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Abstract. Clustering has become an increasingly important task in analysing huge amounts
of data. Traditional applications require that all data has to be located at the site whereit is
scrutinized. Nowadays, large amounts of heterogeneous, complex data reside on different,
independently working computers which are connected to each other vialocal or wide area
networks. In this paper, we propose a scal able density-based distributed clustering algorithm
which allows a user-defined trade-off between clustering quality and the number of trans-
mitted objects from the different local sitesto a global server site. Our approach consists of
the following steps: First, we order al objects located at alocal site according to a quality
criterion reflecting their suitability to serve as local representatives. Then we send the best
of these representatives to a server site where they are clustered with a slightly enhanced
density-based clustering algorithm. This approach is very efficient, because the local deter-
mination of suitable representatives can be carried out quickly and independently from each
other. Furthermore, based on the scalable number of the most suitablelocal representatives,
the global clustering can be done very effectively and efficiently. In our experimental eval-
uation, we will show that our new scalable density-based distributed clustering approach re-
sultsin high quality clusterings with scalable transmission cost.

1 Introduction

Density-based clustering has proven to be very effective for analyzing large amounts of heteroge-
neous, complex data, e.g. for clustering of complex objects [1][4], for clustering of multi-repre-
sented objects [9], and for visually mining through cluster hierarchies [2]. All these approaches
require full access to the data which is going to be analyzed, i.e. the data has to be located at one
single site. Nowadays, large amounts of heterogeneous, complex datareside on different, indepen-
dently working computers which are connected to each other via local or wide area networks
(LANsor WANSs). Examples comprise distributed mobile networks, sensor networks or supermar-
ket chains where check-out scanners, located at different stores, gather data unremittingly. Fur-
thermore, international companies such as DaimlerChrysler have some data which is located in
Europe and some data in the US. Those companies have various reasons why the data cannot be
transmitted to a central site, e.g. limited bandwidth or security aspects. Another example is
WAL-MART featuring the largest civil database in the world, consisting of more than 200 ter-
abytes of data[11]. Every night all data is transmitted to Betonville from the different stores via
the largest privately hold satellite system. Such a company would greatly benefit, if it were possi-
ble to cluster the data locally at the stores, and then determine and transmit suitable local repre-
sentatives which allow to reconstruct the complete clustering at the central in Betonville. The
transmission of huge amounts of data from one site to another central siteisin some application
areas almost impossible. In astronomy, for instance, there exist several highly sophisticated space
telescopes spread all over the world. These telescopes gather data unceasingly. Each of them is

[JKP04] E. Januzaj, H.-P. Kriegel, M. Pfeifle.

Scalable Density-Based Distributed Clustering.,

8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD),
Pisa, Italy, September 20-24, 2004,

J.-F. Boulicaut et al. (Eds.): LNAI 3202, pp 231-244,

Springer-Verlag Berlin Heidelberg 2004

www.se-rwth.de/publications

E




ableto collect 1GB of data per hour [5] which can only, with great difficulty, be transmitted to a
global site to be analyzed centrally there. On the other hand, it is possible to analyze the data lo-
cally whereit has been generated and stored. Aggregated information of thislocally analyzed data
can then be sent to a central site where the information of different local sites are combined and
analyzed. The result of the central analysis may be returned to thelocal sites, so that the local sites
are ableto put their datainto aglobal context.

In this paper, we introduce a scalable density-based distributed clustering agorithm which ef-
ficiently and effectively detects information spread over several local sites. In our approach, we
first compute the density around each locally located object reflecting its suitability to serve asa
representative of the local site. After ordering the objects according to their density, we send the
most suitable local representatives to a server site, where we cluster the objects by means of an
enhanced DBSCAN [4] algorithm. Theresult is sent back to theloca sites. The local sites update
their clustering based on the global model, e.g. merge two local clusters to one or assign local
noise to global clusters.

This paper is organized as follows: In Section 2, we review the related work in the area of den-
sity-based distributed clustering. In Section 3, we discuss a general framework for distributed
clustering. In Section 4, we present our quality driven approach for generating local representa-
tives. In Section 5, we show how these representatives can be used for creating aglobal clustering
based on the information transmitted from the local sites. In Section 6, we present the experimen-
tal evaluation of our SDBDC (Scalable Density-Based Distributed Clustering) approach showing
that we achieve high quality clusterings with relative little information. We conclude the paper in
Section 7 with a short summary and a few remarks on future work.

2 Related Work on Density-Based Distributed Clustering

Distributed Data Mining (DDM) is a dynamically growing area within the broader field of
Knowledge Discovery in Databases (KDD). Generally, many algorithmsfor distributed data min-
ing are based on algorithms which were originally developed for parallel data mining. In [8] some
state-of -the-art research results related to DDM are resumed.

One of the main data mining tasks is clustering. There exist many different clustering algo-
rithms based on different paradigms, e.g. density-based versus distance-based algorithms, and hi-
erarchical versus partitioning algorithms. For more details we refer the reader to [7].

To the best of our knowledge, the only density-based distributed clustering a gorithm was pre-
sented in [6]. The approach presented in [6] is based on the density-based partitioning clustering
algorithm DBSCAN. It consists of the following steps. First, a DBSCAN algorithm is carried out
on each local site. Based on these local clusterings, cluster representatives are determined. There-
by, the number and type of local representativesis fixed. Only so called special core-points are
used as representatives. Based on these local representatives, a standard DBSCAN algorithm is
carried out on the global siteto reconstruct the distributed clustering. The strong point of [6] isthat
it tackles the complex and important problem of distributed clustering. Furthermore, it was shown
that a global clustering carried out on about 20% of all data points, yields a clustering quality of
more than 90% according to the introduced quality measure.

Neverthel ess, the approach presented in [6] suffers from three drawbacks which areillustrated
in Figure 1 depicting data objects located at 3 different local sites.

e First, loca noise is ignored. The clustering carried out on the local sites ignores the local

noise located in the upper left corner of each site. Thus the distributed clustering algorithm of
[6] does not detect the global cluster in the upper left corner.
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Fig. 1. Local noise on different local sites.

Second, the number of representatives is not tuneable. Representatives are always special
core-points of local clusters (cf. black points in Figure 1). The number of these special
core-points is determined by the fact that each core point is within the e-range of a special
core-point. Dependent on how the DBSCAN algorithm walks through a cluster, the special
core-points are computed.

Third, these special core points might be located at the border of the clusters (cf. Figure 1).
Of course, it is much better if the representatives are not located at the trailing end of aclus-
ter, but are central points of a cluster. Representatives located at the border of loca clusters
might lead to afalse merging of locally detected clusters when carrying out a central cluster-
ing. Thisis especialy true, if we use high e-vaues for the clustering on the server site, e.g. in
[6] ahigh and static value of &g ohg = 2€j0ca Was Used. The bottom right corner of Figure 1
shows that badly located representatives along with high &g qna-values might lead to wrongly

merged clusters.

To sum up, in the example of Figure 1, for instance, the approach of [6] would only detect one

cluster instead of three clusters, because it cannot deal with local noise and tend to merge clusters
closeto each other. Our new SDBDC approach enhances the approach presented in [6] asfollows:

We deal effectively and efficiently with the problem of local noise.

We do not produce a fixed number of loca representatives, but allow the user to find an indi-
vidual trade-off between cluster quality and runtime.

Our representatives reflect dense areas tending to be in the middle of clusters.

Furthermore, we propose a more effective way to detect the global clustering based on the
local representatives. We do not apply a DBSCAN algorithm with afixed e-value. Instead we
propose to use an enhanced DBSCAN algorithm which uses different e-values for each local
representative r depending on the distribution of the objects represented by r.

3 Scalable Density-Based Distributed Clustering

Distributed Clustering assumes that the objects to be clustered reside on different sites. Instead of
transmitting all objectsto acentral site (also denoted as server) where we can apply standard clus-
tering algorithmsto analyze the data, the datais analyzed independently on the different local sites
(also denoted as clients). In asubsequent step, the central site triesto establish aglobal clustering
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Fig. 2. Distributed clustering.

based on thelocal models, i.e. the local representatives. In contrast to acentral clustering based on
the complete dataset, the central clustering based on the local representatives can be carried out
much faster.

Distributed Clustering is carried out on two different levels, i.e. the local level and the global
level (cf. Figure 2). On thelocal level, all sites analyse the dataindependently from each other re-
sulting in alocal model which should reflect an optimum trade-off between complexity and accu-
racy. Our proposed local models consist of a set of representatives. Each representative is a
concrete object from the objects|ocated at thelocal site. Furthermore, we augment each represent-
ative r with a suitable covering radius indicating the area represented by r. Thus, r is agood ap-
proximation for al objects residing on the corresponding local sites and are contained in the
covering areaof r.

Next, thelocal model istransferred to acentral site, wherethe local modelsare merged in order
to form a global model. The global model is created by analysing the local representatives. This
analysisissimilar to anew clustering of the representatives with suitable global clustering param-
eters. To each local representative aglobal cluster identifier isassigned. Theresulting global clus-
tering issent to al local sites.

If alocal object islocated in the covering area of aglobal representative, the cluster-identifier
from thisrepresentative is assigned to the local object. Thus, we can achieve that each site has the
same information as if their data were clustered on a global site, together with the data of all the
other sites. To sum up, distributed clustering consists of three different steps (cf. Figure 2):

* Determination of alocal model
e Determination of aglobal model which is based on al local models
e Updating of al loca models

In this paper, we will present effective and efficient algorithms for carrying out step 1 and
step 2. For more details about step 3, the relabeling on the local sites, werefer the interested reader
to[6].
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4 Quality Driven Deter mination of L ocal Representatives

In this section, we present a quality driven and scalable algorithm for determining local repre-
sentatives. Our approach consists of two subsequent steps. First, weintroduce and explain theterm
static representation quality which assigns a quality value to each object of alocal site reflecting
itssuitability to serve asarepresentative. Second, we discuss how the object representation quality
changes, dependent on the already determined local representatives. Thisquality measureiscalled
dynamic representation quality. In Section 4.2, we introduce our scalable and quality driven algo-
rithm for determining suitable representatives along with additional aggregated information de-
scribing the represented area.

4.1 Object Representation Quality

In order to determine suitable local cluster representatives, we first carry out similarity range
queries on the local sites around each object o with aradiuse.
Definition 1 (Similarity Range Query on Local Sites)
Let O be the set of objectsto be clustered and d:Ox O — | Rg the underlying distance function
reflecting the similarity between two objects. Furthermore, Iet O, c O betheset of objectslocated
at sitei. For each object oe O; andaquery range e € | R0 , thesmllanty range query Simygnge'
o} ><IR0 5 29 returnsthe set.

Sirnrange(oa 8) = {oi € O|| d(oi’ 0) < 8}

After having carried out the range queries on the local sites, we assign a static representation
quality StatRepQ(o,¢) to each object o w.r.t. acertain e-value.

Definition 2 (Static Representation Quaity StatRepQ)
Let O = O be the set of objects Iocaied at site i. For each object oe O; and a query range
€e IRO,SatRepQ O xIRoe IR0 is defined as follows:

StatRepQ(o, &) = e—d(o;, 0)

0 € Simrange(oa S)

For each object o; contained in the e-range of a query object o, we determine the distance to the
border of the e-range query, i.e. we weight each object o; in the e-range of o by e—d(o;, 0) . This
value is the higher, the closer o; isto 0. Then the quality measure StatRepQ(o,e) sums up all the
values e—d(o;, 0) for al objects located in the e-range of our query object. Obviously,
SatRepQ(0,¢) is the higher, the more objects are located in the e-range around o and the closer
these objects are to o. Figure 3 illustrates that the highest SatRepQ(o,¢) value is assigned to those
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objects which intuitively seem to be the most suitable representatives of alocal site. The figure
shows that the value SatRepQ(A,€) is much higher than the value StatRepQ(A' ,e), reflecting the
more central role of object A compared to object A’.

Next we define a dynamic representation quality DynRepQ(o,e,Rep;) for each local object o.
This quality measure depends on the already determined set of local representatives Rep; of asite
i and theradius of our e-range query.

Definition 3 (Dynamic Representation Quality DynRepQ)
Let O; c O betheset of objects|ocated at sitei and RePi c O. theset of the aready determined

local representatives of sitei. Then, DynRepQ: O; x IR, X P IRS is defined asfollows:
DynRepQ(o, &, Rep;) = e-d(o;, 0)

0; € S-mrange(ov E)
Vr e Rep;:0; & SiM, g4, €)

DynRepQ(o,¢,Rep;) depends on the number and distances of the elements found in the e-range
of an abject o, which are not yet contained in the e-range of aformer local representative. For each
object o which has not yet been selected as arepresentative, the value DynRepQ(o,e,Rep;) gradu-
ally decreases with an increasing set of local representatives, i.e. an increasing set Rep;. Figure 4
illustrates the different values of DynRepQ(B,e,Rep;) for two values of the set Rep;. If Rep;={}, the
value DynRepQ(B,e,Rep;) is much higher than if the element A isincluded in Rep;.

4.2 Scalable Calculation of L ocal Representatives

In this subsection, we will show how we can use the quality measures introduced in the last
subsection to create avery effective and efficient algorithm for determining a set of suitable local
representatives. The basic idea of our greedy algorithm is very intuitive (cf. Figure 5).

e First, we carry out range queries for each object of alocal site.

e Second, we sort the objects in descending order according to their static representation qual-
ity.

e Third, we delete the first element from the sorted list and add it to the set of local representa-
tives.

e Fourth, we compute the dynamic representation quality for each local object which has not
yet been used as alocal representative and sort these objectsin descending order according to
their dynamic representation quality.

« If we have not yet determined enough representatives, we continue our algorithm with step 3.
Otherwise, the algorithm stops.



Oi set of objectslocated at sitei;
e-range value;
AL GORITHM DeterminationOfL ocal Representatives;
BEGIN
Rep; :=(}; /I set of local representatives;
FOREACH oe O; DO
compute StatRepQ(0,¢);
END FOR;
SortRepList := <(01, SatREPQ(018)), -, (00, FAREPQ(0)0,1€))] iSj =>TatRepQ(0;,€) >SatRepQ(0;.£)>;
WHILE NOT stop_criterion (Rep;) DO
Rep; := Rep; + SortRepList[1];
FOREACH oe O, -REP; DO
compute DynRepQ(o,&,Rep;);
END FOR;
SortRepList := <(0;,DynRepQ(01.€,Re)), -... (00;-rep;, DYNRENQ(0)0,-rep;.€:ReM))|
i <] =>DynRepQ(0;.£,Rep;) = DynRepQ(0;,¢,Rep;)>;
END WHILE;
END.

Fig. 5. Scalable calculation of local representatives.

Obviously, the algorithm delivers the most suitable local representatives at a very early stage
of theagorithm. After having determined anew local representative, it can be sent to aglobal site
without waiting for the computation of the next found representative. As we decided to apply a
greedy algorithm for the computation of our local representatives, we will not revoke a represent-
ative at a later stage of the algorithm. So the algorithm works quite similar to ranking similarity
queries known from database systems allowing to apply the cursor principle on the server site. If
the server decidesthat it has received enough representativesfrom alocal site, it can close the cur-
sor, i.e. we do not have to determine more local representatives. The termination of the algorithm
can either be determined by a size-bound or an error-bound stop criterion [10]. This approach is
especialy useful if we apply a clustering algorithm on the server site which efficiently supports
incremental clustering as, for instance, DBSCAN [3].

For al representatives included in a sequence of local representatives, we also compute their
Covering Radius CovRad, indicating the element which has the maximum distance from the rep-
resentative, and the number CovCnt of objects covered by the representative.

Definition 4 (Covering Radius and Covering Number of Local Representativ&s)

Let O; c O bethe set of objects located at sitei and Rep; = {r;, } the sequence of the
first n Iocal representatlves where {rI - }c o,. Then the coverlng radlus CovRad:
O, ><IR0>< P IRO and the covering number Coant 0, x IR0>< pA IRO of the i, , 4th
representatlve are defined as follows:

CovRad(r, 8 Rep;) =
max{e—d(o,r; )|Voe O;Vre Rep; :0€ SMuangel(lj &) AOE SiMyange(r, €) }

CovCnt(r, 8 Rep, ) = |{o| Voe O;Vr € Rep; :0€ SiM,q(r; oy €) A0E SiManeell, a)}|

Figure 6 depicts the CovRad and CovCnt values for two different representatives of sitei. Note
that the computation of CovRad and CovCnt can easily be integrated into the computation of the
representatives as illustrated in Figure 5. The local representatives aong with the corresponding
values CovRad and CovCnt are sent to the global site in order to reconstruct the global clustering,
i.e. we transmit the following sequence consisting of n local representatives from sitei:



CovRad(A, ()) = d,
CovCnt(A, ()) =9
CovRad(B, (A)) = dg
CovCnt(B, (A)) = 2

sent to global site: < (A, da, 9), (B, dg, 2)>

local sitei

Fig. 6. Covering radius CovRad and covering number CovCnt.
<(r;,, CovRad(r;,, €, {}), CovCnt(r;,, €, {})),
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For simplicity, we will write CovRad(rij) instead of CovRad(rij, &, {rim T ) and Coant(rij)

instead of Coant(riJ., g {rip Miy. ), if the set of already transmitted representatives and the used
e-values are clear from the context.

5 Global Clustering

Ontheglobal site, we apply an enhanced version of DBSCAN adapted to clustering effectively
local representatives. We carry out e-range queries around each representative. Thereby, we usea
specific e-value g(r;) for each representativer; (cf. Figure 7). The e-valueg(r;) isequal to the sum
of the following two components. The first component consists of the basic e-value which would
be used by the original DBSCAN algorithm and which was used for the range queries on thelocal
sites. The second component consists of the specific CovRad(r;) value of the representativer;, i.e
we set g(rj) = € + CovRad(r;).

The idea of this approach is as follows (cf. Figure 8). The original DBSCAN algorithm based
on all dataof al loca siteswould carry out an e-range query around each point of the data set. As
we perform the distributed clustering only on a small fraction of these weighted points, i.e. we
cluster on the set of the local representatives transmitted from the different sites, we have to en-
large the e-value by the CovRad(r;) value of the actual representative r;. This approach guarantees
that we can find all objects in the enlarged e-range query which would have been found by any
object represented by the actual local representativer;. For instancein Figure 7, the representative
i, iswithin the e-range of the local object o; represented by Fiy- Only because we use the enlarged
e-range s(ril), we detect that the two representatives i and i belong to the same cluster.

CovRad(r)
€

—>
———— £ + CovRad(r)

local objects of sitei represented by ril
e local representatives of different sites

global site

Fig. 7.Global clustering on varying (r;)-parameters for the different representativesr;



Furthermore, we weight each local representativer; by its CovCnt(r;) value, i.e. by the number
of local objects which are represented by r;. By taking these weights into account, we can detect
whether local representatives are core-points, i.e. points which have more than MinPts other ob-
jects in their e-range. For each core-point r; contained in a cluster C, we carry out an enlarged
e-range query with radius &(r;) trying to expand C. In our case, alocal representative r; might be
acore-point although less than MinPts other local representatives are contained in its (rj)-range.
For deciding whether r; is a core-point, we have to add up the number of objects CovCnt(r;) rep-
resented by the local representatives r; contained in the (rj)-range of r; (cf. Figure 8).

R set of all representatives from all local sites,
/I R={(rq, CovRad(ry), CovCnt(ry)), .., (rr, CovRad(r|g)), CovCni(r|g));

€, MinPts e-range value and MinPts parameter used by DBSCAN

Algorithm DistributedGlobal DBSCAN
BEGIN
ActClusterld :=1;
FORi=1..|R DO
ActObj := R.get(i);
IF ActObj.Clusterld = -1 THEN
IF ExpandCluster THEN
ActClusterld:=ActClusterld +1;
END IF;
END IF;
END FOR;
END.

ExpandCluster: Boolean;
BEGIN
seeds := RangeQuery(ActObj, e+CovRad(ActOh)));
CntObjects := 0;
FORi=1.. [seeds DO
CntObjects := CntObjects + seeds[i].CovCnt;
END FOR;

/I Clusterld = O is used for NOISE and
/I Clusterld = -1 for UNCLASSIFIED objects
/I select the ith object from R

/I range query with enlarged radius around ActObj

/1 all objects represented by representatives

| F CntObjects < MinPts THEN
ActObj.ClusterlD := 0
RETURN FALSE;
ELSE
FORi=1.. |seeds| DO
IF seedd[i].Clusterld = {-1, 0} THEN
seedd[i].Clusterld := ActCluster|d;
END IF;
END FOR;
delete ActObj from seeds;
WHILE seedsNOT EMPTY DO
ActObj := seedq[ 1

CntObjects:= 0
FOR i =1 .. |neighborhood| DO

END FOR,;
IF CntObjects >= MinPts THEN
FOR i =1.. |neighborhood| DO
p := neighborhood[i];
IF p.Clusterld = {-1, 0} THEN
IF p.Clusterld =-1 THEN
add p to seeds;
ENDIF;

END IF;
END FOR;

END IF;

delete ActObj from seeds;
END WHILE;
RETURN TRUE;

END IF;
END;

p.Clusterld := ActCluster|D;

/I Object ActObj is not a core object
/I ClusterID 0O isused for NOISE

/I Object o is acore object

1;
neighborhood := RangeQuery(ActObj, e+CovRad(ActObj));  // range query with enlarged radius

CntObjects := CntObjects + neighborhood][i].CovCnt;

/1 ActObyj is a core object

1/ object pis UNCLASSIFIED or NOISE
1/ object p is UNCLASSIFIED

Fig. 8.Distributed globa DBSCAN algorithm.
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6 Experimental Evaluation

We evaluated our SDBDC approach based on three different 2-dimensional point sets where
we varied both the number of points and the characteristics of the point sets. Figure 9 depicts the
three used test data sets A (8700 objects, randomly generated data/clusters), B (4000 objects, very
noisy data) and C (1021 objects, 3 clusters) on the central site.

In order to evaluate our SDBDC approach, we equally distributed the data set onto the different
client sites and then compared SDBDC to asingle run of DBSCAN on all data points. We carried
out all local clusterings sequentially. Then, we collected all representatives of all local runs, and
applied aglobal clustering on these representatives. For all these steps, we used a Pentium 111/700
machine. In all experiments, we measured the overall number of transmitted local representatives,
which primarily influences the overall runtime. Furthermore, we measured the cpu-time needed
for the distributed clustering consisting of the maximum time needed for the local clusterings and
the time needed for the global clustering based on the transmitted local representatives.

We measured the quality of our SDBDC approach by the quality measure introduced in [6].
Furthermore we compared our approach to the approach presented in [6] where for the three test
datasetsabout 17% of all local objectswere used asrepresentatives. Note that this number isfixed
and does not adapt to the requirements of different users, i.e high clustering quality or low runtime.

Figure 10 shows the trade-off between the clustering quality and the time needed for carrying
out the distributed clustering based on 4 different local sites.

Figure 10a shows clearly that with an increasing number of local representatives the overall
clustering quality increases. For the two rather noisy test data sets A and B reflecting real-world
application ranges, we only have to use about 5% of all local objects as representativesin order to
achieve the same clustering quality as the one achieved by the approach presented in [6].

Figure 10b; showsthe speed up w.r.t. the transmission cost we achieve when transmitting only
the representatives determined by our SDBDC approach compared to the transmission of all data
from the local sites to a global site. We assume that a local object is represented by n bytes and
that both CovRad(r;) and CovCnt(r;) need about 4 bytes each. For readlistic values of n, e.g. =100,
amore than three times lower representative number, e.g. 5% used by the SDBDC approach com-
pared to 17% used by the approach presented in [6], results in a 300% speed up w.r.t. the overall
transmission cost which dominate the overall runtime cost (cf. Figure 10b,).

Figure 10b, depicts the sum of the maximum cpu-time needed for the clustering on the local
site and the cpu-time needed for the clustering on the global site. A small number of local repre-
sentatives terminates the generation of the local representatives at an early stage leading to a short
runtime for computing the required local representatives. Furthermore, the global clustering can
be carried out the more efficiently, the smaller the overall number of local representativesis.
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To sum up, asmall number of local representatives accelerates the SDBDC approach consid-
erably. If we use about 5% of all objects as representatives, we can achieve a high quality and,
nevertheless, efficient distributed clustering.

Figure 11 shows how the clustering quality depends on the number of local sites. Obviously,
the quality decreases when increasing the number of sites. Thisis especialy true for the approach
presented in [6] which neglects the problem of local noise. The more sites we have and the noisier
the data set is, the more severe this problem is. As Figure 11 shows, our approach is much less
susceptible to an increasing number of local sites. Even for the noisy test data set B, our approach
stays above 90% clustering quality although using more than 10 different local sitesand only 13%
of all objects aslocal representatives (in contrast to the fixed 17% used in [6]).

approach presented in [6] (17% representatives) SDBDC (13% representatives)

a) b) c)
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Fig. 11. Clustering Quality dependent on the number of local sites.
a) test data set A, b) test data set B, c) test dataset C



7 Conclusions

In this paper, we first discussed some application ranges which benefit from an effective and
efficient distributed clustering algorithm. Due to economical, technical and security reasons, it is
often not possible to transmit all data from different local sitesto one central server site where the
data can be analysed by means of clustering. Therefore, we introduced an algorithm which alows
the user to find an individual trade-off between clustering-quality and runtime. Our approach first
analyses the data on the local sites and orders all objects o according to a quality criterion
DynRepQ(o) reflecting whether the actual object isa suitable representative. Note that this quality
measure depends on the already determined representatives of alocal site. After having transmit-
ted a user dependent number of representatives to the server, we apply a dightly enhanced
DBSCAN clustering al gorithm which takes the covering radius and the number of objects covered
by each representative r; into account, i.e. the server site clustering is based on the aggregated in-
formation CovRad(r;) and CovCnit(r;) describing the areaon alocal site around arepresentativer;.
Aswe produce the local representatives in a give-me-more manner and apply a global clustering
algorithm which supports efficient incremental clustering, our approach alows to start with the
global clustering algorithm as soon as the first representatives are transmitted from the various
local sites. Our experimental evaluation showed that the presented scalable density-based distrib-
uted clustering algorithm alows effective clustering based on relatively little information, i.e.
without sacrificing efficiency and security.

In our future work, we plan to develop hierarchical distributed clustering algorithmswhich are
suitable for handling nested data.
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