TUM

INSTITUT FURINFORMATIK

Semantics of UML
Towards a System Model for UML
Part 3: The State Machine Model

Version 0.7

Manfred Broy, Maria Victoria Cengarle, Bernhard Rumpe
with special thanks to

Michelle Crane, Jurgen Dingel, Bran Selic

87} a2 .'. ". .'. 5N "'"
& ‘E&:.:.w.a."fi (A
2 Do o0 eSO e & \\5/
) z [NS
VAR g
iy % SSA W
q 9 NS >

a

D

TUM-TI0711
Februar 07

TECHNISCHEUNIVERSITATMUNCHEN

[w] 354 =] [BCRO7b] M. Broy, M. Cengarle, B. Rumpe.
n b Towards a System Model for UML. Part 3. The State Machine Model.
5 Munich University of Technology, Technical Report
TUM-10711. February 2007.

E h'{'l- www.se-rwth.de/publications

TUM-INFO-02-I0711-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2007

Druck: Institut fur Informatik der
Technischen Universitat Munchen

Semantics of UML

Towards a System Model for UML
Part 3: The State Machine Model

Version 0.7

Manfred Broy'
Maria Victoria Cengarle’
Bernhard Rumpe?

' Lehrstuhl fiir Software & Systems Engineering
Institut fur Informatik
Technische Universitat Minchen

% Institute for Software Systems Engineering
Technische Universitat Braunschweig

with special thanks to
Michelle Crane
Jurgen Dingel

Bran Selic

Table of Contents

1. INTrOAUCTION e e e e 3
2. State Transition Systems describing Objects. ... 4
2.1 Message Signature of an ODbJECTooueiiieiiiee e 4
2.2 State of ODJECES. ..o 5
2.3 Timed Asynchronous Communication Channels...........coocoiiiiieiiiinniiinnee. 6
2.4 State Transition SYSIEMS ... 8
3. Behaviour and COmMPOSItIONceeiiuiiiiae e e e e e 9
3.1 Composition of State Transition Systems........ccc.eeeeiiiiiiiiiii 9
3.2 Interface Behaviour and Interface Abstractionccccocieiiiiiiiiiniinnn. 11
4. ConcCluding REMAIKS.uuuiiiiiiieeiiiii e a e e e 13
4.1 FUurther eXteNSIONS.......oooiiiiiiii e 13
5. REIEIENCES ... 14

6. Appendix: Central Model of Interaction: Streams and Stream Processing

(O70] 0 0] oT0] 0= 1 £ PRR 15
6.1 Types of Models for Interactive Systems..........ooeeeviiiiiiiiiiii e, 15
G T (=Y o 0 16
6.3 Channels and HiStOreS ..o 19
6.4 Interfaces, I/0O-Behaviours, Time, and Causality ..., 21

6.4.1 INtErfACES oo 21

B.4.2 CAUSAIIY .eveeeeiiiei e 22
6.5 Composition of Interface Behaviour ..., 23

1. Introduction

In the first two parts of this report, we have clarified that the system model is
designed to constitute the core and foundation of a formal definition of the UML
semantics. Semantics in our terms is the “meaning” of a UML model — regardless
whether this is a structural or a behavioural model [HR04].

This is the third part of the system model, namely the “state machine part”. The first
part of the system model, namely the “static part” defines how data stores are built
and structured. This static part together with a rationale and motivation of this effort
as well as the roadmap to define the complete necessary system model is given in
[BCROB].

The second part [BCRO7], called the “control part’, defines how the information
needed for the definition of the interaction between objects is coded on an event and
a message level. Part 2 describes a general notion of message and event that
allows various forms of interaction including asynchronous message passing, method
calls and returns. Part 2 moreover defines a notion of concurrent threads, and maps
those threads into a decentralised view, where “thread tokens” are passed around
between objects to model various forms of method calls. These definitions allow us
to encode ordinary sequential program models like those used in C++ and Java, as
well as notions of active objects, dynamic threads, etc.

We assume the reader is familiar with the definitions from [BCR06] and [BCR07] as
we refer to these definitions without reintroducing them here.

However, we briefly repeat the main concepts from the first two parts: A data store,
roughly speaking, consists of a set of objects each equipped with a unique object
identifier. An identifier among other things acts as reference to the locations (the
attributes) of the object. The store furthermore contains a mapping from locations to
values contained in the store at a certain point of time. Object identifiers and
locations are ordinary values and thus can be stored and passed around. Further
values are e. g. integer numbers or Booleans.

A control store furthermore comprises a stack for each thread in the system as well
as an event store that allows objects to manage events that need to be handled.
Various scheduling strategies can be defined rather freely that delay, ignore or
handle incoming messages in that store.

This third part of the report focuses on the interaction between individual objects on a
more abstract, state based view. Each object is described by its data, control and
event stores. Object signatures are given through their method and message
interfaces as well as the events an object reacts to. These concepts give us the
basis to determine the state space and transitions of each object.

The purpose of a state transition system (STS) is to link the state space of an object
system with its behaviour. While the stores describe structural issues and therefore
the state space, a state transition system uses this state space and describes
behaviour in form of reactions of objects to incoming events. Thus a state transition
system consists of a state space, which is a set of states, and a state transition
function.

-3-

One of the main features of the STS developed here is that it does not only describe
the behaviour of a single object, but also of compositions of groups of objects. STS
therefore are compositional. This allows the description of the whole system as a
large STS as well as the composition of views on collaborating group of objects, thus
giving rise to the notion of “component”.

In this report, we introduce the general notion of timed state transition systems and
link it to the data store, the control store, and the event store. As a general result of
this report, we have a complete description of how systems are decomposed into
objects, what states objects may have, and how objects interact.

The theory of STS is based on the theory of streams to describe I/O-behaviour of
state transition systems appropriately. This theory of streams is sketched in the
Appendix to allow the reader a self-contained understanding of the following
definitions.

2. State Transition Systems Describing Objects

As motivated in the last section, we use state transition systems (STS) for a modular
theory of object structures, behaviour and interaction between objects. These
objects are allowed to act concurrently, pass messages as desired, but also to share
threads for a classical sequential programming paradigm. In this section, we put
together all elements necessary to define timed state transition systems (TSTS) to
describe all relevant parts of objects. This relies heavily on the elements defined in
the first two parts of the system model [BCR06, BCRO7].

2.1 Message Signature of an Object

In our system model we allow for many events. An event can be the sending or
receiving of a message or an internal event corresponding to a certain state change.
Typical examples for messages are method invocation messages, return messages,
asynchronous communication messages, signals and timeouts. Part 2 [BCRO07]
defines the universe of messages by UMESSAGE.

Basically, the structure of the messages exchanged between objects of classes is
determined by the signature of the objects, which includes methods and their
parameters. Each message furthermore contains the object identifier of the object
that has generated the message, and the object identifier of the object that is the
receiver.

The messages that an object oeUOID may accept and send are (see Part 2
[BCRO7]):

e msglin(o) c o (UMESSAGE) for the incoming messages and
e msgOut(o) < w(UMESSAGE) for the outgoing messages

2.2 State of Objects

According to Part 2 [BCRO07], the states of an object system are defined by USTATE.
Such a state consists of a data store, a control store, and an event store. A state of
an individual object 0eUQOID consists of the values of its attributes (stored in
locations), the buffer of events to process, and a stack of frames for each active
thread (see Part 2 [BCR0O7]). The state space of oeUOID is given by a function
states(0):

e states(o) < p((ULOC — UVAL) x
(UTHREAD — Stack(UFRAME)) x
Buffer(UEVENT))

In a given object system state (ds,cs,es)eUSTATE, the state of an object 0eUOID is
determined by:

e state((ds,cs,es),0) = (vals(ds,0), cs(0), es(0)) € states(0)

where vals is a function on data stores and objects that retrieves the mapping of
attribute names to values for the given object in the given data store; see Part 1
[BCR06]. We extend the notion of state to groups of objects, because this allows us
to deal with composition of state and behaviour':

Definition of state space of a group of objects

o state: USTATE x ¢ (UOID) —»
(ULOC — UVAL) x
(UOID —» (UTHREAD — Stack(UFRAME)) x
(UOID — Buffer(UEVENT))

with state((ds,cs,es),0ids) = (Pocoigsvals(ds,0), cs|oids, es|oids),
where cs|oids is cs restricted to the objects in oidsc ¢ (UOID)
and es|oids is analogously defined.

o For simplicity, we identify state((ds,cs,es),oid) = state((ds,cs,es),{oid}), as
both are isomorphic.

¢ In general, state((ds,cs,es),oids) represents the product of its object
states, as these are also isomorphic:

®Do.oids State((ds,cs,es),0) = state(u,o0ids)

¢ The possible state space of a group of objects is accordingly defined by
states(oids) = { state((ds,cs,es),oids) | (ds,cs,es) e USTATE }

= @,eoigs States(o)

¢ We also identify (due to isomorphism): states(o) = states({0}).

' The operator ® was introduced in Part 1 [BCRO6] to combine partial mappings. For instance for
variable assignments a and b, we have that (a®b)(x) = a(x) if xedom(a) and (a®b)(x) = b(x) otherwise.
If we consider functions as sets of pairs (that fulfil the function condition, i. e., no left component is
associated with two different right components), then the operator @ is simply the union of functions.
The operator @ is further extended to tuples of partial functions: (a,b)®(c,d) = (a®c,b@d).

-5-

2.3 Timed Asynchronous Communication Channels

For our system model we assume a discrete global time; see the Appendix. Each
step (transition) of the state machine corresponds to a tick of time. A system
executes in steps, each consuming a fixed amount of time. Timed state transition
systems (TSTS) are transition systems that deal with this kind of paradigm. TSTS
are introduced in the next section. Roughly speaking, in each step a finite set of
input events is provided to a TSTS, and a finite set of output events are produced by
the TSTS.

One crucial question is the choice of the appropriate communication or interaction
mechanism. Two basic flavours are asynchronous and synchronous. In the
Appendix, we discuss advantages of both and justify our decision to use the
asynchronous approach. However, both approaches can model each other, and we
therefore have encoded synchronous method calls into an asynchronous message
passing mechanism. In particular, our time based approach allows us to use a
simple abstraction on the time scale to look at communication as being synchronous.

In our system model the object and component instances cooperate by
asynchronous message passing; see [BS01]. Method invocation is therefore
modelled by the exchange of two messages, the method invocation message and the
method return message.

Communication between objects is dealt with by channels. Channels, on the one
hand, allow us to compose groups of objects into larger units and hide their internal
communication. On the other hand, UML provides linguistic constructs like “pins” in
some of its diagrams; these pins resemble communication lines between objects.

A communication channel is a unidirectional communication connection between two
objects (or other communication entities). Each channel has a name, e. g. ceUCN,
and the type of messages that may flow through c is given by type(c). The set of all
possible observations on a channel ce UCN is denoted by H(c)? and the observations
on a channel set CcUCN by IH(C). Each object has a number of incoming and
outgoing channels and each message knows through which channel it flows:

2 See the definition of histories in the Appendix.

-6 -

Definition of channels signatures of objects

e UCN denotes the universe of channel names.

e sender, receiver: UCN — UOID
assign a sending and a receiving object, respectively, to each channel.

e channel: UMESSAGE — UCN
assigns a channel to each message.

e inC, outC: UOID —» g (UCN)
denote the channel signature of each object, defined by:
inC(oid) = { c | receiver(c) = oid }
outC(oid) = { ¢ | sender(c) = oid }

e Messages flow on the channels they belong to:
sender(m) =o0id = sender(channel(m)) = oid
receiver(m) = oid = receiver(channel(m)) = oid
for each me UMESSAGE, 0ideUOQID (see Part 2 [BCRO07]).
e The type of each channel ceUCN is given by
type(c) = { meUMESSAGE | channel(m) = ¢ }

The existence of the sender and the receiver function has an interesting impact.
Each message knows on which channel it flows and from which object it originates.
This allows us to conclude that each channel can be in the output signature of only
one object:

va,beUOID: azb = outC(a) n outC(b) = I
(This also follows from the second and fourth bullets above.)

In the system model, we assume a fine enough time granularity, i. e., so fine that the
output in a step does not depend on the input received in that step. This way, strong
causality between input and output is preserved. The composition of state machines
is moreover simplified, since feedback within one time unit is ruled out, and thus
causal inconsistencies are avoided. Even so, we are able to abstract away from the
actual (real-time) time point of events.

The above is a very flexible concept of systems including e. g. classical sequential
systems (in this case, there are only one input and one output channel). For
instance, we may restrict the input and output events in such a way that, in each
step, at most one input event is received or one output event is dispatched. At the
other extreme, we can model highly concurrent systems with a large number of input
and output events in one state transition step.

2.4 State Transition Systems

A timed state transition system (TSTS) is given by a state transition function with
input and output (a generalised Moore automaton). Thus each object oeUOID can
be described through a nondeterministic state transition function A.o of the form

A : UOID — (USTATE x (UCN —» UMESSAGE?*)) —»
¢ (USTATE x (UCN —- UMESSAGE®)
More precisely, A.o is a function of the form
A.0 : (states(0) x T(inC(0))) —» ¢ (states(o) x T(outC(0)))

where T(C) denotes the set of channel time slices for the channels in C; see the
Appendix.

We assume the state transition function describes the behaviour of a Moore machine
[Kat93]. The output in a set therefore only depends on the state, not on the input.
This property is captured by the following rule:

(6',y) € A.o(o,xX) = VX3 c": (c",y) € A.0(c, X')

The rule expresses that if an output y is possible for some state ¢ and some input X,
this output is possible in this state for all other inputs, too. One way to interpret this
rule is that the granularity of time is fine enough to trace state changes in such a
detailed way that the reaction to input is always delayed by at least one time unit
(one state transition step). The immediate consequence is that feedback cycles
include a time step and thus preserve causality. Another consequence is that the
output of a transition is independent of the input of this transition and, therefore,
intermediate storage for the output in the state space of the described object is
inevitable.

Furthermore, we require the state transition function to be “total” (also called input
enabled). This means that A has to provide a reaction to any possible sequence of
inputs in any state:

A.0(o, i) # 3 forany o € states(o), i € T(inC(0))

This property only expresses that a UML system reacts in a specified way to every
input in its set of input patterns.®

A timed state transition system (TSTS) is defined as follows:

% Of course there may exist certain inputs that are not valid at certain states.

-8-

Definition of a timed state transition system (TSTS) for one object

A timed state transition system (TSTS) for object 0o UOID is defined by
o tsts(0) = (states(0), A.o, inC(0), outC(0), init(0))
where init(o) c states(o) is a non empty set of initial states
and the state transition function A.o is as described above:
o A.0:states(o) x T(inC(0)) —» g (states(o) x T(outC(0)))
o (o,y) eAo(o,x)=>VXx:3c" (c",y) € A.o(o, X))
o A.0(oc,i) #0 forany o e states(o),i e T(inC(0)))

Note that each object 0 has exactly one single timed state transition system tsts(o).
However, as tsts(o) is a nondeterministic state machine, it allows all forms of
underspecification. Therefore, there is no need to add an additional concept of
underspecification by, e. g., assigning to each object a set of possible TSTS. Any
UML model, however, may have an impact on the elements of a timed state transition
system. For instance, the sets of reachable states can be constrained, the initial
states restricted to be a singleton, or the nondeterminism reduced by enforcing a
behaviour that is deterministic in reaction and time.

3. Behaviour and Composition

Given the state transition systems for individual objects, we are now interested in a
description of the overall system. In particular, we are interested in at least two views
of the system and its components, namely a state transition based view (as defined
above) and a behavioural view (as defined in the Appendix).

Both views, state based and behavioural, are compositional and their composition is
moreover fully compatible. The following property is the main result of this section:
for any set of objects 0idscUOID, the following holds:

B[EDOeoids tStS(O)] = ®O€Oid3 B[tStS(O)]

where B is an interface function that abstracts away from the local encapsulated
state, as will be defined below. In words, abstraction of composed objects is
composition of abstracted objects.

3.1 Composition of State Transition Systems

In this section, we introduce a composition mechanism for state machines analogous
to the composition of behaviours (see the Appendix). Let ok (k = 1, 2) be any two
objects, let

A.0k: (states(ox) x T(inC(ok)) — g (states(ok) x T(outC(ok)))

be their corresponding TSTS. According to the formalisation introduced so far, the
output channel sets outC(01) and outC(02) are disjoint. This poses no restriction for
object-oriented systems, as both channels and messages flowing on these channels
are distinguished by the sending object. We define the feedback lines as follows
(see Fig. 1):

Emitted by 1, consumed by 2: Ly =inC(02) N outC(01)

Other way round: Lo =inC(04) m outC(0yz)

Internal feedback lines: L=Liuls

Remaining input: | = (inC(o1) winC(o2)) \ L

Remaining output: O = (outC(01) W outC(02)) \ L
i TS, TS, |
] LT |

Fig.1 Composition of TSTS, feedback lines

The composed state space and transition system can be defined as follows using the
composition of the states of the objects states({01,02}):

A: (states({04,02}) x T(l)) = g (states({04,02}) x T(O))
by

A((o1, 62), X) ={ ((c"1,6%),z|0) | FzeT(LUIlUO): z]l=xA
(o', z|loutC(ok)) € Ax(ok, z|inC(ok)) fork=1,2}

Given that the output only depends on the state, and according to the fact that each
of the machines is a Moore machine, the formula can always be fulfilled.

The formula expresses that the input to the composed machine is split into input to
the first machine and input to the second machine. With this input, and possibly
additional input from feedback, both machines carry out their transition and produce
output. The new states of the small machines define the new state of the composed
machine; the output of the composed machine is built using the output of the small
machines.

Note that this composition of Moore machines yields Moore machines.

For the composition of two transition functions we write

-10 -

A=A ® A

Composition of TSTS is commutative, i. e., Ay ® A2 = A, ® Ay. Furthermore, as we do
not have overlapping input channels, it is also associative and can thus be
generalised to any finite and (by induction) also infinite set of TSTS.

Hence we define a TSTS for any set of objects:

Definition of a timed state transition system (TSTS) for a set of objects

A timed state transition system (TSTS) for a set objects 0idscUQID is defined by
o tsts(oids) = (states(oids), A(oids), I, O, inits)

with transitions A(0idS) = ®oeoids A(0),
initial states iNits = ®ocoids NIt(0),
remaining input | = (Uoecoigs INC(0)) \ (Uoeoigs OUtC(0))
remaining output O = (Ugeoigs OUIC(0)) \ (Uocoigs INC(0))

In particular, we now have a TSTS for the whole system that includes all snapshots
and all system states and thus is capable of describing any behavioural and
structural restrictions by tsts(UOID).

Note that we have a closed world assumption now: The overall system transition
system tsts(UOID) does not have external channels anymore, but incorporates all
“objects”. This also includes objects that have direct connections to interfaces to
other systems, mechanical devices or users and thus can act as surrogates for the
context of the system. In [Rum96] we have discussed how to deal with this to model
open, reactive systems in a closed world assumption and what the advantages are.

3.2 Interface Behaviour and Interface Abstraction

State machines provide a very detailed model for systems, because the structure of
the state is shown explicitly. However, if a state is encapsulated, a representation of
the system behaviour without considering the structure of states seems most
appropriate. This is essentially what we call the interface of a system. The interface
abstraction of a state machine is made explicit in the following.

First, we define the approach of mapping a TSTS to an I/O-behaviour; see the
Appendix. Given a system represented by the TSTS whose transition function is

A: (STATE x T(I)) - @(STATE x T(0))

the state transition function A naturally induces an 1/O-behaviour function:
B[A]: STATE — (1— ¢(0))
where C denotes the set of channel histories for the channels in C; see the Appendix.

B[A] provides the interface abstraction of the state transition function A. This
interface abstraction produces a behavioural description that excludes internal states
and transition steps, such that the overall behaviour becomes easier to grasp.

-11 -

For each state o € STATE, each input pattern z e T(I), and each input channel
valuation x € 1, the interface function B[A] is the inclusion maximal solution of the
recursive equation

B[A] (0).((z)"X) = {{r)"y: 3 o' € STATE: (c',r) € A(o, 2) Ay € B[A] (6').X}

Note that the right hand side of the equation above is inclusion monotonic in B[A]. If
we add elements to B[A](c).X, the set is also increased. B[A]is recursively defined by
an inclusion monotonic function, which even is guarded. Hence there exists a unique
inclusion maximal solution. B[A](c) defines an 1/O-behaviour for any initial state o,
which represents the behaviour of the component described by the state machine A if
initialised by the state o.

The fact that the TSTS is input enabled and provides the behaviour of a Moore

machine (output reactions have at least one tick delay) guarantees that B[A](c) is a

causal I/0O-behaviour. B[A] generalises to our set Init of initial states of the TSTS:
B[A] (Init) = { y € B[A] (0): o € Init }

The adaptation of this approach to the TSTS of our system model allows us to define
I/O-behaviour of individual objects as well as compositions of objects:

Definition of 1/0O-behaviour of objects
The 1/0O-behaviour of an object 0ide UOID is defined by
e behaviour(oid) € IH(inC(oid)) —» g (IH(outC(oid)))
¢ behaviour(oid) = B[A] (init) where (S, A, I, O, init) = tsts(oid)
The 1/0-behaviour of a set of objects oids < UOID is consequently defined by:
e behaviour(oids) € IH(l) —» g (IH(O))
e behaviour(oids) = B[A] (init) where (S, A, |, O, init) = tsts(oids)

Note that behaviour(oid) = behaviour({oid}). Furthermore, both models and their
composition operators fit together:

B[A1 ® Az] = B[A1] ® B[AZ]

The proof is done by induction of the time intervals and can be found for example in
[GR95] on a variation of this approach.

In our terms: composing TSTS and deriving their abstraction to 1/0-behaviours gives
exactly the same result as deriving the abstraction to 1/0-behaviours and composing
them.

Now we have two models for systems available: state machines and interface
behaviours that are fully compatible. This is an important property of the construction
of this system model, as it demonstrates that mapping UML constructs to either
interface behaviours or state machines is both possible.

-12-

4. Concluding Remarks

In this report, we have introduced the third part of the system model, namely the
general notion of timed state transition systems, and integrated it with the object,
control and event stores. As a general result of this report, we have a complete
description of how systems are decomposed into objects, what states objects may
have and how objects interact. As motivated in the first part of the report, we have
developed the mathematical theory in layers, each building up an algebra that
introduced some universe of elements, functions and laws for these functions.

As motivated in the first part, we have chosen this approach, because we want a
semantics that is not biased by the choice of a concrete formal language or tool.
Even the use of mathematical theories probably has biased the semantics a little, but
we hope as little as possible. Such bias easily creeps in. We furthermore did not
address executability, because this includes one of the biggest biases a modelling
language can have: A model shall be underspecified, it shall be open for a
specification of many different implementations. An executable semantics for an
underspecified UML model therefore must necessarily contain choices added by the
semantic mapping.

To prevent that, we have chosen a specific style of description. The form of
description used throughout these three parts allows us to leave quite a number of
definitions open. In general, we have introduced a universe of X and then
characterised the properties of its elements, without fully determining how many
elements X has or how these elements look like. Sometimes, we only described a
subset of the elements of X, but allowing other kinds of elements to be in X as well
(e. g., the universes of events, messages and values are defined in such a way).

This gives us and others many chances to specialise such variation points according
to specific situations. In “UML words”, we could for example define a “system model
profile” that specialises in sequential, single threaded systems like in java (without
use of Threads), with |[UTHREAD|=1, to static systems without introduction of new
objects, or absence of subclasses, etc.

While the system model is an underlying basis for this kind of systems, it does not
provide such specialisation directly; this is matter of further work.

41 Further extensions

Of course this system model that can be seen as a hierarchy of algebras, may and
probably should be extended by adding further functional machinery to ease
description of the mapping of UML constructs to the system model. However, we
wanted to keep the system model as simple as possible and therefore did not
concentrate on this additional machinery very much. However, “users” of the system
model are invited to add whatever they feel appropriate.

There are also a number of loopholes that can be further investigated by providing

additional machinery to clarify a mapping of UML concepts to the system model
further.

-13-

For example, one constraint on timed state transition systems defined above
enforces that messages received cannot be reacted directly upon. This makes sense
both from a foundational view as from a view of the reactive systems. This
nevertheless enforces a delay between input and reaction to the input in different
transitions. As a consequence, either the input or the output needs to be temporarily
stored in the state of the TSTS. Therefore, either we store the output at least one
step (or longer) or the input at least one step, before we can react. We do not have
the storage for outputs available in the state of the object. An extra component that
would act as bus and thus enable us to describe message delay is equally awkward,
as it would blur our composition concept, both on TSTS and on 1/O-behaviours.
Therefore, the remaining possibilities are: (a) The input store can be split into
“processable input” and “recent input”, where each arriving tick moves the latter to
the first. (b) We allow the start of a new message processing only when a time tick
occurs. In this approach each tick is starter for a scheduling round that decides,
which message to handle next (even in the pure sequential case). (c) As a
refinement of (b), we could use time ticks in a so fine grained manner that only one
“atomic action” per object and time tick is possible. This works nicely, though it also
produces a lot of fine grained steps in the state machines.

A number of higher-level concepts could be added to the system model more or less
directly. As we have demonstrated with associations, which are manifested as
retrieval functions on the object store, we might add a basic set of actions and
activities or components thereof like the “pins” of the activity diagrams, features like
in [KPR97], or workflow elements as in [RT98].

Acknowledgements: We would like to thank Gregor v. Bochmann, Alain Faivre,
Christophe Gaston, Sébastien Gérard and Hans Gronninger for their very helpful
comments.

5. References

[BCR06] Manfred Broy, Maria Victoria Cengarle, Bernhard Rumpe. Semantics of
UML. Towards a System Model for UML. The Structural Data Model,
Version 1.0. Technical Report TUM-I0612, Institut far Informatik,
Technische Universitat Minchen, 2006.

[BCRO7] Manfred Broy, Maria Victoria Cengarle, Bernhard Rumpe. Semantics of
UML. Towards a System Model for UML. The Control Model, Version 1.0.
Technical Report TUM-10710, Institut fir Informatik, Technische Universitat
Minchen, 2007.

[BG92] Gérard Berry, Georges Gonthier. The ESTEREL Synchronous
Programming Language: Design, Semantics, Implementation. Science of
Computer Programming, 19(2):87—152. Elsevier North-Holland, 1992.

[BSO01] Manfred Broy, Ketil Stelen. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

-14 -

[EHS97] Jan Ellsberger, Dieter Hogrefe, Amardeo Sarma. SDL: Formal Object-
Oriented Language for Communication Systems. Prentice Hall, 1997.

[GR95] Radu Grosu, Bernhard Rumpe. Concurrent Timed Port Automata.
Technical Report TUM-19533, Technische Universitat Minchen, 1995.

[Hoa78] C.A.R. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666—677. ACM Press, 1978.

[HRO04] David Harel, Bernhard Rumpe. Meaningful Modeling: What's the
Semantics of ,Semantics“? In: Computer, Volume 37, No. 10, pp 64-72.
IEEE, October 2004.

[Kah74] Gilles Kahn. The Semantics of a simple language for Parallel
Programming. In IFIP Congress’74 (Proceedings), pages 471—475. North
Holland Publishing, 1974.

[Kat93] Randy H. Katz. Contemporary Logic Design. Addison Wesley Publishing
Company, 1993.

[KPR97] Cornel Klein, Christian Prehofer, Bernhard Rumpe. Feature Specification
and Refinement with State Transition Diagrams. In: Fourth IEEE Workshop
on Feature Interactions in Telecommunications Networks and Distributed
Systems. Ed.: P. Dini. IOS-Press. 1997.

[Mil80] Robin Milner. A Calculus of Communicating Systems. In vol. 92 of Lecture
Notes in Computer Science. Springer, 1980.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. PhD Thesis. TU Minchen. 1996.

[RT98] Bernhard Rumpe, Veronika Thurner. Refining Business Processes. In:
Second ECOOP Workshop on Precise Behavioral Semantics (with an
Emphasis on OO Business Specifications). Eds.: H. Kilov, B. Rumpe, I.
Simmonds. Technical report TUM-19820 TU Minchen. 1998.

6. Appendix: Central Model of Interaction: Streams and Stream
Processing Components

This section describes a closed, well-defined theory on stream processing
components and state transition systems that define two different views on
distributed, interacting systems. Both, streams processing components and state
transition systems are well related through appropriate mapping functions and their
refinement and composition techniques are compatible.

6.1 Types of Models for Interactive Systems

There are a number of different theories and fundamental models of interactive
systems. Most significant for them are their paradigms of interaction and

-15-

composition. We identify three basic concepts of communication in distributed
systems that interact by message exchange:

— Asynchronous communication (message asynchrony): a message is sent as soon
as the sender is ready, independent of the fact whether a receiver is ready to
receive it or not. Sent messages are buffered (by the communication mechanism)
and can be accepted by the receiver at any later time; if a receiver wants to
receive a message but no message was sent it has to wait. However, senders
never have to wait (see [Kah74,EHS97]) until receivers are ready since messages
may be buffered.

— Synchronous communication (message synchrony, rendezvous, handshake
communication): a message can be sent only if both the sender and the receiver
are simultaneously ready to communicate; if only one of them (receiver or sender)
is ready for communication, it has to wait until a communication partner gets ready
(see [Hoa78,Mil80]).

— Time synchronous communication (perfect synchrony): several interaction steps
(signals or atomic events) are conceptually gathered into one time slot; in this way,
systems are modelled with the help of sequences of sets of events (see [BG92] as
a well-known example).

— Traditional method call: It gathers some characteristics of all three previously
described approaches. In sequential method calls, progress of time is not such a
big issue, which allows programmers to think of synchronous message passing
and even of perfect synchrony. The receiver, however, cannot prevent the sender
(caller) to start the method call. The receiver must accept the call and react
somehow.

Any of the first three models can be used to define each other, and method calls can
be simulated in all of them. Furthermore, a general purpose modelling language, like
the UML, attempts to provide mechanisms for all of these communication paradigms.
Moreover, these communication paradigms shall be used within one system and
work together. It is therefore necessary to integrate all communication paradigms, e.
g. by encoding one within the other. It is a matter of taste to choose one of these
paradigms as underlying mechanism. In the following, we work with asynchronous
message passing since this model has, according to our experience, the finest
properties for our purpose. We follow the system model given in [BS01] basing our
approach on a concept of a component that communicates messages
asynchronously with its environment via named channels within a synchronous time
frame.

6.2 Streams

For a convenient specification of object behaviour, it is of interest to look not only at
the currently incoming message, but at the overall sequence of messages that has
arrived on a channel so far. We thus use channel histories to model traces of
behaviour.

A stream is a finite or infinite sequence of elements of a given set to describe object
behaviour. In interactive systems streams are built over sets of messages or actions.
A stream describes an observation that an observer can make when sitting on a

-16 -

directed communication channel. The behaviour of a component can then be
modelled through a relation between its observed input and output streams. Streams
are therefore used to represent interaction patterns by communication histories for
channels or histories of activities.

Let M be a set (of messages). By M we denote the set of finite sequences of
elements of M, and by M the set of infinite sequences of elements of M. The set
M of streams over M are finite or infinite sequences of elements of the set M. Thus

Me=M* UM?®. If desired, streams over M can be understood as partial functions of
form x :[1.n] > M with “length” n € IN U {0}, where infinite streams are exactly the
total functions (IN— M). We write x.t instead of x(t) as shorthand for selection of the
element in x at position t. A finite stream x of elements x.1, ..., x.n (in this ordering) is
also written (x.1,...,x.n). A special case is the empty stream, denoted by (). The set
of streams has an adequate set of mathematical operations, forming a rich algebraic
and topological structure. We introduce concatenation as an operator

" Mo x Me —» M®

On finite streams concatenation is defined as usual: given x, y € M* of length n and
m, respectively:

XA,.xn)y "y, L ymy = (. xn y 1, y.m)

For an infinite stream s: IN— M we define concatenation as follows:
sx=s for any stream xe M

be x finite or infinite, and

x.t ift<n

((x.1,..., x.n) " s).t = |
s.(t-n) otherwise

By means of concatenation we define the binary prefix relation = on streams: Lets,r
e M®

SEr<gfdze M s z=r

(M®,) is a partial order, i. €., the relation c is reflexive, transitive and antisymmetric.
This partial order is moreover well founded (i. e., it contains no countable infinite
descending chains?*) and complete (it has a least element, namely (), and each of its
chains has a least upper bound). This property is very useful, as it allows the
description of finite prefixes of streams and the use of inductive (or recursive)
techniques for full stream characterisation. For example consider this stream: s =
(1,0,0) " s.

* A chain is a subset of M®which is totally ordered wrt. €, i. e., of the form { x, e M®:t € INA X & Xy,1 } .

-17 -

Definition of streams (timed and untimed)

e M?®is the set of finite or infinite untimed streams
e X'y isthe concatenation of two streams

e (x.1,...,x.n) denotes the finite stream of length n

x £y denotes the prefix relation on streams (read “x is a prefix of y”)
(M')* is the set of infinite timed streams

A stream represents the sequence of messages sent over a channel during the
lifetime of a system. Of course, in concrete systems this communication takes place
in a time frame. Hence, it is often convenient to be able to refer to this time.
Moreover, as we will see, the theory of feedback gets much simpler. Therefore we
work with timed streams.

Streams are used to represent histories of communications of data messages
transmitted within a time frame. Given a message set M, we define a (infinite) timed
stream as the elements in the set (M)”, or, equivalently, as the functions of form

s: IN— M*

For each time unit t, the finite stream s.t denotes the sequence of messages
observed in the stream s at time slot t.° That is, a timed stream s e (M)” expresses
which messages are transmitted at which time(s).

Throughout this paper we work with a couple of simple basic operators and notations
for streams and timed streams, respectively. Some of these operators and notational
conventions were already introduced above. They are summarised below. (Note the
overloading on timed and untimed streams.)

® Or the sequence of actions executed in the t-th time interval, if the stream represents a sequence of
actions.

-18 -

Definition of operations on streams (timed and untimed)

The following operations exist on the algebras of streams:

e () empty sequence or empty untimed stream,

e (m) one-element sequence containing m as its only element,
o Xt t-th element of the (timed or untimed) stream x,

e #x length of the untimed stream x including the special value « for an
infinite length,

~

e X'z concatenation of the finite stream x to the untimed stream z,
e xJt prefix of length t of the (timed or untimed) stream x,

e SOx (timed or untimed) stream obtained from x by deleting all its
messages that are not elements of the set S,

e S#x number of messages in the (timed or untimed) stream x that are
elements of the set S,

e X (finite or infinite) untimed stream that is the result of concatenating
all sequences in the timed stream x. Note that x is finite iff x carries
only a finite number of nonempty sequences.

6.3 Channels and Histories

We use timed streams to model the communication histories of sequential,
unidirectional communication media (e. g. between two objects) that we call
channels. A system usually has a larger number of these communication streams.
Therefore, we work with channels to refer to individual communication streams.
Accordingly, a channel is simply an identifier (channel name) which is associated with
a stream observation in every execution of the system.

A channel is thus modelled by an element of the universe of channel names (UCN).
Each channel is given a “type” of messages that flow on the channel. The concept of
a stream is then used to define the concept of a channel history. A channel history is
given by the messages communicated over a channel. Such a history describes an
observation on a channel, when recording the flow of messages during time.

-19-

Definition of channels and channel histories

e UCN denotes the universe of channel names

o UMESSAGE
denotes the universe of messages

e type(c) c UMESSAGE
denotes the messages on channel ce UCN

e x:UCN — (UMESSAGE*)”
denotes a channel history: it is a partial function that assigns a
stream to its channels. For all ce UCN with a defined value x.c:

* X.c e (type(c)*)”.
e channels(x) c UCN
is the domain of channel history x

e X.C € (type(c)*)”
denotes stream x(c) for cechannels(x)

e IH(C)=C={x:UCN — (UMESSAGE*)” | channels(x) = C }
denote the set of channel histories for the channel set CcUCN

e (z®Zz') denotes the direct sum of the histories z € IH(C) and z' € IH(C'), iff
they are disjoint (C n C' =). It holds:

= channels(z®z') = channels(z) u channels(z') = C u C'
» (z®z).c=z.c for ceC
» (z&Z).c=2z'.c for ce C
e z|C denotes the restriction of the mapping z on Ccchannels(z). It holds:

= channels(z|C) = C
» (z®Z')|channels(z) = z

All operations and notational conventions introduced for streams generalise in a
straightforward way to histories applying them element-wise. As we deal with
piecewise composed behaviour, we extend our notion of channels histories to partial
histories of the form x: UCN — (UMESSAGE*)* and to time slices of the form u: UCN
— UMESSAGE*. The latter is explicitly given by the following definitions (where T is
used in place of IH):

-20 -

Definition of channels time slices

e u:UCN— UMESSAGE*
denotes a channel time slice: it is a partial function that assigns an
untimed, finite stream to its channels. For all ce UCN with a defined
value u.c:

* Uu.c e type(c)*.

e channels(u) < UCN
is the domain of channel time slice u

e u.c e type(c)*
denotes stream u(c) for cechannels(u)

e T(C)={u:UCN — UMESSAGE™ | channels(u) = C}
denote the set of channel time slices for the channel set CcUCN

The notion of a stream is essential for defining the behaviour of components in the
following section.

6.4 Interfaces, I/O-Behaviours, Time, and Causality

In this section we introduce a theory of component behaviours and interface
abstraction. Then we discuss issues of time and causality.
6.4.1 Interfaces

We start with a signature view on components in terms of syntactic interfaces and
continue with a behavioural view.

Definition of syntactic component interface

e (I»0O) denotes the syntactic interface of a component, where
e |IcUCN is a set of typed channels called the input and
¢ OcUCN s asetof typed channels called the output.

The syntactic interface does not say much about the behaviour of a component.
Basically it only fixes the basic steps of information exchange possible for the
component and its environment.

.21 -

Definition of behavioural component interface

Given the syntactic interface (1 » O) of a component, the function
e F:1 - p(0) describes the component behaviour.

F.x describes the output histories that may be returned for any input
history x € 1; the set F.x can be empty.

This definition basically introduces a relation between input and output histories. We
do not distinguish semantically so far between input and output. In the next section
we introduce the notion of causality as an essential semantic differentiation between
input and output.

6.4.2 Causality

For input/output information processing devices there is a crucial dependency of
output on input. Certain output messages depend on certain input messages. A
crucial notion for interactive systems is therefore causality. Causality indicates
dependencies between the messages exchanged within a system. It describes,
which output message is a reaction on which input.

So far, 1/0-behaviours are nothing but relations represented by set-valued functions.
In the following we introduce and discuss the notion of causality for I/O-behaviours.

I/O-behaviours generate their output and consume their input in a time frame. This
time frame is useful to characterise causality between input and output. Output that
depends causally on certain input cannot be generated before this input has been
received.

Definition of causality

e Anl/O-behaviour F: I — ¢(0) is causal (or properly timed) if, for all
times t € IN, we have

o x¥t=2zt= (Fx)It=(F.z)t.

A function F is causal if the output in the t-th time interval does not depend on input
that is received after time t. This ensures that there is a proper time flow for the
component modelled by F. F cannot predict the future input and react on it.

If F were not causal, there would exist a time t and input histories x and x' such that
xJt = x4t and (F.x)4t = (F.x')It. A difference between x and x' occurs only after time
t, but at time t the reactions of F in terms of output messages are already different.
Thus F could predict the future.

Nevertheless, causality permits instantaneous reaction [BG92]: the output at time t
may depend on the input at time t. This may lead into problems with causality
between input and output, if we consider in addition delay free feedback loops known
as causal loops. To avoid these problems we either have to introduce a
sophisticated theory to deal with such causal loops for instance by least fixpoints in

-22 -

an appropriate domain theory, or we strengthen the concept of proper time flow to the
notion of strong causality.

Definition of strong causality

e An|/O-behaviour F: I — ¢(0) is strongly causal (or time guarded) if, for
alltimes t € IN, we have

o xdt=zlt= (Fx)t+1 = (F.z)dt+1 .

Strong causality simply enforces components to introduce a delay of one time unit
before it can react. |If the granularity of time units is fine enough, we can always
detect such a delay.

In general, an 1/0-behaviour F: I — @(0) allows many implementations, as it allows
many reactions to one input. Each one of the possible implementations can be
described as a deterministic descendant of this behaviour. Such an implementation
is given through a deterministic function f: I — O.

Definition of deterministic implementation

e Afunctionf: I — O is a deterministic I/O-behaviour F: I — ©(O) , where
Fx={fx}forallx e I.

e Afunction f: I - O is a deterministic implementation of the I/O-behaviour
F:1 — @(0),iff fxe Fx forallx e I.

e Fis called realisable, if there is at least one deterministic implementation.

6.5 Composition of Interface Behaviour

In this section, we introduce an operator for the composition of components. We
prefer to introduce only one very general powerful composition operator. This
operator generalises sequential and parallel composition as well as introduction of

feedback loops.
FOF, Y __ W\ v
Fl F2
=

v Vv

Fig 2 Parallel Composition with Feedback

-23-

Definition of composition

e Composition of two 1/0O-behaviours F+ , F, of components is denoted by
Fi®F;

e Given the signatures F1 : (I » O4) and Fz: (lo » O) where
o output channels are disjoint O1 N Oz = &

e the composition (F1 ® F») has signature (I » O), with
o I =1 Ul)\(O1uU0,) and
o O=(01uU0\(l1 U ly).

e And describes a behaviour defined by

o (Fr®Fa)x = {ylO: yll=x]l A y|Os e Fiyllh)
A ¥|Oz € Fa(yll2), y € H(1LO) }

Here, y denotes a valuation for all the internal, input and output channels in the
composition. y|C denotes the restriction of the valuation y to the channels in C. The
composition formula essentially says that all the streams on output channels of the
components F; and F» are feasible output streams of these components.

It is straightforward to prove that the composition is strongly causal, if one component
is strongly causal. If both components are deterministic, then so is the composition.
If both components are realisable, then so is the composition.

But as the most important result, the composition is designed in such a way, that it is
compatible with independent development of its parts. This means, given a
composition, we can chose a deterministic implementation for each part individually,
compose these and get a deterministic implementation of the composition.

And finally, the composition is associative and commutative, which allows us to
generalise the composition operation to any (signature compatible) set of
components — including infinite sets.

-924 -

