
View-Based Modeling of Function Nets

Hans Grönniger1, Jochen Hartmann2, Holger Krahn1,
Stefan Kriebel2, and Bernhard Rumpe1

1Institut für Software Systems Engineering, TU Braunschweig, Germany
2BMW Group, München, Germany

Abstract

This paper presents an approach to model features
and function nets of automotive systems comprehen-
sively. In order to bridge the gap between feature
requirements and function nets, we describe an ap-
proach to describe both using a SysML-based nota-
tion. If requirements on the automotive system are
changed by several developers responsible for differ-
ent features, it is important for developers to have
a good overview and understanding of the functions
affected. We show that this can be comprehensively
modeled using so called “feature views”. In order
to validate these views against the complete function
nets, consistency checks are provided.

1. Introduction

The task of developing automotive embedded systems
is complex since a large number of functions from
different vehicle domains interact in many ways. To
master this complexity, system descriptions are neces-
sary that support the process of developing such sys-
tems and that bridge the gap between requirements of
different features to an integrated function net archi-
tecture. However, problems with notations and tools
proposed or used today often exist:

• Tools that provide full views of the system do
not scale to a large amount of functions.

• Notations that have their roots in computer sci-
ence are likely to be not accepted by users with
a different professional background.

• Time-constraints make it economically not rea-
sonable to establish a new tool in the develop-
ment process if re-engineering or re-modeling of
the whole system is required.

Our contribution to the problem of modeling com-
plex embedded automotive systems is thus guided by
the following goals:

• It should be possible to integrate the modeling
notation and supporting tools seamlessly into ex-
isting processes with little overhead for develop-
ers.

• A comprehensible description of functions, their
structure, behavior and interactions with other
functions should be supported. In particular, in-
teresting functional interrelations should be pre-
sentable in a way such that they are comprehen-
sible for all developers involved.

In this paper, we focus on the structural issues and
show how our view-based approach can be used for
modeling logical architectures, also called function
nets in [13].

The rest of the paper is structured as follows. In
Section 2 the problem of modeling comprehensible
function nets is detailed and the requirements for a so-
lution are presented. Section 3 describes our approach
to view-based modeling of function nets. Section 4
presents related work and Section 5 concludes the pa-
per.

2. Problem Statement
We assume a development process in which re-

quirements are captured mainly textually (e.g., in
DOORS [12]) by different people who are responsible
for certain features. We use the term feature to denote
functionalities perceptible by customers (e.g. a brak-
ing system) as common in requirements engineering /
domain analysis (e.g., [3]). The features are realized
by several functions which cooperate to achieve the
desired functionality. The functions themselves may
be needed by multiple features within the automotive
system. For instance, the logic of the braking system
is used by the normal brake employed by the driver

[GHK+07] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, B. Rumpe.
View-Based Modeling of Function Nets.
In: Proceedings of the Object-oriented Modelling of Embedded Real-Time Systems (OMER4) Workshop,
Paderborn, October 2007
www.se-rwth.de/publications

but also by safety or comfort systems like the adaptive
cruise control.

The step from requirements to the actual realiza-
tion of the system is a complex step that involves a lot
of engineering work and coordination between differ-
ent developers. Automotive architectures have been
proposed to break down the complexity into manage-
able tasks on each architectural layer [2]. An exam-
ple is shown in Fig. 1 in which requirements for all
features are transformed into a function net that de-
scribes interacting logical functions that cooperatively
fulfill all the requirements. In the software architec-
ture, logical functions are aggregated or split into de-
ployable units and detailed signal or function defini-
tions, e.g., exact data types and value ranges are pro-
vided. On this architectural layer and below the AU-
TOSAR methodology can be applied [1]. The soft-
ware architecture is then mapped to a technical archi-
tecture consisting of ECUs and busses. Software and
technical architecture constitute the basis for a con-
crete realization of the final automotive system. In this
paper, we concentrate on the transition from require-
ments to function nets.

Figure 1. Complex step from requirements to
system realization

The development is furthermore not being done
from scratch but based on previous models, so a
complete system from an earlier product line is al-
ready available. Typically, in the development of the
next product line, changed requirements from vari-
ous developers concerning new functions, function re-
designs, or enhancements arise. However, many fea-
tures that were present in the previous system will be
reused (maybe in an enhanced version) in the next de-
velopment cycle. This calls for a possibility to reuse
functionality on the feature level.

The automotive system can be seen from two dis-
tinct viewpoints that both describe functions and their
communication:

Feature viewpoint. A set of diagrams describes a
single feature. One feature is usually treated sep-
arately from others in the requirements analysis
phases and is realized by one or more functions.

Logical viewpoint. A set of diagrams describes a
function and its hierarchical composition in form
of an internal structure. The different functions
may be realized on different ECUs and are there-
fore developed separately. Nevertheless, they
must cooperate to achieve the common task.

When developing a notation that supports model-
ing these viewpoints comprehensibly, we have to keep
in mind that the development process involves many
people with different professional backgrounds (like
computer science and engineering) that all need to be
able to use the notation. Further, developing a mod-
eling language should not be done from scratch but
should be in line with existing standards and reuse
ideas from other works.

Since there is no traceable connection from re-
quirements to nets of logical functions in which the
functionality of a feature is not explicitly conceivable,
the development involves extensive re-engineering
when the requirements change.

These observations lead us to the following prob-
lem statement:

a) Which notation is most appropriate, given the
context and the intended use?

b) How can we model the feature requirements
such that the effect of changes can easily be an-
alyzed in the function net?

3. Proposed Solution
The demand for models that provide an overview

of functions and their interactions on a more abstract
level (logical architecture) than on the software and
technical architecture level has also been stressed,
e.g., in [13, 14]. We denote this logical architecture
as function net models.

One standard technique to model complex systems
in a comprehensible way is to use hierarchical mod-
els. This is certainly also appropriate for function nets
since it allows us to model composite logical functions
as a black-box and provide refinements of those func-
tions that model their inner structure in more detail.

As explained above, especially the transition from
the requirements to the function net is complex, be-
cause decisions about how a feature is realized and

2

how distinct features use the same functions have to be
made at the same time. Therefore we propose that it
is useful to model each feature by a separate function
net. These function nets explain how the feature can
be realized. Then the functions of this feature function
net can be related to the functions of the automotive
function net describing the whole automotive system.

Modeling features as function nets that already
represent parts of a possible logical architecture (w.r.t.
notation and used concepts like functions and signals)
helps to reduce the transition complexity because the
conceptual distance between requirements and logical
architecture is reduced. In addition the tasks of re-
alizing the features as functions and the embedding of
these functions into the whole automotive function net
are now separate steps within the development pro-
cess. This helps the developer to focus on a certain
aspect at a time.

A complete function net model of the whole sys-
tem may either be to complex to understand or be de-
scribed on a too abstract level to be useful. We believe
that modeling function nets for features is preferably
done such that the model shows a complete defini-
tion of the logical feature of interest in addition with
parts of other connected features on arbitrary hierar-
chy levels. Consequently, our solution supports cross-
hierarchy views of function nets. Allowing arbitrary
views of the system requires consistency checks that
verify that the modeled view still conforms to the ac-
tual underlying system.

The different feature views on the system could be
used to create the automotive function net by merg-
ing them. Techniques from requirements engineering
research (e.g. [10]) might be used to create the auto-
motive function net. The main problem in these ap-
proaches is that the views evolve during the design
process and the merging process has to be re-applied
partially, obeying prior results. We also doubt that
theses approaches scale to large system and decided
therefore against automatic function net merging. Our
approach is restricted to checking for consistency but
helps the developer to detect inconsistencies. The res-
olution has to be applied manually.

As the complexity of automotive systems steadily
increases, it is no longer economically reasonable to
develop such systems from scratch. The reuse of soft-
ware is enabled by standardizing the software archi-
tecture by the AUTOSAR consortium [1] and there-
fore enables the development of reusable software
components. But the effort in the development of an
automotive system does not rely at most on the im-
plementation part but also on developing the require-
ments. Therefore the proposed method allows the de-
velopment of the requirements of the feature sepa-

rately and also their modular redesign or substitution
when shifting to the next car generation. The attached
functions nets describing a single feature can then be
checked against the evolved automotive function net.
The approach is illustrated in Figure 2.

Figure 2. Intermediate views to simplify tran-
sition from requirements to function nets

3.1 SysML block diagrams

In [8] one of the authors investigated the use of
UML and enhancements as an architecture descrip-
tion language. One of the results was that especially
a hierarchical component-based notation was miss-
ing at that time. In [9] the use of UML-RT [11] is
investigated for embedded real-time systems in gen-
eral, whereas other previous work [13] has shown that
function nets can be modeled with UML-RT. It is out-
lined that UML 2.0 [5] and SysML [6] are good can-
didates for substituting UML-RT.

Therefore we investigated among other notations
the suitability of UML 2.0 and SysML for function
net modeling. Our investigation showed that SysML
block diagrams can be favored over UML composite
structures, because they allow a more concise repre-
sentation of systems. The detailed reasons are the fol-
lowing:

• SysML requires no strict two layered modeling
like in the UML where each structured class con-
sists of parts that in turn have no internal struc-
ture.

• SysML block diagrams allow modeling commu-
nication across multiple hierarchy layers without

3

Figure 3. Excerpt from an automotive func-
tion net (Signals are omitted to enhance the
readability)

the explicit use of port delegation.

• A SysML block abstracts from the strict in-
stance/type division of the UML which compli-
cates modeling architectures effectively.

• SysML distinguishes between the form of a dia-
gram and its use. This was extremely helpful (as
later shown) when we wanted to use the same
diagram type with a different semantics.

The described port-delegation and the strict in-
stance/type division originate from the modeling of
object-oriented software, where each class is a point
of variation. In modeling logical architectures this is
not always the case as blocks might also be used to
group subsystems which are not meant for separate
reuse. SysML allows us to introduce types and there-
fore a reuse of subsystems where needed, in contrast
to the UML which assumes constant reuse in all cases.

SysML block diagrams can be used by modeling
functions of an automotive system as blocks. These
blocks can be hierarchical decomposed into subblocks
that define the internal structure. Blocks can be con-
nected to each other via directed connectors that rep-
resent a communication relationship. The connector
can be used across the block hierarchy but also ports
can be used to describe a well-defined interface. To
increase the reuse, blocks can optionally have a type
that allows the multiple instantiation of a single block
within a diagram. Figure 3 shows an example of such
a diagram. Please note that for space reasons it is not
complete in the sense that it contains all possible in-
formation nor describes a representative subset of an
automotive subsystem.

Figure 4. View of the automotive function net
describing the braking system and its envi-
ronment

Block diagrams can be used to model a complete
automotive system. For organizational reasons the di-
agram can be split such that many orthogonal dia-
grams exist which describe the system in a readable
size. Additional information for the blocks and sig-
nals can be stored efficiently in a database to allow
queries about the stored information.

3.2 SysML block diagrams for feature views

The block diagrams can also be used to describe
the functions needed to realize a feature of the sys-
tem. In contrast to the already mentioned hierarchical
modeling of the automotive system, blocks may oc-
cur in multiple diagrams. In addition to the already
described elements of the SysML block diagram we
provide extensions for modeling the physical environ-
ment of the electronic system. In discussions with
developers of such systems it turned up that it is ex-
tremely helpful for the understanding of the system to
include additional elements. By this approach com-
plete closed loop controllers can be modeled instead
of just considering the control part. We represented
surrounding elements as ordinary blocks (marked by
a special stereotype <<env>>) and non-signal com-
munication by ports with a stereotype stating the type
of communication like electric or hydraulic. Figure 4
shows a block diagram that represents a view of the
diagram shown in Figure 3. The same elements like in
the block diagram occur and elements of the environ-
ment are added to simplify the understanding of the
feature.

The two described notations can be checked for
consistency. The detailed relation between block dia-
grams and views is given by the following list of con-
text conditions that must hold:

• Each block in a view not marked with a stereo-

4

type <<env>> must be part of the logical archi-
tecture in the block diagram.

• A hierarchy indicated in a view must be present
in the logical architecture (although intermediate
blocks may be left out).

• Communication relationships shown in a view
must be present in the logical architecture. If the
view indicates that certain signals are involved
in a communication they must be stated in the
architecture. If no signal is attached to a commu-
nication link in a view at least one signal must be
present in the architecture. A communication re-
lationship needs not be drawn to the exact target,
also any superblock is sufficient.

4. Related Work

In [13] function net modeling with the UML-RT
is described. We extended this approach by using the
SysML for modeling function nets and explained its
advantages. We supplement the approach by views
that simplify the transition from requirements to early
design phases.

In [10] view merging in the presence of incom-
pleteness and inconsistency is described. The merg-
ing algorithm also simplifies the transition from re-
quirements to early design phases like our approach.
Especially the constant evolution of requirements dur-
ing the development makes it difficult to apply such
algorithms to our problem.

In [7, 15] service oriented modeling of automotive
systems is explained. The service layer is similar to
the modeling of features. In addition we explored how
services can benefit from modeling the environment
together with the feature.

In [4] the use of rich components is explained
that employ a complex interface description includ-
ing non-functional characteristics. In contrast to our
approach rich components focus less on the seamless
transition from requirements to function nets but as-
sume an established predefined partitioning in com-
ponents.

The AUTOSAR consortium [1] standardizes the
software architecture of automotive system and allows
the development of interchangeable software compo-
nents. One main problem of this approach is that soft-
ware architectures are too detailed in early develop-
ment phases where functions nets are commonly ac-
cepted by developers.

5. Conclusion
In this paper we propose an approach to use block

diagrams as provided by SysML to model individual
vehicle functionalities, so called “features” of an au-
tomotive system and complete function nets using a
similar notation. This similarity simplifies the seam-
less transition from stating the requirements to design-
ing the system and reduces the necessary effort for
feedback loops in the development cycle. It also al-
lows switching viewpoints between feature-oriented
requirements and function net architecture more eas-
ily.

A drawback of our approach might be the introduc-
tion of an additional modeling layer for views. While
the results of smaller case-studies are promising, a de-
tailed evaluation of the method with an example of
realistic size still needs to be carried out.

The approach described in this paper focuses on
structural aspects. We already identified timing prop-
erties and other physical requirements and constraints
that will be annotated to both the function nets and
their according views. Timing constraints are a spe-
cial form of requirements that shall be expressed in the
feature diagrams. For the function net the actual exe-
cution times of an implementation may be derived by
formal analysis or measuring representative runs. In
the future we will further explore consistency checks
that can be derived from these two types of timing
properties.

References
[1] Autosar website http://www.autosar.org.

[2] Manfred Broy. Challenges in automotive software en-
gineering. In Proceedings of ICSE 2006, 2006.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Gener-
ative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[4] Werner Damm, Angelika Votintseva, Alexander Met-
zner, Bernhard Josko, Thomas Peikenkamp, and
Eckard Böde. Boosting re-use of embedded automotive
applications through rich components. In Proceedings
of Foundations of Interface Technologies 2005, 2005.

[5] Object Management Group. Unified modeling lan-
guage: Superstructure version 2.0 (05-07-04), August
2005. http://www.omg.org/docs/formal/05-07-04.pdf.

[6] Object Management Group. Sysml specifica-
tion version 1.0 (2006-05-03), August 2006.
http://www.omg.org/docs/ptc/06-05-04.pdf.

[7] S. Rittmann, A. Fleischmann, J. Hartmann, C. Pfaller,
M. Rappl, and D. Wild. Integrating service speci-
fications at different levels of abstraction. In SOSE
’05: Proceedings of the IEEE International Work-
shop, pages 71–78, Washington, DC, USA, 2005. IEEE
Computer Society.

5

[8] B. Rumpe, M. Schoenmakers, A. Radermacher, and
A. Schürr. Uml + room as a standard adl? In
F. Titsworth, editor, Engineering of Complex Com-
puter Systems, ICECCS’99 Proceedings. IEEE Com-
puter Society, 1999.

[9] Bernhard Rumpe and Robert Sandner. Uml - uni-
fied modeling language im einsatz. teil 3. uml-rt für
echtzeitkritische und eingebettete systeme. at - Au-
tomatisierungstechnik, Reihe Theorie für den Anwen-
der, 11/2001, (11), 2001.

[10] Mehrdad Sabetzadeh and Steve Easterbrook. View
merging in the presence of incompleteness and incon-
sistency. Requir. Eng., 11(3):174–193, 2006.

[11] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-
Time Object-Oriented Modeling. John Wiley & Sons,
April 1994.

[12] Telelogic DOORS website
www.telelogic.com/products/doors/.

[13] Michael von der Beeck. Function net modeling with
uml-rt: Experiences from an automotive project at
bmw group. In UML Satellite Activities, pages 94–104,
2004.

[14] Michael von der Beeck. Eigung der uml 2.0 zur en-
twicklung von bordnetzarchitekturen. In Tagungsband
des Dagstuhl-Workshops Modellbasierte Entwicklung
eingebetteter Systeme, 2006.

[15] Doris Wild, Andreas Fleischmann, Judith Hartmann,
Christian Pfaller, Martin Rappl, and Sabine Rittmann.
An Architecture-Centric Approach towards the Con-
struction of Dependable Automotive Software. In Pro-
ceedings of the SAE 2006 World Congress, 2006.

6

