Technische Universitat Braunschweig
Carl-Friedrich-Gauf3-Fakultat,
Department Informatik
Institut fir Software Systems Engineering

Modular Description of a Comprehensive Semantics
Model for the UML

Version 2.0

Informatik-Bericht 2008-06

Manfred Broy', Maria Victoria Cengarle’,
Hans Gronniger? and Bernhard Rumpe?

1Software and Systems Engineering,
Technische Universitat Minchen, Germany
2Software Systems Engineering,
Technische Universitat Braunschweig, Germany

October, 2008

[w] 354 =] [BCGRO8] M. Broy, M.V. Cengarle, H. Grénniger, B. Rumpe
m B Modular Description of a Comprehensive Semantics Model for the UML (Version 2.0)
5 Informatik-Bericht 2008-06
Technische Universitat Braunschweig, Carl-Friedrich-Gauss-Fakultat, 2008.

Eh'{'l- www.se-rwth.de/publications

Contents

1 Introduction to the System Model for UML
1.1 General Approach to Semantics Lo
1.2 Structuring the Semanticsof UML o
1.3 The Math behind the System Model
1.4 Staticand DynamicIssues L L
1.5 Whatisthe System Model?
1.6 Notational Conventions it e e e
1.7 System Model Evolution

2 Static Part of the System Model
2.1 Type Names and Their Carrier Sets v,
2.1.1 Variation Point: typeOf
2.1.2 Typing Examples oL
2.2 Basic Type Names and Type Name Constructors
2.2.1 Variation Point: Basic Types
2.3 Variables e
2.3.1 Visibility and Unique Variable Names
2.4 Summary of Types, Variablesand Values, .
2.4.1 Variation Point: Records oL o
2.4.2 Variation Point: Cartesian Products 0.
2.5 ClassNamesand Objects o i i v it e
2.6 Subclassing e e
2.7 Summary of Classes and Objects
2.7.1 Variation Point: Subclassing Respects Structure
2.7.2 Variation Point: Antisymmetric Subclassing
2.7.3 Dynamic Reclassificationof Objects
2.74 Variation Point: Objects are Values
2.7.5 Variation Point: Generic Type System
2.8 DataStore Structure L e e e e e e
2.8.1 Variation Point: Finite Object System
2.8.2 Variation Point: Locations
2.8.3 Variation Point: Reference Types
2.9 Class Variables and Constants o
2.10 ASSOCIAtIONS L e e e
2.10.1 Variation Point: Simple Associations Only
2.10.2 Variation Point: Plain Binary Associations
2.10.3 Variation Point: Realization Techniques for Binary Associations
2.10.4 Variation Point: Qualified and Ordered Binary Associations
2.11 Summary of the Data State of the System Model
2.12 An Example for the Structural System Model

3 Control Part of the System Model

12
12
13
13
14
14
15
15
16
16
17
17
19
21
21
22
22
22
23
24
25
25
26
27
27
29
30
30
31
32
33

39

3.1 Operations L e e e e e e e
3.2 Methods oL e
33 StackedMethod Calls
3.4 Multiple-thread Computation, Centralized View
3.5 Multiple-thread Computation, Object-Centric View
3.6 Summary of Threadsand Stacks,
3.7 Example for Operations, Methods, and ControlStore
3.7.1 Variation Point: Single ThreadOnly
3.7.2 Variation Point: Message Passing ObjectsOnly
3.7.3 Variation Point: Active vs. Passive Objects
3.7.4 Variation Point: Objects located in Regions

Messages and Events in the System Model

4.1 Messages, Eventsand the EventStore,

4.2 Method Call and Return Messages L

4.3 Asynchronous and Broadcast Messages
43.1 Example: Handling Signals
4.3.2 Variation Point: Multicast
433 Computation and Scheduling

4.4 Example for Events and Messages o

4.5 Summary of Messagesand Events

Object State

5.1 Individual Object States e e

5.2 Grouped Object States e e e e
5.2.1 Example: Layout of an Object Structure

5.3 Summary of Object State

Event-based Object Behavior

6.1 Variation Point: Method Definitions oo
6.1.1 Control Flow State Transition Systems

6.2 Event-Based State Transition Systems
6.2.1 ESTS Definition e
6.2.2 Variation Point: Deterministic ESTS
6.2.3 Variation Point: Composing CESTSto ESTS
6.2.4 Variation Point: Basic Scheduling inthe ESTS

6.3 Summary for Event STS

6.4 Variation Point: Composing ESTS to System STS

Timed Object Behavior

7.1 Object Behavior in the System Model

7.2 State-based Object Behavior

7.3 Mapping Event STS to Timed STS
7.3.1 General Mapping of Event STS to Timed STS
7.3.2 Variation Point: Constraining the Timed STS

7.4 The System Model Definitiono

7.5 Summary for Object Behavior with Timed STS

Concluding Remarks
8.1 Further EXtensions e e e

51
51
52
54
54
55
55
55
55

57
57
57
58
58

60
60
60
62
62
63
63
67
68
68

7
71
73
74
74
74
75
75

77

Bibliography

A

m O O

M

Basic mathematics used

A.1 Functions, Logic, Sets.
A.2 Collections (or Containers) v v i i it e e e e e e e e e
A3 Records e e e e
A4 Tuples: Cartesian Products L

Central Model of Interaction: Streams, Components, STS

B.1 Types of Models for Interactive Systems,

B2 Streams e e e e
B.2.1 BasicStreams e e e
B.2.2 Timed Streams e e
B.2.3 Channels and Histories e
B.2.4 Interfaces, I/O-Behaviorsand Time
B.2.5 Composition of Interface Behavior 0oL

B.3 State Transition Systems e e e e e e e
B.3.1 STS-Definition e
B.3.2 Deterministic STS e

B.4 Timed State Transition Systems
B.4.1 Definition of Timed State Transition Systems
B.42 Composition of TSTS
B.4.3 Interface Behavior and Interface Abstraction

Glossary: Summary of all Signatures
List of Figures

List of Definitions

List of Lemmata and Variation Points

List of Example Definitions

79

83
83
84
85
85

102
107
108
110

112

1 Introduction to the System Model for UML

In this document, we introduce a system model as a semantic domain for the Unified Modeling Language
(UML) [OMGO07a, OMGO7b]. The system model is supposed to form a possible core and foundation of
the UML semantics definition. For that purpose, the definitions in this document are targeted towards UML
which means that central concepts of UML have been formalized as theories of the system model.

This document is structured as follows: In the rest of Chapter 1, we discuss the general approach and
highlight the main decisions. This chapter is important to understand the rest of this document. Chapter 2
contains the definition of the structural part of the system model. Chapters 3 and 4 contain the control
and communication related definition definitions which form the basis to describe the state of a system in
Chapter 5. Two variants of state transitions systems are introduced to define object behavior in Chapters 6
(event-based) and 7 (timed). Chapter 8 concludes the document.

This document is the second version of the system model which is the result of a major effort to define
the structure, behavior and interaction of object-oriented, possibly distributed systems abstract enough to be
of general value, but also in sufficient detail for a semantic foundation of the UML. The first version of the
system model can be found in [BCR06, BCR07a, BCRO7b].

1.1 General Approach to Semantics

The semantics of any formal language consists of the following basic parts [Win93]:
e the syntax of the language in question (here: UML) — be it graphical or textual,

e the semantic domain, a domain well-known and understood based on a well-defined mathematic the-
ory, and

e the semantic mapping: a functional or relational definition that connects both, the elements of the
syntax and the elements of the semantic domain.

This technique of giving meaning to a language is the basic principle of denotational semantics: every
syntactic construct is mapped onto a semantic construct. As discussed in the literature, there are many
flavors of these three elements. Syntax can, for example, be specified by grammars or metamodels. To
stay formal, our approach intends to use the abstract syntax of UML in a mathematical form that resembles
context-free grammars, examples are given in [CGRO8b, CGRO08a]. In [KRB96] the term system model
was used the first time to denominate a semantic domain; it defines a family of systems, describing their
structural and behavioral issues. Each concrete syntactic instance (in our case, an individual UML diagram,
or even a part of it) is interpreted by the semantic mapping as a predicate over the set of systems defined by
the system model. As explained in [HR04] the semantic mapping has the form:

Sem : UML — P(Systemmodel)

and thus functionally relates any item in the syntactic domain to a set of constructs of the semantic domain.
The semantics of a model m € UML is therefore Sem(m).

Given any two models m,n € UML combined into a complex one m ¢ n (for any composition operator
@ of the syntactic domain), the semantics of m & n is defined by Sem(m & n) = Sem(m) N Sem(n). This
definition also works for sets of UML documents which allows an easy treatment of views on a system

specified by multiple UML diagrams. The semantics of several views, i.e., several UML documents is given
as Sem({doci, . ..,doc,}) = Sem(doci) N ... N Sem(doc,) A set of UML models docs is consistent if
systems exist that are are described by the models, so Sem(docs) # &. As a consequence, the system model
supports both view integration and model consistency verification.

In the same way, n € UML is a (structural or behavioral) refinement of m € UML, exactly if Sem(n) C
Sem(m). Formally, refinement is the nothing else than “n is providing at least the information about the
system that m does”. These general mechanisms provide a great advantage, as they simplify any reasoning
about composition and refinement operators.

The system model described in this document identifies the set of all possible object-oriented (OO) sys-
tems that can be defined using a subset of UML which we call “clean UML” as introduced below. It relies
on earlier work on system models [Rum96, KRB96, GKR96, BHH™97, BGH 98, SRS99].

To capture and integrate all the orthogonal aspects of a system modeled in UML, the semantic domain
necessarily has to have a certain complexity. Related approaches very often contain a relatively small and
specialized semantic domain, such as (pairs of) sets of traces for UML interaction [HHRSO05], template
semantics based on hierarchical state machines [TA06] or Kripke structures [vdB02] for UML State Ma-
chines, or sets of inequations to give semantics to class diagrams focusing on satisfyability of association
cardinality [SKU06, CCGMO07, MB07, FSO7]. However, these approaches fail to give an integrated seman-
tics for different types of UML notations. Approaches with a broader scope are for example [DJPV03]
which define a UML subset called krtUML and associates with each model a symbolic transition system.
[KGKKO02] combine class, object and state machine diagrams using graph transformations. In [ESWO07]
dynamic metamodeling (also based on graph transformations) is used to define the operational semantics
of, e.g., UML activities. Semantics for class and state machine diagrams have been developed for different
purposes. [SB06] examines the refinement of associations. [FKdRdB06] provide a compositional semantics
that considers activity groups. [Lanar] additionally supports sequences diagrams and considers timing is-
sues. In [ZLQO6] consistency between (simplified) state machines and sequence diagrams is checked using
a model checker. Consistency conditions are also proposed [Li06, O’K06].

1.2 Structuring the Semantics of UML

Our long term goal is to define the semantics of a comprehensive core of well-defined concepts of UML.

Clean UML Simplified UML System Model
L ete.

Figure 1.1: General strategy for the definition of the semantics of UML 2.0

The overall strategy of giving semantics to a modeling language is depicted in Figure 1.1. The basic idea
expressed by this diagram is as follows:

e Full UML is restricted to a subset (called “clean UML”) that can be treated semantically without
overly sophisticated constructs.

e Clean UML is mapped by transformations into Simplified UML. In doing so, derived constructs of
UML are replaced by their definition in terms of constructs of the core. That way, notational exten-
sions and derived concepts can be eliminated. UML provides a number of derived operators which do
not enhance the expressiveness of the language but the comfort of its use. Derived constructs can be
defined in terms of constructs of the core as, e.g., state hierarchy of UML’s state transition diagrams
can be neglected without losing expressiveness.

e Simplified UML, finally, is mapped to the system model using a predicative approach.

The system model describes the “universe (set) of all possible semantic structures (each with its behav-
ior)”. The semantic mapping interprets a UML model as a predicate that restricts the universe to a certain
set of structures, which represents the meaning of the UML model. To be able to faithfully map concepts
from UML to the system model, the system model has to cover a number of basic concepts expressible in
UML. Otherwise, the semantic mapping cannot be defined in an adequate manner.

The system model itself is defined in a modular fashion. From a global viewpoint, a system in the system
model is a state machine. This semantic universe is introduced in layers of mathematical theories which are
shown in Figure 1.2. The links to basic mathematical theories defined in Appendix A (e.g., Function, Logic,
etc.) have been left out as they can be used in all theories without an explicit reference.

| SYSMOD |
7 ¥
ESTS TSTS ESTStoTSTS
EventSTS TimedSTS
CompBehavior
ObjBehavior
STSStepper
[
State ObjectStates2
ObjectStates1
¥
Data Control ControlStore| || Events
| Thread J— [MethodReturnl<—| Signal |
Damsiors] [stackFrame}— 2
DataStore [Method }— [TypeSafeOps| [t—{MethodCall
] Method1 | v_ v \ v
DataStore1 Operation [EventStorel<— Message |
AV4 ¥ ¥ v v
Object Nil] Attribute |
v
|Subc|assing|—>| Class |
I I
v V] V2 N I
Type [Variable | [Void | [Boolint | Legend:
Y extends: orA—B
Type1 .
uses: A—>B

Figure 1.2: Theories that constitute the system model

The rectangles in Figure 1.2 contain names of the theories, whereas arrows show a relationship among
concepts that could be paraphrased as “is defined in terms of”. For instance, basic theories for types and
objects are used to define the data, control, and event state of a system, that in turn are used to define the
state space for the transition systems.

When defining the constituents of the system model, we will state the decisions that have to be made,
that can be left open or do not even occur when staying informal. We clearly identify those decisions either
directly, or mark them as a “variation point” and leave it to the user of the system model to choose or adopt a

variation. Those variation points may very nicely correspond to stereotypes on the language side, such that
the language designer (and semantics definer) can transfer the freedom of choice to the actual modeler.

1.3 The Math behind the System Model

A precise description of the system model calls for a precise instrument. For our purposes, mathematics is
exactly appropriate because of its power and flexibility. Admittedly, reading and understanding mathematics
is an effort that requires some training, but it allows for precisely and abstractly describing things that cannot
be defined using e.g. UML itself. Using UML itself to describe semantics of UML might seem, on the
contrary, a pragmatic approach. This approach, however, is somewhat meta-circular and necessarily calls
for a kind of bootstrap, typically mathematics again. Moreover, understanding the semantics of UML in
terms of UML itself, demands a very good knowledge of the language whose semantics is about to be
formally given. Besides, UML does not conveniently provide the appropriate mechanisms we need, e.g., to
handle scheduling, distributed systems and to deal with underspecification in a precisely controllable way.
Of course, whenever appropriate, we use diagrams to illustrate some mathematically defined concepts, but
the diagrams do not replace the mathematical formulas.

Instead of relying on basic mathematics, related work often proposes the use of specialized formalisms.
[BF98, ELFR99] translate UML to the formal language Z while [SG06] map to B. Graph transformations are
used in [KGKKO2]. The process algebra w-calculus has been proposed to model activities [KKNRO6] that
also have been formalised using Petri nets [SHOS], or Abstract State Machines (ASMs) [SGO06]. Trace-based
semantics for interactions have been presented in [HHRS05, CK04]. Metamodeling techniques have been
employed by [ESWO07]. Template semantics [TA06] that are based on state machines allow for describing
semantic variation points.

We intentionally avoided the use of more specialized notations such as Z, B, ASMs, etc. for two reasons.

e It is not clear that any of these notations is general and comfortable enough to allow a satisfactory and
adequate expression of all concepts in UML.

e Arguably, all these notations have a certain bias (e.g., for state-based formal specification, analysis
with a theorem prover, analysis with a model checker); we kept the system model free of this bias
to ensure that we obtain a true reference semantics that, if useful, enables the future use of other
notations for, e.g., analysis purposes.

Because of these reasons we decided to use only mathematics. The following principles have proven to
be useful when defining the system model:

1. Mathematics is used to define the system model. Its sub-theories are built on: numbers, sets, relations,
and functions. Additional theories are built in a layered form. That is, only notation and mathematical
definitions and neither new syntax nor language are introduced or used in the system model. Diagrams
are occasionally used to clarify things, but do not formally contribute to the system model.

2. The system model does not constructively define its elements, but introduces the elements and char-
acterizes their properties. That is, abstract terms are used whenever possible. For instance, instead
of using a record to define the structure of an object, we introduce an abstract set of objects and a
number of selector functions. Properties of the set are then defined through such selectors. Based on
our background and knowledge, we claim that we can transform this system model into a constructive
version (and actually do this, cf. [CDGRO07]), but that would probably be more awkward to read and
less intuitive, as it costs a lot more mathematical machinery. This will satisfy “constructivists” who
wish everything being constructive or executable.

3. Everything important is given an appropriate name. For instance, in order to deal with classes, there is
a “universe of class names” UCLASS, and similarly there is also a “universe of type names” UTYPE,
which however is just a set of names (and not types); see Sects. 2.5 and 2.1 below.

4. To our best knowledge, any underlying assumptions were avoided, according to the slogan: What is
not explicitly specified does not need to hold. If we, for instance, do not explicitly state that two sets
are disjoint, these two sets might have elements in common. Sometimes these loose (underspecified)
ends are helpful to specialize or strengthen the system model and are there on purpose. If you need
a property, (a) check whether it is there, (b) if absent, check whether it can be inferred as emerging
property, (c) if not, check if it is absolutely necessary, and (d), if yes, you may add it as an additional
restriction.

5. Generally, deep embedding (or explicit representation) is used. This means the semantics of the
embedded language, i.e., UML, is completely formalized within the supporting language, in our case,
mathematics. As one consequence, although there are similar concepts in the language describing the
system model (which is mathematics) and the language described (UML), these need not be related.
For instance, the system model characterizes the type system of UML, it however does not have and
does not need a type system itself.

6. Specific points, where the system model could be further strengthened, have been marked as “vari-
ation points”. Variation points deal with additional elements that can be defined upon the system
model. We may introduce additional machinery that needs not be present in each modeled system.
Prominent examples of such variations are the existence of a predefined top-level class called “Ob-
ject” or an enhanced type system, including, e.g., templates. Furthermore, variations describe changes
of definitions, that lead to a slightly different system model. Variation points allow us to describe spe-
cialized variants of the system model, that may not be generally valid, but hold for a large part of
possible systems. Examples are single inheritance hierarchies or type-safe overriding of operations in
subclasses, which may not be assumed in general.

1.4 Static and Dynamic Issues

An object-oriented system can basically be described using one of various existing paradigms. We opted
for the paradigm of a global state machine in order to accommodate a global (and maybe distributed) state
space. The system model, thus, defines a universe of state machines. A state machine is given by its state
space, its initial states, and its state transition function. Note that our notion of state machine is more basic
and does not directly relate to the state machines/state transition diagrams the UML provides.

The types and classes are static, i.e., they do not change over the lifetime of a system. Similarly, the sets
of defined operations, methods, messages, and events do not change. This information is called the static
information of a state machine. The set of existing objects, the values of the attributes, the computational
state of invoked methods, and dispatched and not yet delivered messages passed from one object to another
one are dynamic, i.e., they may change in transition steps. This latter is called the dynamic information of a
state machine and is coded in the states of the state machine. In the database realm, the static part is called
“schema”, and the dynamic part is the “instance”. The schema instantiation is changeable while the schema
itself is not. Schema changes (usually called “schema evolution” in the literature) are not considered, as
they usually do not occur within a running system, but when evolving and/or reconfiguring it.

Summarizing, the state space of the transition system will be defined in terms of the orthogonal con-
stituents data, control, and events. Each of these theories contributes static and dynamic information to the
system model definitions.

1.5 What is the System Model?

A system model provides a means to define the semantics of any UML model. A system sm € SYSMOD
is defined in terms of a larger number of mathematically defined elements that are subsequently introduced.
In general, we introduce our elements in a bottom-up fashion, but we may refer to elements defined later.

Formally, when speaking about a system of the system model, we speak of an instance sm € SYSMOD
as defined in Definition 7.4.1. Hence, a universe UTYPE of type names (as will be introduced in Chapter 2
below) defined for s € SYSMOD, is not necessarily the same in all systems. Therefore, UTYPE is a
shorthand for sm.UTYPE meaning that UTYPE is the universe of type names of the system sm. We simply
abbreviate to UTYPE whenever sm is clear from the context which in all the following definitions will be the
case, as we will talk about properties of an element sm of the system model SYSMOD. The same is true for
the state machine definition of the system. Each system is equipped with a state machine, i.e., a set of initial
states and a transition relation that build upon the defined universes of types, events, etc. So, formally, the
property definition starts with V.sm € SYSMOD : . .. and ends with the definition of the universe of systems
SYSMOD in Definition 7.4.1.

The global state machine, if detailed enough, is perfectly appropriate to model parallel, independent
and distributed computations. In principle, a system of communicating, elementary state machines could be
considered more convenient than a single, global machine for describing the semantics of UML models. It is
also possible to construct a global state machine by integrating elementary ones; however, this is a non-trivial
operation. Therefore, it is more appropriate to employ the concept/metaphor of one state machine at a higher,
non-elementary level. In fact, we introduce a composition operator on state machines representing fragments
of larger systems, such that these state machines can be composed, leading to larger state machines.

1.6 Notational Conventions

For a good structuring of the mathematical theories we define in the following, we use the following con-
ventions.

Definitions will be given as shown in 1.6.1. They usually contribute new elements to the system model
and/or add constraints between these elements. The definitions can be referred to by using DefinitionName

Definition 1.6.1 (This is a definition)

__DefinitionName
extend and use statements referring to other definitions (optional)

introduction of new elements (sets, functions, ...)

Notation:
additional notational abbreviations (optional)

definition of properties that hold

informal, textual explanation (optional)

in “use” and “extend” statements. The first (optional) compartment describes on which definitions the
theory relies. The symbols from the definitions both in the extend and the use statements, can be used and
constrained in the new theory. However, imported symbols are re-exported only if imported through the
extend statement. The extend and use statements define a hierarchy of mathematical theories that constitute
the system model. In rare occasions, we repeat the imported symbols and their signatures, especially if they
are important in the forthcoming definition; we also may specify a context in which the definition is valid.

10

Noteworthy derived properties following from a definition will be stated as a Lemma with a structure similar
to that of a definition. For an example see Lemma 2.5.2.

In addition to the construction of the system model theory, we use examples like depicted in 1.6.2 to
demonstrate how this system model can be used. These examples are not formally part of the system model
and are referenced only by other examples. Note that an example has essentially the same compartments as
a definition.

Example 1.6.2 (This is how an example looks like)

— [ExampleName)]
import and use statements referring to other definitions, examples (optional)

introduction of new elements (sets, functions, ...)

definition of properties that hold

informal, textual explanation (optional)

We employ some mathematical machinery to simplify definitions. For example, if a value is not necessary
but needs to exist, we use a wildcard *. For instance Va : P(a, *,*) is equal to Va : 3y,z : P(a,y,z) for
otherwise unused variables y, z that are existentially quantified at the innermost level. We also assume a
number of container structures, such as P(.) for powerset, P;(.) for finite powerset, List(.), Stack(.), and
Buffer(.) defined in mathematical terms with appropriate manipulation and selection functions. This basic
mathematics is defined in Appendix A.

1.7 System Model Evolution

This document contains the structural part, control (processes, communication, etc.) and a state-based/interaction
definition for the system model. Parallel to the process of designing the system model, we are using it to
define semantics for some of the most important notational concepts of the UML. Along with this process

of defining UML semantics, we hope to be able to enhance the system model defined in here, to lay a solid
and also generally acceptable semantic basis for the UML.

11

2 Static Part of the System Model

In this chapter, we introduce the fundamental static part of systems in the system model that will serve to
define the semantics of UML models.

The static part is composed of, among other things, some universes of elements, which we assume given
and not fully describe here. We define properties and relationships between those universes. For instance:

e the universe of type names UTYPE,

e the universe of values UVAL,

arelation CAR that associates type names and their possible values,

the universe of class names UCLASS, and

the universe of object identifiers UOID.

Note that we do not further prescribe what “names” are, we take them as primitives.

2.1 Type Names and Their Carrier Sets

A type name identifies a carrier set which contains simple or complex data elements called members or
values of (or associated with) the type name. Members of all type names are gathered in the universe UVAL
of values as given in Definition 2.1.1.

Definition 2.1.1 (Types and values)

— Typel
UTYPE

UVAL

CAR : UTYPE — P(UVAL)

Vu € UTYPE : CAR(u) # @

UTYPE is the universe of type names
UVAL is the universe of values
CAR maps type names to associated non-empty carrier sets, carrier sets need not be disjoint.

The word “type” has two meanings. On the one hand, a type is a name intuitively understood as a type
of any (object-oriented) programming language, whose members do not necessarily own an identity, and
which is characterized by the operations it has associated. On the other hand, within the system model we
also have a notion of type used to conveniently describe sets of various kinds like, e.g., records and cartesian
products (beyond the UML notion of type).

Although we do not deal with peculiarities of various type systems, strong or weak typing, etc., we outline
basic assumptions on the underlying type system, as we need to map the type information of UML to this
type system.

12

Type names 7 of this universe UTYPE are normally not detailed further. Although 7" € UTYPE models a
type, T actually stands for a name, and in short we say type 7T for it. In that respect, we use a deep embedding
of the type system of UML, by representing it through type names and a universe of values only. By deep
embedding, we mean that we do not map types of the UML to a type system of the underlying mathematical
structure, but explicitly model types as first-class elements.

2.1.1 Variation Point: typeOf

In a very general fashion, we do not enforce carrier sets to be disjoint or values to know to which carrier
set(s) they belong. For certain type names we may even assume that their carrier sets are identical or in
a subset relation. This notion of type allows the subsumption of object types and value types as well as
reference types. We may, however, enforce values (or just members of certain types) to have a single (or
most specific) type, for instance, by means of a function typeOf as defined in 2.1.2 as a partial assignment of
a type for each value. In ordinary object-oriented programming languages, objects usually have an assigned
type (even though there is subtyping, the assigned type is the class the object is instance of), but special
values like Nil usually do not.

Variation Point 2.1.2 (Values having unique types assigned)

= [typeOf]
use Typel

typeOf : UVAL — UTYPE
Vv € UVAL : v € dom(typeOf) = v € CAR(typeof (v))

typeOf partially assigns a type to values, either because this is the “minimal” type or the type is indeed
encoded in the value.

A variant of a typeOf function, especially suited when no default type is to be assigned to values and the
carrier sets are not disjoint, is the introduction of values paired with their type information (e, T') such that
e € CAR(T). So for instance (3, Int) and (3, Float) can be distinguished.

As an aside, note that, in a proper typing system, families of types, together with their functions, form
algebras with specific signatures. For details see the concept of abstract data types [LEW97].

2.1.2 Typing Examples

The above definitions leave open quite a number of possibilities to characterize types. We will show a few
examples, which are not formal part of the system model. In Example 2.1.3 below, UTYPE denotes a single
type only.

Example 2.1.3 (Types and values: simple UTYPE)

use Typel
UTYPE = {Int}
UVAL =7
CAR(Int) =7

UVAL contains integers only. Note that this example contradicts definitions where e.g. Bool is defined as
a member of UTYPE and is thus just an example.

13

Example 2.1.4 shows that the type of a value needs not be unique. This allows, e.g., polymorphic use of
functions on values.

Example 2.1.4 (Types and values: polymorphic values)

use Typel

Int, Float € UTYPE

R C UVAL
CAR(Float) = R
CAR(Int) =Z C R

In this example, UTYPE defines types Int and Float, Int values are also Float values.

2.2 Basic Type Names and Type Name Constructors

We assume that a number of basic type names for basic values such as Boolean and integer values are given,
see Definition 2.2.1. We moreover assume the typical operations on values associated with basic type

Definition 2.2.1 (Basic types)

—_Boollnt
use Typel

Bool, Int € UTYPE
true, false € UVAL

CAR(Bool) = {true, false}
true # false
CAR(Int) = 7. C UVAL

UTYPE (UVAL) at least contains Boolean and integer (values).

names such as, e.g., logical connectives or arithmetic operators, but do not detail those within the system
model.

A special type name is Void (see Definition 2.2.2), whose carrier set is a singleton. The value void is
usually needed for giving semantics to procedures or methods with no return value. This is customary in the
semantics of programming languages.

2.2.1 Variation Point: Basic Types

Further basic type names —e.g., Real, Character or String and their subtyping relations, if any— are neither
assumed nor detailed in this system model, but are natural variation points. Actually, the concrete choice
of these types may depend on many factors like, e.g., the hardware platform or the processor. For example
the processor may be restricted to integer arithmetics and overflow errors as well as exceptions might be an
issue to be modeled here.

It is also possible to model untyped systems or systems with no static type system. In this case, we just
introduce the universe of all elements.

14

Definition 2.2.2 (Basic type Void)

_ Void
use Typel

Void € UTYPE
void € UVAL

CAR(Void) = {void}

void can for example be used to describe that control is transferred without an actual return value being
sent.

It might also be interesting to introduce a notion of equivalence on type names in a form like 71 ~ 72 to
express that 71 and T2 represent the same carrier sets, i.e., CAR(T1) = CAR(T2).

2.3 Variables

In order to give semantics to attributes of objects, parameters and local variables of method calls and of
executions, we introduce a notion of variable names. (For an account on records, cf. VarAssign in Defini-
tion 2.3.1, see Appendix A.3.)

Definition 2.3.1 (Variables, attributes, parameters)

___Variable
use Typel

UVAR

vtype : UVAR — UTYPE

vsort : UVAR — P(UVAL)
VarAssign = RECORD(UVAR, vsort)

Notation:
a : T denotes a typed variable and the name and type of the variable are stated explicitly. Note that
vtype(a: T) =T.

Vv € UVAR : vsort(v) = CAR(vtype(v))

UVAR is the set of all variable names in the system model. For simplicity, we assume that each variable
name has a unique type assigned.
VarAssign is the set of all total and partial variable assignments for variables from UVAR.

2.3.1 Visibility and Unique Variable Names

As specified in Definition 2.3.1, we assume that each variable name has a unique type assigned. In practice, it
would be relatively unhandy if every variable name could only be used once in a program. We then would see
a global namespace and thus not have any hiding concepts in the language. In the system model, however, we
may accept such a restriction, and handle it as follows. Like in ordinary programming languages, variables
shadow each other when a new variable with the same name is introduced in an inner scope. We assume
static binding, thus each variable name can be statically resolved (as opposed to dynamic binding of variables
by which the resolution of a variable name depends not on the environment of its definition but on the

15

environment of its use, and thus variable resolution can only occur at run time). Generally, we assume
that in the modeling languages we deal with, a consistent and model-wide redefinition of variable names
is possible in such a way that each variable is used only once. Then variable shadowing does not occur
and any variable is unique. We may handle that systematically through encoding the place of definition or
the namespace within each variable. Quite the same is done by many compilers anyway. Example 2.3.2
demonstrates how this can be achieved by use of dot notation, i.e., prefixing the namespace, e.g., the class
containing an attribute age : Int or the class and method name for a parameter age : Days of method buy.

Example 2.3.2 (Unique variables distinguished by namespace)

use Typel, Variable, Boollnt

Person.age, Fruit.buy.age € UVAR

vtype(Person.age) = Int
vtype(Fruit.buy.age) = Days

Names from UVAR include syntactically resolvable namespaces.

If necessary, class names can be further qualified with e.g. package name.

2.4 Summary of Types, Variables and Values

The theory built so far constitutes the basic constraints for values, types and variables. The theory Type
(Definition C.1.1 in Appendix C) summarizes these definitions. We build all further theories on them as a
basis.

Figure 2.1 graphically illustrates the theory dependencies. It is an excerpt of Figure 1.2 but additionally
shows the variation points for the current theory.

Type Marabe k' [Vod | [Boolnt |

) Typet Legend:
extends: orA—B

uses: A—>B

definition: |:|

. . T 1
variation point: | _ !

Figure 2.1: Theory Type and its dependencies.

2.4.1 Variation Point: Records

Records can be defined using the following Variation Point 2.4.2, which relies on the definition of mathemat-
ical records in the Appendix A.3. There we already defined the notion of records, but not a type constructor.
Note that records are structurally rather similar to classes, but serve different purposes. We therefore do
not mix those two concepts. Furthermore, the explicit notion of the element types is not necessary, as each
variable is unique and has a unique type assigned via function vtype. The definition of SRec can be found in
Appendix A.3.

16

Variation Point 2.4.1 (Basic structure of record types)

__RecordTypel
use Typel, Variable

TRec : P,(UVAR) — UTYPE
RECORD(UVAR, vsort) C UVAL

Notation:

Rec{ay : Ty,...,a, : Ty} is shorthand for the type
TRec({(a1,T1),...,(an,Tn)})

Vi:vtype(a;)) =T; =

CAR(Rec{a; : T1,...,an : Ty}) =
SRec({(a1,...,an},vsort)

The notations used for record values [a; = vi,...,a, = v,| and for record types Rec{...} provide a
common notation.

Variation Point 2.4.2 (Records including attribute selection)

__RecordType
extend RecordTypel
use Typel, Variable

TRECORD C UTYPE
attr : RECORD(UVAR, vsort) — P,(UVAR)
attr : TRECORD — P(UVAR)

TRECORD = {Rec{a; : T1,...,ay : Ty} | n € No,a; € UVAR, T; € UTYPE}
attr(Rec{ay : T1,...,a, : T,,}) = {a1,...,an}
attr([ay = x1,...,an = xn)) = {a1,...,an}

attr is the list of attribute names.
TRECORD contains all record types.

For access of record variables we define auxiliary functions in Variation Point 2.4.2.

Any list of type names can be composed into record type names. The variables a; are called the attributes
of the record type name. Notice that, as Rec is defined on (finite) sets of pairs, the definition of Rec does not
rely on the ordering of its attributes, thus Rec{a : T,b : S} and Rec{b : S,a : T} describes the same type
name.

2.4.2 Variation Point: Cartesian Products

Some languages also provide cartesian products (also called “cross products” or “tuples”) as types. In
the following Variation Point 2.4.3, we introduce tuple types of arbitrary size. STuple is introduced in
Appendix A.4.

2.5 Class Names and Objects

Given a number of mathematical prerequisites, we now build the notion of objects and classes on top.

17

Variation Point 2.4.3 (Cartesian products)

__TupleType
use Typel, Variable

Tuple : List(UTYPE) — UTYPE
TUPLE(UVAL) C UVAL

CAR(Tuple|Ty, . .., T,]) = STuple[CAR(TY), . .., CAR(T,)]

Tuple]. . .] acts as type constructor.

A class name defines attributes and methods, and may be related (by associations) to other class names.
At first we concentrate on the structure defined for class names. As Definition 2.5.1 shows, each class has a
set of object identifiers and a set of attributes associated. This is sufficient to define the structure of objects
belonging to a class in form of a tuple, consisting of object identifier (this) and the record of all attributes.

Definition 2.5.1 (Classes and instances)

__Class
use Type

UCLASS, UOID, INSTANCE
attr : UCLASS — P,(UVAR)

oids : UCLASS — P(UOID)

objects : UCLASS — P(INSTANCE)
objects : UOID — P(INSTANCE)
classOf : INSTANCE — UCLASS
classOf : UOID — UCLASS

VC € UCLASS, oid € UOID :

objects(oid) = {(oid,r) | r € VarAssign A attr(r) = attr(C)}
objects(C) = Uoideoids(C) ObjeCts(Oid)

Void € oids(C) : classOf (oid) = C

Vo € objects(C) : classOf (o) = C

UOID contains the universe of object identifiers, UCLASS class names and INSTANCE objects.
attr assigns attributes to each class.

oids assigns a set of object identifiers to a class.

classOf ensures that each object and each identifier knows its class.

Object identifiers uniquely point to objects and we do not have dangling references, so there is a bijection
between object identifiers and objects. This allows to uniquely define the class of an object identifier (except
the below introduced Ni/). This means, an object knows its identifier and its class. As a consequence of this
definition each object belongs exactly to one class. For handling of polymorphism, see Section 2.6. This
also ensures that structurally equivalent classes can be distinguished. Furthermore, this “belonging” also
does not vary over time, whereas the object value can vary and a dereferencing from object identifier to the
object value is state dependent.

Note that UOID contains references to all possible objects and, in a similar way, INSTANCE contains
all possible objects. These sets are usually infinite because they resemble the possible existence of objects.
Furthermore, INSTANCE contains all object values thus describing many different object values with the

18

same identifier. At each point of time only a finite subset of objects will actually exist in the data store (see
Section 2.8 below) and there will be at most one instance for any identifier.

In an earlier version, we considered a class itself to be a type [BCR06, BCR07a, BCR07b, CDGRO07] and
objects to be values. However, this led to a number of tricky encodings of the special variable this, which is
taken out of the variable assignment and now stored as an extra part of the object. Objects still know about
their identity as well as their class, but this is treated in a special form.

From Definition 2.5.1 we can derive Lemma 2.5.2.

Lemma 2.5.2 (0ids is disjoint)

use Class

Y oid € UOID : oid € oids(classOf (0id))
YV Cy # Cy € UCLASS : 0ids(C1) Noids(C) = @
V(oid, r) € objects(C) : classOf (oid, r) = classOf (oid)

follows from the existence of classOf.

In Definition 2.5.1, we have not yet decided whether classes will be types and if yes what their carrier
sets are, and whether objects or object identifiers are values. This will be done in subsequent definitions.
Objects will not be forced to be values: the identifiers are passed around as argument and handled as values,
not the objects themselves.

Definition 2.5.3 handles access to attributes within an object. While this is not an attribute and thus does
not appear in artr(C), it can however be treated as it were an attribute. This does not enforce to associate a
type with this and we therefore get out of a bunch of problems starting with, e.g., recursive type definitions.

The following Definition 2.5.4 introduces the special identifier Nil and constrains UOID to exactly consist
of object identifiers and INSTANCE objects only.

2.6 Subclassing

Subclassing (also called inheritance) is a basic feature in object-oriented programming. To indicate that
a class Cj inherits from a class C, we introduce binary subclass relation sub on the universe of types in
Definition 2.6.1.

Given the subclass relationship we are also able to precisely define what we understand under the type
of a class: We type the object identifiers (instead of the object themselves). Object identifiers are stored in
variables, can be passed as parameters, etc. So we use these identifiers as values, and leave open whether
objects are also to be treated as values (see below for an appropriate variation point).

The above definition is sufficient to capture subclassing from the structural viewpoint. As an important
consequence, it shows that the type C¥ has as carrier set all object identifiers belonging to that class or
any subclass. Therefore the carrier sets of subclasses are included in those from superclasses (see derived
lemma, following Definition 2.6.1). This allows to polymorphically store subclass identifiers in places where
superclass identifiers are expected.

However, the definition also leaves quite a few things open for refinement. For instance the binary re-
lation sub is not enforced to be antisymmetric (although no implementation language supports this today).
Furthermore, subclassing is not based on a structural definition: two classes C; and C2 may have the same
attributes, but still be in no relationship at all.

With this technique on defining a subset relation on object identifiers instead of objects, we get a great
simplification on the type system within the system model. Furthermore, it allows us to redefine attribute
structures in subclasses without an otherwise necessary loss of the substitution principle.

19

Definition 2.5.3 (Attribute access)

___Attribute
use Class, Type

this : INSTANCE — UOID

getAttr : INSTANCE x UVAR — UVAL
attr : INSTANCE — P,(UVAR)

attr : UOID — P;(UVAR)

Notation:
o.this is shorthand for this(o)
o.a is shorthand for getArtr(o, a)

this((oid, r)) = oid
getAttr((oid,r),a) = r.a
attr(oid) = attr(classOf (0id))
attr(o) = attr(classOf (0))

o.this is written in the spirit of attribute selection, but treated differently. this is not an actual attribute of
the class.

Derived lemma:
Vo € INSTANCE : classOf (o.this) = classOf (0) A o.this € oids(classOf (0))
Vo € INSTANCE : o.this = oid < o € objects(oid)

Definition 2.5.4 (Introduction of Nil)

__Nil
use Class, Type, Attribute

Nil € UOID

YV C € UCLASS : Nil & oids(C)
Yo € INSTANCE : o.this # Nil
UOID = {Nil} UU¢eycrass 0ids(C)
INSTANCE = Uccycrass objects(C)

Nil is a special oid and the only one not associated to a class or an object. UOID and INSTANCE only
consist of identifiers resp. objects.

Derived lemma:
Vo € INSTANCE : o € objects(classOf (0))
INSTANCE = Uyigcvoip oiazni 0biects(oid)

Remark: Multiple inheritance allows a class to inherit features from more than one class. While a con-
structive class definition inherits from several classes, from a relational point of view multiple inheritance is
covered by several binary inheritance relationships.

To avoid name conflicts that arise when attributes of different superclasses (or of a superclass and of
the extension) are homonyms, we simply assume that all attribute definitions introduce different names.

20

Definition 2.6.1 (Subclassing)

__Subclassing
use Class, Nil, Type

sub C UCLASS x UCLASS
& . UCLASS — UTYPE

UOID C UVAL

transitive(sub) A reflexive(sub)
V C € UCLASS : CAR(CY) = {Nil} UU¢, yu ¢ 0ids(C1)

sub is the transitive and reflexive subclass relation.
Type C¥ contains all object identifiers that belong to class C or any of its subclasses.

Derived lemma:

¥ C € UCLASS : Nil € CAR(C¥) A 0ids(C) C CAR(C¥)
UOID = UCEUC[ASSCAR(C&)

¥ Cy sub C : CAR(CF) C CAR(CY)

Semantically, this convention means no restriction because attribute access is always resolved statically and
there is no dynamic lookup for attributes.

2.7 Summary of Classes and Objects

We summarize the theory built so far, defining objects, identifiers and classes in theory Object (Defini-
tion C.1.2).
Figure 2.2 illustrates the theory dependencies and variation points.

E_'-_i§'59‘£Pfi_r‘_C_i9'_e_i AntisymmetricSub
| }
—————————————— j Nl |—>{ Attribut
1 ValueObjects ——>| Object ' § rI| e | <—_Generics |
WV
|Subclassing |—>| Class |
| |
[V] V] N
Type

Figure 2.2: Theory Object and its dependencies.

As mentioned earlier, quite a number of variation points arise to extend and specialize the theory Object.

2.7.1 Variation Point: Subclassing Respects Structure

From the definition, we can see that a subclass can have a different attribute structure. This is methodically
somewhat questionable and often cannot be reflected in an implementation anyway. Therefore, the con-
straints may be refined as a variation point. The substitution principle [LW94] enforces object identifiers of
subclass Cj to be special cases of class C. That can easily be enforced by introducing a set inclusion on
attributes for classes in subclass relation as given in Variation Point 2.7.1.

21

Variation Point 2.7.1 (Subclassing respects structure)

— [LiskovPrinciple]
use Object

VCl, Cy € UCLASS : C1 subCy = attr(Cg) - attr(Cl)

It is enough to enforce attributes being included, as they exhibit the same types by Definition 2.3.1.

2.7.2 Variation Point: Antisymmetric Subclassing

Variation Point 2.7.2 enforces the subclass relation to be antisymmetric which implies that there are no
inheritance cycles.

Variation Point 2.7.2 (Antisymmetric subclass relation)

— [AntisymmetricSub]
use Object

VCi,Cy € UCLASS : Cy subCy A\ CasubCy = C1 = Co

2.7.3 Dynamic Reclassification of Objects

Notice that an object may be regarded as instance of more than one class along the subtyping hierarchy, even
though its object identifier is uniquely tied to a fixed, unchangeable class. Still an object may be dynamically
reclassified by its context according to the given subclass hierarchy. However, this only changes the external
viewpoint on an object, but neither its internal structure (attributes) nor its behavior.

In UML 2.0 dynamic reclassification for classes is introduced in a very general way. The system model
does not reflect this capability of reclassification, because we assume that this concept should be mapped to
the system model through introduction of additional infrastructure. For instance, possible implementations
of dynamic reclassification could introduce an additional superclass that contains all attributes and a flag to
indicate which behavior is currently active. Even more flexibility becomes possible when change of dynamic
behavior is realized through delegation of behavior to other objects.

2.7.4 Variation Point: Objects are Values

We have decided not to enforce objects to be values because there was no necessity. However, if “value
objects” are desired that are, e.g., passed around directly instead of their identifiers, then an corresponding
variation may be defined.

During our considerations we found it clearer to explicitly distinguish between a class name and the
associated type it induces: A class Person, e.g., induces the type Person® of object identifiers of that class.
Now we also add the type Person™ of objects.

We use .& and .* as type constructors to exhibit similarities to C++, but use them as suffix to avoid
confusion. Furthermore, with this approach, we do not get a recursive type definition for types C* and C¥
since they formally are not related to each other. This reflects implementation very straightforwardly, as in
there we also distinguish object identifiers quite clearly from the objects themselves.

Note that we can derive that there is no inclusion of object sets in this variation point and thus no
substitution of objects. However, another variation point could make that differently. Also note that

22

Variation Point 2.7.3 (Objects are values)

— [ValueObjects]
use Object

INSTANCES C UVAL
¥ UCLASS — UTYPE

YV C € UCLASS : CAR(C*) = objects(C)

C* is a type denoting the objects of class C.

Derived lemma:
VCy # Cy: CAR(CT) N CAR(C3) = @

when fypeOf was defined like in Variation Point 2.1.2, we have: classOf(0id)¥ = typeOf(oid) and
classOf (obj)* = typeOf (o).

2.7.5 Variation Point: Generic Type System

Further constructs for building type names are possible. For instance, an array type or a subtyping structure
beyond the subclassing concept inherent to object orientation may be available. We also did not deal either
with parametric polymorphism or generic classes within the system model, which was introduced in Java
1.5 in form of instantiable templates. A type system is an enhanced syntactic concept and can therefore be
handled together with the concrete syntax of the models.

Variation Point 2.7.4 describes a simplified version of generics, where constraints on the classes that
can be instantiated are not described. We model “generic classes” not directly as classes, but as functions
yielding classes when instantiated.

Variation Point 2.7.4 (A sketch for Generic Classes)

— [Generics|
use Object

GENERICS

parcount : GENERICS — N

attr : GENERICS — P,(UVAR)

build : GENERICS x List(UTYPE) — UCLASS

Notation:
parcount(C) = n = C(Ty,...,T,) is the class build(C, [T, ..., Ty])

attr(C(Ty, ..., Ty)) = attr(C)

This is a sketch how to introduce generics. (More definitions are necessary.)

Note that in case of generics, attribute names may have different types in different contexts. This can
be handled by attaching type names to variables and actually leads to a slightly more involved definition of
attr(C) than stated in Variation Point 2.7.4.

23

2.8 Data Store Structure

In the system model, we abstract away a number of details, such as storage layout and physical distribution.
We use an abstract global store to denote the state of an object system. Even if there is no such concept
in the real, possibly distributed system, we can conceptually model the system that way by organizing all
instances in this single global store. We also allow interleaving, as well as concurrent activities, as can be
seen in the control part of the system model in Chapter 3.

Intuitively, the data store models the data state of a system at a certain point in time. Normally, at each
point of time the store contains real objects for a finite subset of the universe UOID of all object identifiers.
In Chapter 5 we will, however, see that the data store is not enough to describe the system, but a control
store and an event store need to be added. In these stores time progress is modeled by state transitions of the
overall state machine.

A data store is a snapshot of the data state of a running system. Definition 2.8.1 introduces a stores as
a set of objects assigned to their identifiers. As an important restriction on DataStore, we enforce that the
mapping assigns an object o to identifier oid only if this is the identifier of that object o.this.

Definition 2.8.1 (The data store)
_DataStorel
use Object

DataStore C (UOID — INSTANCE)
oids : DataStore — P(UOID)

Vds € DataStore : oids(ds) = dom(ds)
Vo € UOID, ds € DataStore : ds(0).this = o

DataStore is the set of snapshot values.
oids is the set of existing objects, given a data store.

Derived lemma:
Vds € DataStore : Nil ¢ oids(ds)

It is convenient to have a number of retrieval and update functions for the data store at hand, as given in
Definition 2.8.2. They basically deal with lookup and change of attribute values as well as “creating” a new
object in the store.

Again various restrictions on the use of retrieval and update functions apply. This involves the use of
values of appropriate type, attributes that actually exist in a class, etc. However, we refrain from defining
these specifications here.

At each point in time, i.e., in each state of the state machine, when an instance exists, we assume that its
attributes are present and their values are defined (including Nil), but it is not necessarily the case that we do
know about these values. They may be left underspecified. In particular it may be that, after creation of an
instance, its attributes still need to be initialized, i.e., come into a known (and thus well-defined) state. Note
that this is a usual modeling technique used, e.g., in verification systems to avoid an explicit handling of a
pseudo-value “undefined” [NPWO02]. It also resembles reality, e.g., when an uninitialized variable of type
int is accessed, we do know that it contains an integer, but we do not have a clue which one it is.

24

Definition 2.8.2 (DataStore Infrastructure)

__DataStore
extend Object;
extend DataStorel

val : DataStore x UOID x UVAR — UVAL
setval : DataStore x UOID x UVAR x UVAL — DataStore
addobj : DataStore x INSTANCE — DataStore

Notation:
ds(oid.at) is shorthand for val(ds, oid, at)
ds|oid.at = v] is shorthand for setval(oid, at,v)

Vds € DataStore, oid € oids(ds),at € attr(oid),v € CAR(vtype(at))) :
val(ds, oid,at) = ds(oid).at
setval(ds, oid, at,v) = ds @ [oid = (oid, w2(ds(oid)) @ [at = v])]
o.this & oids(ds) = addobj(ds,0) = ds @ |o.this = 0]

val retrieves the value for a given object and attribute.
setval updates a value for a given object and attribute.
addobj adds a new object.

2.8.1 Variation Point: Finite Object System

The elements of DataStore are usually partial mappings. However, the system model does not enforce the
mapping to be finite in any snapshot of the computation. As, however, in practical implementations this is
usually the case, the following Variation Point 2.8.3 is introduced.

Variation Point 2.8.3 (Set of objects is finite at every time)

— [FiniteObjectSet]
use DataStorel

Vds € DataStore : #(oids(ds)) € N

2.8.2 Variation Point: Locations

Although it is error prone to use locations, they are common in some programming languages in order to
pass around pointers to parts of the data store as first-class values. Locations allow reading and modifying
the space they refer to. We demonstrate locations as an extension to the basic data structures in Variation
Point 2.8.4.

Explicit introduction of locations also allows modeling other effects such as shared variables between
objects and “futures” in order to return a value to a sending object in a distributed message passing envi-
ronment while both are operating concurrently. However, the use of locations as shared variables needs
to be properly defined or at best completely avoided as it spoils compositionality of objects as defined in
Chapter 5.

We denote by Loc T the type name whose associated values are locations for values associated with type
name 7'. Note that we allow arbitrary combinations of types such as Loc Loc T. By ULOC C UVAL locations
can be passed around and stored like ordinary values. Both dereferencing of the location to the contained

25

Variation Point 2.8.4 (Locations as pointers to mutable store)

— [Locations]
use DataStore

loc : UOID x UVAR — ULOC

ULOC C UVAL

Loc : UTYPE — UTYPE

val : DataStore x ULOC — UVAL

setval : DataStore x ULOC x UVAL — DataStore

VT € UTYPE : CAR(Loc T) C ULOC
Vds € DataStore, oid € oids(ds),at € attr(oid),v € CAR(vtype(at))) :
(oid, at) € dom(loc) =
val(ds,loc(oid, at)) = val(ds, oid, at)
setval(ds, loc(oid, at),v) = setval(ds, oid, at,v)
typeOf (loc(oid, at)) = Loc(vtype(at))
Notation:

ds(1) is shorthand for val(ds, [)
ds[l = val] is shorthand for setval(l, val)

ULOC is the universe of locations.
Loc T denotes the type of locations that store data of type 7.
val and setval again deal with retrieving and setting of a value.

value and updating to an new value (“‘get” and “set”) is done in the context of a data store. However, further
locations for local variables, parameters or places in arrays, etc., are possible.

By construction and definition loc is injective. Basically, it can be understood as a wrapper encoding
object identifier and attribute name into a unique location (address). This close relation can be seen in
structurally rather equivalent definitions of the val and setval functions.

The partiality of the wrapping function /oc allows to control which attributes are locations and therefore
possibly accessed from outside and which attributes are safe.

As a further variation point, we could introduce a comparison of locations or even operations to allow
nasty things such as pointer arithmetic.

2.8.3 Variation Point: Reference Types

In the core of the system model, we also do not need references. In an earlier version [BCR06, BCR07a,
BCRO7b], we had defined object identifiers based on references, because they are essentially similar con-
cepts. In this version, object identifiers are defined directly. If desired, references to other types can be
included as well.

A reference is either Nil or an identifier for one value in the carrier set of a given type name. Let 7 be an
arbitrary type name. Then Ref T is a type name whose carrier set consists of references to values of type T
and the distinguished reference Nil.

Given any type name 7, the carrier set of type name Ref T has a rather limited set of operations. Ref-
erences basically allow for comparison (i.e., test for equality) and provide the special reference Nil. By
dereferencing we obtain the actual value from a reference. If values change over time, dereferencing is state
dependent and thus is basically equivalent to the location concept of above. If we assume that the referenced
value is immutable, then we can define references as given in Variation Point 2.8.5.

26

Variation Point 2.8.5 (Reference types)

— [References]
use DataStore

Ref : UTYPE — UTYPE
deref : CAR(Ref T) — CAR(T) forall T € UTYPE

VT € UTYPE : Nil € CAR(Ref T)
VT € UTYPE : dom(deref) = CAR(Ref T) \ {Nil}

Ref T contains references with no additional internal structure.

Given a reference r € CAR(Ref T), its dereference deref (r) € CAR(T) is defined only if r # Nil. Note
that not every value needs to have a reference on it and furthermore, there may be many references to the
same value that nevertheless can be distinguished (as they are values on their own).

Note that locations and references are really similar concepts, but serve different purposes. A reference
points to a value and this relation is static, i.e., independent of the state of the system. A location contains a
value (or its content) and is dependent on the state.

2.9 Class Variables and Constants

While attributes are by far the most commonly used elements to store values, there are two further types of
elements present in an object-oriented setting.

Constants on one hand are values with a name, such that the name can be used instead of the value. We
do not need to represent constants explicitly in the system model: Their associated values are present in the
universe of values and the mapping of names to values as well as their visibility is not part of the system
model but part of the mapping from UML to the system model.

A second concept that we have not explicitly represented so far is the concept of static attributes. These
are attributes that can be regarded as shared between all objects of the class. Indeed they exist independently
of any object, but can only be accessed from within a limited scope. As the system model does not deal
with visibility of a static attribute, we just need to identify a place where to store such an attribute. In the
following Variation Point 2.9.1, we do this by introducing a special object that plays the role of a static,
singleton instance hosting all static attributes. Note that this is, again, just a conceptual model and by no
means intended to be implemented that way. A more modular implementation could introduce such a static
object for each class separately.

Still, we believe that static attributes should be avoided anyway since they may lead to uncontrolled side
effects that degrade compositionality.

2.10 Associations

One of the core concepts of UML are associations. Associations are relations between classes; and links,
which can be regarded as instances of associations, are the corresponding relations between object identi-
fiers at runtime. While associations are mostly binary, they may be of any arity, in addition they may be
qualified in various ways and may have additional attributes on their own. Furthermore, an association can
be “owned” by one or more of the participating objects/classes or can stand on its own, not owned by any
of the related objects. In an implementation a basic mechanism for managing those relations is to use direct
links or Collection classes but there are other possibilities as well. To semantically capture different variants
of realizations of associations, we use a generalized, extensible approach: Retrieval functions extract links

27

Variation Point 2.9.1 (Modeling static attributes)

— [StaticAttributes]
use DataStore

StaticC € UCLASS
staticOid € UOID
StaticAttr C UVAR
val : DataStore x StaticAttr — UVAL

oids(StaticC) = {staticOid}

Vds € DataStore : staticOid € oids(ds)
attr(StaticC) = StaticAttr

val(ds, at) = val(ds, staticOid, at)

The only instance of Class StaticC has identifier staticOid and stores a value for each attribute of
StaticAttr.

from the store. We allow for a variety of realizations of these functions. This approach is very flexible as it,
on the one hand, abstracts away from the owner of associations as well as from how associations are stored
and, on the other hand, does not restrict possible forms of an association. As a big disadvantage of this
approach, we cannot capture all forms of associations in one uniform characterization, but need to provide
a number of standard patterns that cover the most important cases. If no standard case applies, e.g., for a
new stereotype for associations, then the stereotype developer has to describe his/her interpretation of the
stereotype directly in the terms of the system model. We demonstrate this approach by defining variants of
binary associations below.

According to Definition 2.10.1, any association has a name R, a signature given by a list of classes
[C1,...,Cy], possibly additional values of that association extraVals(R) and a relation retrieval function
relOf (R).

Note that the use of CAR(C¥) includes relations between object identifiers of subclasses of C; which is
usually intended by associations, but would not be covered if we used oids(C;) directly.

Also note that with this approach it is possible to model qualified associations by interpreting one (or
more) of the additional attributes as the qualifier as well as to model non-unique associations by introducing
a value as distinguishing flag. Some examples for association mappings are given below.

In UML class diagrams, associations usually define certain restrictions on their changeability. This can
only be stated if sequences of DataStores are used to compare behavior over time. Thus, the semantics of a
class diagram cannot fully be defined on one snapshot of the DataStore, but needs to compare two snapshots
from different times.

The retrieval function relOf depends on the concrete realization of the association. Even after quite
a number of years of studying formalizations of object orientation, there is so far not a really satisfactory
approach describing all variants of association implementations. Therefore, we provide this abstract function
and impose some properties on the function without discussing the internal storage structure. The only
decision we made so far is that associations are somehow contained within the store, i.e., they are somehow
part of objects and association relations do not extend the store. This is pretty much in the spirit of the
system model where higher-level concepts are explained using lower-level concepts. In order to retrieve the
links of an association, the state of multiple objects may have to be examined. From the viewpoint of a
single object, this is not possible since it only has access to its own state. Hence, we assume that links may
be retrieved using an “API”, i.e., special methods that can be called by an object and that return the links.

With classes we assign a list of classes to an association because the order o