tick 0 tick 1 tick 1;1845

bottomValue: 0 tick 0 tick 0 tick 1 tick 1 tick 1;
leftValue: 0 tick 0 tick 0 tick 0 tick 2 tick 1;
rightValue: 0 tick 0 tick 0 tick 0 tick 1 tick 2;
topPossible: 1 tick 1 tick 0 tick 1 tick 1 tick 1;
bottomPossible: 0 tick 1 tick 1 tick 1 tick 1 tick 1;1850

leftPossible: 0 tick 0 tick 0 tick 0 tick 1 tick 1;
rightPossible: 0 tick 0 tick 0 tick 0 tick 1 tick 1;

newPacManDirection: 0 tick 0 tick 1 tick 1 tick 2 tick 3;
}1855

74



Listing 37: Flee down
package de.rwth.pacman;

stream Test1 for PacManWrapper {1860

ghostX: [70cm,88cm,112cm,130cm] tick [70cm,86cm,114cm,130cm] tick
[70cm,84cm,116cm,130cm] tick [70cm,82cm,118cm,130cm] tick [70cm
,80cm,120cm,130cm];

ghostY: [92cm,70cm,70cm,92cm] tick [94cm,70cm,70cm,94cm] tick [96cm
,70cm,70cm,96cm] tick [98cm,70cm,70cm,98cm] tick [100cm,70cm,701865

cm,100cm];
ghostDirection: [1,2,3,1] tick [1,2,3,1] tick [1,2,3,1] tick [1,2,3,1] tick

[2,0,0,1];
ghostEatable: [false, false, false, false] tick [false, false, false, false] tick [

false, false, false, false] tick [false, false, false, false] tick [false, false,1870

false, false];
ghostEaten: [false, false, false, false] tick [false, false, false, false] tick [

false, false, false, false] tick [false, false, false, false] tick [false, false,
false, false];

pacManX: 70cm tick 70cm tick 70cm tick 70cm tick 70cm;1875

pacManY: 130cm tick 132cm tick 134cm tick 136cm tick 138cm;
pacManEaten: false tick false tick false tick false tick false;
pacManLives: 3 tick 3 tick 3 tick 3 tick 3;
pacManScore: 0 tick 0 tick 0 tick 0 tick 0;
map: ...1880

newPacManDirection: 1 tick 1 tick 1 tick 1 tick 1;
}

75



Listing 38: Flee left
package de.rwth.pacman;1885

stream Test2 for PacManWrapper {
ghostX: [54cm,150cm,170cm,70cm] tick [52cm,150cm,168cm,70cm] tick

[50cm,150cm,166cm,70cm] tick [48cm,150cm,164cm,70cm];
ghostY: [210cm,148cm,190cm,172cm] tick [210cm,150cm,190cm,174cm]1890

tick [210cm,152cm,190cm,176cm] tick [210cm,154cm,190cm,178cm];
ghostDirection: [2,1,2,1] tick [2,1,2,1] tick [2,1,2,1] tick [2,1,2,1];
ghostEatable: [false, false, false, false] tick [false, false, false, false] tick [

false, false, false, false] tick [false, false, false, false];
ghostEaten: [false, false, false, false] tick [false, false, false, false] tick [1895

false, false, false, false] tick [false, false, false, false];
pacManX: 150cm tick 150cm tick 148cm tick 146cm;
pacManY: 130cm tick 132cm tick 134cm tick 136cm;
pacManEaten: false tick false tick false tick false;
pacManLives: 3 tick 3 tick 3 tick 3;1900

pacManScore: 0 tick 0 tick 0 tick 0;
map: ...

newPacManDirection: 0 tick 0 tick 2 tick 2;
}1905

76



Listing 39: Eat ghosts
package de.rwth.pacman;

stream Test3 for PacManWrapper {1910

ghostX: [80cm,100cm,55cm,105cm] tick [80cm,100cm,54cm,104cm] tick
[80cm,100cm,53cm,103cm] tick [80cm,100cm,52cm,102cm] tick [80cm
,100cm,51cm,101cm] tick [80cm,100cm,50cm,100cm] tick [79cm,100
cm,49cm,99cm] tick [78cm,100cm,48cm,98cm] tick [74cm,100cm,47
cm,97cm] tick [70cm,100cm,46cm,96cm];1915

ghostY: [155cm,25cm,10cm,160cm] tick [156cm,24cm,10cm,160cm] tick
[157cm,23cm,10cm,160cm] tick [158cm,22cm,10cm,160cm] tick [159
cm,21cm,10cm,160cm] tick [160cm,20cm,10cm,160cm] tick [160cm,19
cm,10cm,160cm] tick [160cm,18cm,10cm,160cm] tick [160cm,17cm,10
cm,160cm] tick [160cm,16cm,10cm,160cm];1920

ghostDirection: [1,0,2,2] tick [1,0,2,2] tick [1,0,2,2] tick [1,0,2,2] tick
[1,0,2,2] tick [1,0,2,2] tick [2,0,2,2] tick [2,0,2,2] tick [2,0,2,2] tick
[2,0,2,2];

ghostEatable: [1,1,1,1] tick [1,1,1,1] tick [1,1,1,1] tick [1,1,1,1] tick
[1,1,1,1] tick [1,1,1,1] tick [1,1,1,1] tick [0,1,1,1] tick [0,1,1,1] tick1925

[0,1,1,1];
ghostEaten: [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0]

tick [0,0,0,0] tick [0,0,0,0] tick [1,0,0,0] tick [1,0,0,0] tick [1,0,0,0];
pacManX: 56cm tick 58cm tick 60cm tick 62cm tick 64cm tick 66cm

tick 68cm tick 70cm tick 72cm tick 74cm;1930

pacManY: 160cm tick 160cm tick 160cm tick 160cm tick 160cm tick
160cm tick 160cm tick 160cm tick 160cm tick 160cm;

pacManEaten: 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0
tick 0;

pacManLives: 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 31935

tick 3;
pacManScore: 250 tick 250 tick 250 tick 260 tick 260 tick 260 tick 260

tick 310 tick 320 tick 320;
map: ...

1940

newPacManDirection: 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3
tick 3 tick 3;

}

77



Listing 40: Eat biscuits
1945

package de.rwth.pacman;

stream Test4 for PacManWrapper {
ghostX: [44cm,166cm,140cm,60cm] tick [46cm,164cm,140cm,60cm] tick

[48cm,162cm,140cm,60cm] tick [50cm,160cm,140cm,60cm] tick [52cm1950

,158cm,142cm,62cm] tick [54cm,156cm,144cm,64cm] tick [56cm,154
cm,146cm,66cm] tick [58cm,152cm,148cm,68cm] tick [60cm,150cm
,150cm,70cm] tick [62cm,148cm,152cm,72cm];

ghostY: [10cm,40cm,46cm,54cm] tick [10cm,40cm,44cm,56cm] tick [10cm
,40cm,42cm,58cm] tick [10cm,40cm,40cm,60cm] tick [10cm,40cm,401955

cm,60cm] tick [10cm,40cm,40cm,60cm] tick [10cm,40cm,40cm,60cm]
tick [10cm,40cm,40cm,60cm] tick [10cm,40cm,40cm,60cm] tick [10
cm,40cm,40cm,60cm];

ghostDirection: [3,2,0,1] tick [3,2,0,1] tick [3,2,0,1] tick [3,2,0,1] tick
[3,2,3,3] tick [3,2,3,3] tick [3,2,3,3] tick [3,2,3,3] tick [3,2,3,3] tick1960

[3,2,3,3];
ghostEatable: [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick

[0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick
[0,0,0,0];

ghostEaten: [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0]1965

tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0];
pacManX: 120cm tick 120cm tick 120cm tick 120cm tick 122cm tick

124cm tick 126cm tick 128cm tick 130cm tick 132cm;
pacManY: 166cm tick 164cm tick 162cm tick 160cm tick 160cm tick

160cm tick 160cm tick 160cm tick 160cm tick 160cm;1970

pacManEaten: 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0
tick 0;

pacManLives: 2 tick 2 tick 2 tick 2 tick 2 tick 2 tick 2 tick 2 tick 2
tick 2;

pacManScore: 260 tick 260 tick 260 tick 260 tick 270 tick 270 tick 2701975

tick 270 tick 270 tick 280;
map: ...

newPacManDirection: 0 tick 0 tick 0 tick 3 tick 3 tick 3 tick 3 tick 3
tick 3 tick 3;1980

}

78



Listing 41: Eat coin
package de.rwth.pacman;

1985

stream Test5 for PacManWrapper {
ghostX: [40cm,60cm,86cm,140cm] tick [40cm,60cm,84cm,140cm] tick [40

cm,60cm,82cm,140cm] tick [40cm,60cm,80cm,140cm] tick [40cm,62
cm,78cm,142cm] tick [40cm,64cm,76cm,144cm] tick [40cm,66cm,74
cm,146cm] tick [40cm,68cm,72cm,148cm] tick [40cm,70cm,70cm,1501990

cm] tick [40cm,72cm,68cm,152cm];
ghostY: [54cm,174cm,80cm,174cm] tick [56cm,176cm,80cm,176cm] tick

[58cm,178cm,80cm,178cm] tick [60cm,180cm,80cm,180cm] tick [62cm
,180cm,80cm,180cm] tick [64cm,180cm,80cm,180cm] tick [66cm,180
cm,80cm,180cm] tick [68cm,180cm,80cm,180cm] tick [70cm,180cm,801995

cm,180cm] tick [72cm,180cm,80cm,180cm];
ghostDirection: [1,1,2,1] tick [1,1,2,1] tick [1,1,2,1] tick [1,1,2,1] tick

[1,3,2,3] tick [1,3,2,3] tick [1,3,2,3] tick [1,3,2,3] tick [1,3,2,3] tick
[1,3,2,3];

ghostEatable: [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick2000

[0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick
[0,0,0,0];

ghostEaten: [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0]
tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0] tick [0,0,0,0];

pacManX: 34cm tick 32cm tick 30cm tick 28cm tick 26cm tick 24cm2005

tick 22cm tick 20cm tick 20cm tick 20cm;
pacManY: 180cm tick 180cm tick 180cm tick 180cm tick 180cm tick

180cm tick 180cm tick 180cm tick 178cm tick 176cm;
pacManEaten: 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0 tick 0

tick 0;2010

pacManLives: 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3 tick 3
tick 3;

pacManScore: 200 tick 200 tick 200 tick 210 tick 210 tick 210 tick 210
tick 210 tick 220 tick 220;

map: ...2015

newPacManDirection: 2 tick 2 tick 2 tick 2 tick 2 tick 2 tick 2 tick 2
tick 0 tick 0;

}
2020

79



Appendix C. Supermario EmbeddedMontiArc Code

Figure C.26: Supermario package outline

80



Listing 42: SuperMarioWrapper
package de.rwth.supermario;

import de.rwth.supermario.haller.Controller;2025

component SuperMarioWrapper {
ports

in Z^{1,2} marioPosition,
in Z^{1,2} marioVelocity,2030

in Z marioHeight,
in Z^{5,2} nextEnemyPositions,
in Z^{5,2} nextObstaclePositions,
in Z nextHole,
in Z^{5,2} nextLootCrates,2035

in Q tickSize,
in Z marioResting,
out (−1 : 1 : 1) marioDirection,
out Z marioJump,
out Z marioDown,2040

out Z marioShoot;

//Replace this with your own custom controller
instance Controller controller;2045

connect marioPosition → controller.marioPosition;
connect marioVelocity → controller.marioVelocity;
connect marioHeight → controller.marioHeight;
connect nextEnemyPositions → controller.nextEnemyPositions;2050

connect nextObstaclePositions → controller.nextObstaclePositions;
connect nextHole → controller.nextHole;
connect nextLootCrates → controller.nextLootCrates;
connect tickSize → controller.tickSize;
connect marioResting → controller.marioResting;2055

connect controller.marioJump → marioJump;
connect controller.marioDirection → marioDirection;
connect controller.marioDown → marioDown;
connect controller.marioShoot → marioShoot;2060

}

81



Listing 43: Controller
package de.rwth.supermario.haller;2065

import de.rwth.supermario.haller.tools.OrRelation_3;
import de.rwth.supermario.haller.actuator.GeneralStrategy;
import de.rwth.supermario.haller.actuator.JumpFilter;
import de.rwth.supermario.haller.EnemyController;
import de.rwth.supermario.haller.ObstacleController;2070

component Controller {
ports

in Z^{1,2} marioPosition,
in Z^{1,2} marioVelocity,
in Z marioHeight,2075

in Z^{5,2} nextEnemyPositions,
in Z^{5,2} nextObstaclePositions,
in Z nextHole,
in Z^{5,2} nextLootCrates,
in Q tickSize,2080

in Z marioResting,
out (−1 : 1 : 1) marioDirection,
out Z marioJump,
out Z marioDown,
out Z marioShoot;2085

//Sub−Controllers to keep this file clean and enhance overall modularity
//This one deals with the enemies
instance EnemyController enemyController;
connect nextEnemyPositions → enemyController.nextEnemyPositions;2090

//This one deals with pipes, staircases and holes
instance ObstacleController obstController;
connect nextObstaclePositions → obstController.nextObstaclePositions;
connect nextHole → obstController.holeDistance;
//This Strategy determines the overall strategy.2095

//Right now this only consists of a stuck−detection and constantly going
to the right

instance GeneralStrategy genStrategy;
connect tickSize → genStrategy.tickSize;
connect marioPosition→ genStrategy.marioPosition;2100

//The jumpAdvice result of the two controllers and the general strategy
are combined via or

instance OrRelation_3 orR;
connect obstController.jumpAdvice → orR.input[1];
connect enemyController.jumpAdvice → orR.input[2];2105

connect genStrategy.jumpAdvice → orR.input[3];
//Checked vor validity
instance JumpFilter jumpFilter;
connect orR.output → jumpFilter.jumpAdvice;

82



connect marioResting → jumpFilter.marioResting;2110

//And forwarded
connect jumpFilter.marioJump → marioJump;
//The general strategy is currently the only entity making decisions on

direction and crouching
connect genStrategy.directionAdvice → marioDirection;2115

connect genStrategy.crouchAdvice → marioDown;
}

83



Listing 44: EnemyController
package de.rwth.supermario.haller;2120

import de.rwth.supermario.haller.tools.GetIndexes;
import de.rwth.supermario.haller.environment.Enemy;
import de.rwth.supermario.haller.environment.EnemySelector;
import de.rwth.supermario.haller.actuator.EnemyStrategy;2125

component EnemyController {
ports

in Z^{5,2} nextEnemyPositions,
2130

out (−1 : 1 : 1) dirAdvice,
out Z jumpAdvice,
out Z shootAdvice,
out Z crouchAdvice;

2135

//Helper component to make the code shorter
instance GetIndexes enemyIndexes;

//These selectors select the according x and y positions from the Array
instance EnemySelector enemySelectors[5];2140

connect enemyIndexes.index[:] → enemySelectors[:].index;

connect nextEnemyPositions → enemySelectors[1].nextEnemyPositions,
enemySelectors[2].nextEnemyPositions,
enemySelectors[3].nextEnemyPositions,2145

enemySelectors[4].nextEnemyPositions,
enemySelectors[5].nextEnemyPositions;

instance Enemy enemies[5];
connect enemySelectors[:].x → enemies[:].distX;2150

connect enemySelectors[:].y → enemies[:].distY;

//The values are forwarded into the strategy
instance EnemyStrategy enemyStrat;
connect enemySelectors[:].x → enemyStrat.enemyDistsX[:];2155

connect enemySelectors[:].y → enemyStrat.enemyDistsY[:];
connect enemies[:].velX → enemyStrat.enemyVelX[:];
connect enemies[:].velY → enemyStrat.enemyVelY[:];

//The advice ist passed back2160

connect enemyStrat.jumpAdvice → jumpAdvice;
}

84



Listing 45: ObstacleController
package de.rwth.supermario.haller;2165

import de.rwth.supermario.haller.tools.GetIndexes;
import de.rwth.supermario.haller.environment.Obstacle;
import de.rwth.supermario.haller.environment.ObstacleSelector;
import de.rwth.supermario.haller.actuator.ObstacleStrategy;2170

component ObstacleController {
ports

in Z^{5,2} nextObstaclePositions,
in Z holeDistance,2175

out (−1 : 1 : 1) dirAdvice,
out Z jumpAdvice,
out Z shootAdvice,
out Z crouchAdvice;2180

//Helper component to make the code shorter
instance GetIndexes obstIndexes;

//These selectors select the according x and y positions from the Array2185

instance ObstacleSelector obstacleSelectors[5];
connect obstIndexes.index[:] → obstacleSelectors[:].index;

connect nextObstaclePositions → obstacleSelectors[1].
nextObstaclePositions,2190

obstacleSelectors[2].nextObstaclePositions,
obstacleSelectors[3].nextObstaclePositions,
obstacleSelectors[4].nextObstaclePositions,
obstacleSelectors[5].nextObstaclePositions;

2195

instance Obstacle obstacles[5];
connect obstacleSelectors[:].x → obstacles[:].distX;
connect obstacleSelectors[:].y → obstacles[:].distY;

//The values are forwarded into the strategy2200

instance ObstacleStrategy obstStrat;
connect obstacleSelectors[:].x → obstStrat.obstDistsX[:];
connect obstacleSelectors[:].y → obstStrat.obstDistsY[:];
connect holeDistance → obstStrat.holeDistance;

2205

//The advice ist passed back
connect obstStrat.jumpAdvice → jumpAdvice;

}

85



Listing 46: actuator.GeneralStrategy
2210

package de.rwth.supermario.haller.actuator;

component GeneralStrategy {
ports

in Z^{1,2} marioPosition,2215

in Q tickSize,

out Z jumpAdvice,
out Z crouchAdvice,
out Z directionAdvice;2220

implementation Math {
//Wait one seconds before being ”stuck”
Z maxTicks = 0.5 ∗ tickSize;

2225

static Z ticksOnSamePosition = 0;
static Z oldXPos = −1;

if oldXPos == marioPosition(1,1)
ticksOnSamePosition = ticksOnSamePosition + 1;2230

else
oldXPos = marioPosition(1,1);
ticksOnSamePosition = 0;

end
2235

if(ticksOnSamePosition > maxTicks)
jumpAdvice = 1;

else
jumpAdvice = 0;

end2240

directionAdvice = 1;

crouchAdvice = 0;
}2245

}

86



Listing 47: actuator.EnemyStrategy
package de.rwth.supermario.haller.actuator;

2250

import de.rwth.supermario.haller.tools.OrRelation_5;
import de.rwth.supermario.haller.environment.Enemy;
import de.rwth.supermario.haller.environment.EnemyWatcher;

component EnemyStrategy {2255

ports
in Z enemyDistsX[5],
in Z enemyDistsY[5],
in Z enemyVelX[5],
in Z enemyVelY[5],2260

in Z^{1,2} marioPosition,

out Z jumpAdvice,
out Z directionAdvice;

2265

//Every EnemyWatcher watches a single Enemy
instance EnemyWatcher enemyWatchers[5];
connect enemyDistsX[:] → enemyWatchers[:].EnemyDistX;
connect enemyDistsY[:] → enemyWatchers[:].EnemyDistY;
connect enemyVelX[:] → enemyWatchers[:].EnemyVelocityX;2270

connect enemyVelY[:] → enemyWatchers[:].EnemyVelocityY;

//The output of all Watchers is combined via an or−relation.
instance OrRelation_5 orR;
connect enemyWatchers[:].inJumpRange → orR.input[:];2275

//The result is forwarded
connect orR.output → jumpAdvice;

}
2280

87



Listing 48: actuator.ObstacleStrategy
package de.rwth.supermario.haller.actuator;

import de.rwth.supermario.haller.tools.OrRelation_2;
import de.rwth.supermario.haller.tools.OrRelation_5;2285

import de.rwth.supermario.haller.environment.Obstacle;
import de.rwth.supermario.haller.environment.ObstacleWatcher;

import de.rwth.supermario.haller.environment.HoleWatcher;
2290

component ObstacleStrategy {
ports

in Z obstDistsX[5],
in Z obstDistsY[5],
in Z holeDistance,2295

out Z jumpAdvice,
out Z directionAdvice;

//Every ObstacleWatcher watches a single Obstacle.2300

//Obstacles are pipes and staircase blocks.
instance ObstacleWatcher obstacleWatchers[5];
connect obstDistsX[:] → obstacleWatchers[:].ObstacleDistX;
connect obstDistsY[:] → obstacleWatchers[:].ObstacleDistY;

2305

//The output of all Watchers is combined via an or−relation.
instance OrRelation_5 orR_5;
connect obstacleWatchers[:].inJumpRange → orR_5.input[:];

//The HoleWatcher watches the distance to the next hole.2310

instance HoleWatcher holeWatch;
connect holeDistance → holeWatch.holeDistance;

//Finally, the result from the watchers are combined via or
instance OrRelation_2 orR_2;2315

connect holeWatch.inJumpRange → orR_2.input[1];
connect orR_5.output → orR_2.input[2];

//This results in the final advice for obstacle handling
connect orR_2.output → jumpAdvice;2320

}

88



Listing 49: actuator.JumpFilter
package de.rwth.supermario.haller.actuator;

2325

component JumpFilter {
ports

in Z jumpAdvice,
in Z marioResting,

2330

out Z marioJump;

implementation Math{
//Once Mario lands, he needs to stop ”jumping” for once, since the
//simulator only jumps once if the jump key is pressed.2335

static Z marioAlreadyRestedOnce = 0;

if(marioResting == 0) //We are in the air
if(jumpAdvice==1) //Update the ”we already rested”−flag

marioAlreadyRestedOnce = 0;2340

else
marioAlreadyRestedOnce = 1;

end
marioJump = jumpAdvice;

else2345

if(marioAlreadyRestedOnce == 1)
marioJump = jumpAdvice;

else
marioAlreadyRestedOnce = 1;
marioJump = 0;2350

end
end

}
}

2355

89



Listing 50: environment.Enemy
package de.rwth.supermario.haller.environment;

import de.rwth.supermario.haller.tools.GetVelocity;
2360

component Enemy {
ports

in Z distX,
in Z distY,

2365

out Z velX,
out Z velY;

instance GetVelocity velocity;
connect distX → velocity.distX;2370

connect distY → velocity.distY;
connect velocity.velX → velX;
connect velocity.velY → velY;

}
2375

90



Listing 51: environment.EnemySelector
package de.rwth.supermario.haller.environment;

component EnemySelector {
ports2380

in Z^{5,2} nextEnemyPositions,
in Z index,

out Z x,
out Z y;2385

implementation Math {
x = nextEnemyPositions(index,1);
y = nextEnemyPositions(index,2);

}2390

}

91



Listing 52: environment.EnemyWatcher
package de.rwth.supermario.haller.environment;

2395

component EnemyWatcher {
ports

in Z EnemyDistX,
in Z EnemyDistY,
in Z EnemyVelocityX,2400

in Z EnemyVelocityY,

out Z movesTowardsPlayer,
out Z inJumpRange;

2405

implementation Math {
//Empirical distance values
Z jumpRangeX = 200;

//Enemy in Jumprange, and not above, not undefined, stopping to2410

jump while we are over it, so we don’t jump much too far.
if((abs(EnemyDistX) < jumpRangeX) && (EnemyDistY > −64) &&

(EnemyDistX != −1) && (EnemyDistX > 45))
inJumpRange = 1;

else2415

inJumpRange = 0;
end

//Enemy moving in the opposite direction of the direction to it from2420

mario
if((EnemyVelocityX > 0) != (EnemyDistX > 0))

movesTowardsPlayer = 1;
else

movesTowardsPlayer = 0;2425

end
}

}

92



Listing 53: environment.HoleWatcher
2430

package de.rwth.supermario.haller.environment;

component HoleWatcher {
ports

in Z holeDistance,2435

out Z inJumpRange;

implementation Math {
//Empirical distance values2440

Z jumpRangeX = 128;

if((abs(holeDistance) < jumpRangeX) && (holeDistance != −1))
inJumpRange = 1;

else2445

inJumpRange = 0;
end

}
}

2450

93



Listing 54: environment.Obstacle
package de.rwth.supermario.haller.environment;

import de.rwth.supermario.haller.tools.GetVelocity;
2455

component Obstacle {
ports

in Z distX,
in Z distY,

2460

out Z velX,
out Z velY;

instance GetVelocity velocity;
2465

connect distX → velocity.distX;
connect distY → velocity.distY;
connect velocity.velX → velX;
connect velocity.velY → velY;

}2470

94



Listing 55: environment.ObstacleSelector
package de.rwth.supermario.haller.environment;

component ObstacleSelector {2475

ports
in Z^{5,2} nextObstaclePositions,
in Z index,

out Z x,2480

out Z y;

implementation Math {
x = nextObstaclePositions(index,1);
y = nextObstaclePositions(index,2);2485

}
}

95



Listing 56: environment.ObstacleWatcher
package de.rwth.supermario.haller.environment;2490

component ObstacleWatcher {
ports

in Z ObstacleDistX,
in Z ObstacleDistY,2495

out Z inJumpRange;

implementation Math {
//Empirical distance values2500

Z jumpRangeX = 96;

if((abs(ObstacleDistX) < jumpRangeX) && (ObstacleDistX != −1))
inJumpRange = 1;

else2505

inJumpRange = 0;
end

}
}

2510

96



Listing 57: tools.GetVelocity
package de.rwth.supermario.haller.tools;

component GetVelocity {2515

ports //x,y
in Z distX,
in Z distY,

out Z velX,2520

out Z velY;

implementation Math {
static Z oldDistX = −1;
static Z oldDistY = −1;2525

//Calculate velocity (distance / ticklength)
if(oldDistX != −1)

velX = distX − oldDistX;
velY = distY − oldDistY;2530

oldDistX = distX;
oldDistY = distY;

else
velX = −1;2535

velY = −1;
end

}
}

2540

97



Listing 58: tools.GetNearest
package de.rwth.supermario.haller.tools;

component GetNearest {2545

ports //x,y
in Z^{5,2} array,

out Z nearestDistX,
out Z nearestDistY,2550

out Z index;

implementation Math {
//Implement Bubblesort?
for i = 1:52555

//Z ecDist = sqrt(distX ∗ distX + distY ∗ distY); //Euclidic
Distance

if(array(i,1) > 0 )
nearestDistX = array(i,1);2560

nearestDistY = array(i,2);
index = i;

else
nearestDistX = −1;
nearestDistY = −1;2565

index = −1;
end

end
}

}2570

98



Appendix D. Supermario Stream Test Code

Listing 59: Enemy watcher stream test
package de.rwth.supermario.haller.environment;

2575

stream Env_EnemyWatcher_Evade for EnemyWatcher {
EnemyDistX: 200 tick 100 tick 75;
EnemyDistY: 0 tick 0 tick 0;
EnemyVelocityX: −10 tick −10 tick −10;
EnemyVelocityY: 0 tick 0 tick 0;2580

movesTowardsPlayer: 1 tick 1 tick 1;
inJumpRange: 0 tick 0 tick 1;

}
2585

Listing 60: Enemy watcher stream test
package de.rwth.supermario.haller.environment;

stream Env_EnemyWatcher_FromAbove for EnemyWatcher {
EnemyDistX: 200 tick 100 tick 5;2590

EnemyDistY: 128 tick 128 tick 32;
EnemyVelocityX: −10 tick −10 tick −10;
EnemyVelocityY: 0 tick 0 tick 0;

movesTowardsPlayer: 1 tick 1 tick 1;2595

inJumpRange: 0 tick 0 tick 0;
}

Listing 61: Enemy watcher stream test
package de.rwth.supermario.haller.environment;2600

stream Env_EnemyWatcher_FromAbove for EnemyWatcher {
EnemyDistX: −1 tick;
EnemyDistY: −1 tick;
EnemyVelocityX: 0 tick;2605

EnemyVelocityY: 0 tick;

movesTowardsPlayer: 0 tick;
inJumpRange: 0 tick;

}2610

99



Listing 62: Obstacle watcher stream test
package de.rwth.supermario.haller.environment;
stream Env_ObstacleWatcher for ObstacleWatcher {

ObstacleDistX: 200 tick 100 tick 75 tick 50 tick 25 tick 0;2615

ObstacleDistX: 0 tick 0 tick 0 tick 25 tick 50 tick 75;

inJumpRange: 0 tick 0 tick 1 tick 1 tick 1 tick 0;
}

2620

Listing 63: Hole watcher stream test
package de.rwth.supermario.haller.environment;
stream Env_ObstacleWatcher for ObstacleWatcher {

holeDistance: 200 tick 100 tick 10 tick 0 tick 1200;
2625

inJumpRange: 0 tick 0 tick 1 tick 1 tick 0;
}

100



References

[1] M. von Wenckstern, Embeddedmontiarc demo video.2630

URL https://www.youtube.com/watch?v=VTKSWwWp-kg

[2] M. Heithoff, Pacman model.
URL https://embeddedmontiarc.github.io/SuperMario/PacMan/

[3] M. Heithoff, Pacman video.
URL https://www.youtube.com/watch?v=f7YKCsSB_Tg2635

[4] P. Haller, Supermario video.
URL https://www.youtube.com/watch?v=LZ3rp8KgdHI

[5] V. Bertram, S. Maoz, J. O. Ringert, B. Rumpe, M. von Wenckstern, Com-
ponent and connector views in practice: An experience report, ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-2640

tems 20.

[6] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe,
Michael von Wenckstern, Simulation framework for executing component
and connector models of self-driving vehicles, Proceedings of MODELS
2017. Workshop EXE, Austin, CEUR 2019, Sept. 2017.2645

[7] OMG, Sysml.
URL http://www.omgsysml.org

[8] SAE, Architecture analysis and design language.
URL http://www.aadl.info/

[9] Mathworks, Simulink.2650

URL https://de.mathworks.com/products/simulink.html

[10] N. Instruments, Labview.
URL http://www.ni.com/de-de/shop/labview.html

[11] K. Hölldobler, B. Rumpe, MontiCore 5 Language Workbench Edition
2017, Aachener Informatik-Berichte, Software Engineering, Band 32,2655

Shaker Verlag, 2017.
URL http://www.se-rwth.de/phdtheses/
MontiCore-5-Language-Workbench-Edition-2017.pdf

[12] E. Kusmenko, A. Roth, B. Rumpe, M. von Wenckstern, Modeling
Architectures of Cyber-Physical Systems, in: European Conference on2660

Modelling Foundations and Applications (ECMFA’17), LNCS 10376,
Springer, 2017, pp. 34–50.
URL http://www.se-rwth.de/publications/
Modeling-Architectures-of-Cyber-Physical-Systems.pdf

101

https://www.youtube.com/watch?v=VTKSWwWp-kg
https://www.youtube.com/watch?v=VTKSWwWp-kg
https://embeddedmontiarc.github.io/SuperMario/PacMan/
https://embeddedmontiarc.github.io/SuperMario/PacMan/
https://www.youtube.com/watch?v=f7YKCsSB_Tg
https://www.youtube.com/watch?v=f7YKCsSB_Tg
https://www.youtube.com/watch?v=LZ3rp8KgdHI
https://www.youtube.com/watch?v=LZ3rp8KgdHI
http://www.omgsysml.org
http://www.omgsysml.org
http://www.aadl.info/
http://www.aadl.info/
https://de.mathworks.com/products/simulink.html
https://de.mathworks.com/products/simulink.html
http://www.ni.com/de-de/shop/labview.html
http://www.ni.com/de-de/shop/labview.html
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf


[13] S. Hillemacher, S. Kriebel, E. Kusmenko, M. Lorang, B. Rumpe, A. Sema,2665

G. Strobl, M. von Wenckstern, Model-Based Development of Self-Adaptive
Autonomous Vehicles using the SMARDT Methodology, in: Proceedings of
the 6th International Conference on Model-Driven Engineering and Soft-
ware Development (MODELSWARD’18), SciTePress, 2018, pp. 163 – 178.

[14] C. of Software Engineering RWTH Aachen University, Homepage of the2670

chair of software engineering at rwth aachen university.
URL http://se-rwth.de

[15] A. Mokhtarian, Monticar: 3d modeling using embeddedmontiarcmath
(2018).

[16] P. Runeson, M. Höst, Guidelines for conducting and reporting case study2675

research in software engineering.

[17] D. Harvey, Html5 pacman.
URL https://demo.embeddedmontiarc.com/pacman2/

[18] J. Goldberg, Fullscreenmario, html5 browser game.
URL http://www.joshuakgoldberg.com/FullScreenMario/Source/2680

[19] E. Kusmenko, B. Rumpe, S. Schneiders, M. von Wenckstern, Highly-
Optimizing and Multi-Target Compiler for Embedded System Models:
C++ Compiler Toolchain for the Component and Connector Language Em-
beddedMontiArc, in: Conference on Model Driven Engineering Languages
and Systems (MODELS’18), IEEE, 2018.2685

[20] E. Team, Embeddedmontiarc documentation.
URL https://github.com/EmbeddedMontiArc/Documentation

102

http://se-rwth.de
http://se-rwth.de
http://se-rwth.de
http://se-rwth.de
https://demo.embeddedmontiarc.com/pacman2/
https://demo.embeddedmontiarc.com/pacman2/
http://www.joshuakgoldberg.com/FullScreenMario/Source/
http://www.joshuakgoldberg.com/FullScreenMario/Source/
https://github.com/EmbeddedMontiArc/Documentation
https://github.com/EmbeddedMontiArc/Documentation

	Introduction (by Philipp Haller)
	Context (by Philipp Haller)
	C & C models
	MontiCore and EmbeddedMontiArc
	Performing a Case Study in Software Engineering

	Approach
	Stream Testing (by Heithoff)
	Pacman (by Heithoff)
	Supermario (by Philipp Haller)

	Preparations (by Haller and Heithoff)

	Case Study Execution
	Integration of Simulator into IDE (Introduction by Philipp Haller)
	Integration at the example of Pacman (by Malte Heithoff)

	Modeling (by Heithoff)
	Pacman (by Heithoff)
	Interface
	C&C modeling - Pacman (simple)
	C&C modeling - Pacman (complex)

	Modeling - Supermario (by Philipp Haller)
	Model Types
	Models
	Future Modeling


	Evaluation (by Malte Heithoff)
	RQ1 - Is EmbeddedMontiArc suitable for other systems?
	RQ2 - Is it possible to integrate other simulators in a recent amount of work?
	RQ3 - What kind of background knowledge is needed to model C&C in EmbeddedMontiArc?
	RQ4 - What features are good and what are not suited?
	Tools
	Language Features

	Other Problems

	Conclusion (by Haller and Heithoff)
	Pacman EmbeddedMontiArc Code
	Pacman Stream Test Code
	Supermario EmbeddedMontiArc Code
	Supermario Stream Test Code

