
 
 
 

Chapter 8 

Model Driven Testing of Time Sensitive Dis-
tributed Systems1 

Abstract In this paper we demonstrate an approach to model structure and behavior 
of distributed systems, to map those models to a lightweight execution engine by 
using a functional programming language and to systematically define and execute 
tests for these models within the same technology. This is a prerequisite for a 
smooth integration of model based development into an agile method. The novelty 
of this paper is the demonstration, how composition and state machine models for 
distributed asynchronously communicating systems can easily be mapped to a lazy 
functional language and then using standard testing techniques to define test on 
those programs. In particular distributed timing aspects and underspecification can 
be treated accordingly within a functional language, using a certain style of func-
tions. 

8.1. Model Driven Testing 

Software engineering in recent years has come up with a larger portfolio of tech-
niques and methods to measure and improve or ensure quality of software products. 
Among those methods we have available inspection and review techniques for all 
artifacts that are produced during development. These techniques require clear qual-

                                   
Chapter written by Borislav Gajanovic, Hans Grönniger and Bernhard Rumpe 

[GGR06] B. Gajanovic, H. Grönniger, B. Rumpe. 
Model Driven Testing of Time Sensitive Distributed Systems. 
in: J.-P. Babau, J. Champeau, S. Gérard (Hrsg.): 
From MDD Concepts to Experiments and Illustrations, ISTE Ltd. 2006. 
www.se-rwth.de/publications



ity criteria as well as an appropriate process that clarifies the order of artifacts to be 
delivered and examined. 

 Among the most promising techniques today, however, is the execution of "run-
ning" versions of system descriptions and the check of the execution result against 
the desired result. Agile methods [BEC 99a, COC 02, BEC 01, RUM 04] have fur-
thermore successfully demonstrated that a full automation of the testing process is of 
high value in any larger and quality driven project. Only automated tests can effi-
ciently be reused by developers.  

The portfolio of testing techniques has become large. It ranges from functional 
tests on abstract specifications over black box tests, stress tests, random tests down 
to glass box tests derived from the code. As testing has become a powerful tech-
nique, it was a natural idea to lift the use of testing techniques from the late coding 
phase to earlier phases, where fixing errors is less costly. However, starting early 
with testing means, we need executable artifacts early in the development process. If 
requirement specifications or at least design and architectural artifacts are executa-
ble, they need to be defined (a) precisely and (b) describe not only structural aspects 
but also behavioral issues. This calls for precisely defined modeling languages and 
for tools dealing with those languages. Tools need to be able to analyze well-
formedness (thus checking context conditions) and to animate the model or to be 
able to map the model to code. 

The necessary properties of a model strongly depend on the context of the model 
usage. Models can be used for constructive or for test code generation. The desired 
properties here are fundamentally different. In case of a constructive code genera-
tion, we do have a compiler and as "side effect" modeling is equal to implementa-
tion. We can reuse the generated code as implementation if it is not only compatible 
with the development computers, but also with the target and is efficient enough. 
Instead, if we want to generate testing code, we do neither need complete and there-
fore very detailed models, nor do we need to restrict us to an executable modeling 
language. To understand the difference, consider a post condition for a method of 
the form an = bn + cn  ∧ a, b, c, n > 2. Conditions like that are very easy to be 
checked, but it is usually extremely hard to construct a program that finds such val-
ues. So the choice of appropriate modeling languages and styles during the various 
development stages is important.  

Statecharts [HAR 87] are among the most interesting forms of descriptions for 
executable behavior. The use of underspecified Statecharts [PAE 94, KLE 97] with 
transition conditions and actions in (almost) first-order-logic allows to generate 
checking code only, but not constructive code. A clever choice of appropriate mod-
eling techniques and their underlying semantics is therefore inevitable.  

For early checking of requirements, it is necessary to have a concise modeling 
technique and an efficient way of simulating the models at hand. In this paper we 



demonstrate an approach used to early validate requirements on distributed systems. 
This approach is exemplary, but demonstrates what can be achieved when using 

- concise, compact modeling techniques in early phases, 

- tools for transforming modeling techniques to executable languages, and 

- a lean process to develop and use the models during the development ade-
quately. 

To demonstrate the approach, we choose a relatively simple, but not too simplis-
tic protocol, namely the Alternating Bit Protocol (ABP) [BRO 01]. The two model-
ing languages used for structure and behavior are adapted versions of UML dia-
grams: the composite structure diagrams and (flat) Statecharts respectively state 
machines. As the protocol is useful for distributed asynchronously communication 
systems, we choose the use of streams as underlying technical domain, because it 
offers a very precise semantics as well as a good integration of composition, refine-
ment and various styles of specification [BRO 01, RUM 97]. For a lean develop-
ment, we use a Haskell [THO 99, BIR 98] interpreter to simulate the models. Has-
kell e.g. provides lazy evaluation of lists, which allows to almost perfectly simulate 
streams as potentially infinite  observations over communication channels. 

The remainder of this paper introduces the concept of distributed systems (Sec-
tion 8.2), the Alternating Bit Protocol (Section 8.3), the general approach on testing 
(Section 8.4) and the application of testing strategies on the ABP (Section 8.5). Fi-
nally our findings are discussed (Section 8.6). 

8.2 Asynchronous Communication in Distributed Systems 

In this section we briefly introduce the used semantic framework that describes on 
asynchronous communication as underlying communication principle of our frame-
work. In a distributed system, we do have active components that communicate with 
each other through asynchronous sending and receiving of messages. We assume 
communication is based on unidirectional channels. For a precise modeling of their 
behavior, we use observation histories that describe what happens on these channels 
over time using the mathematical concept of streams. Streams are thus used to 
model the message-flow over those channels. The behavior of a component is speci-
fied through a description of the input-output relation on these streams. 

A stream is a finite or an infinite sequence of messages from some fixed finite 
set of possible messages (type). A stream-based specification of a component con-
sists of a black box and an arbitrary (but finite) number of directed input and output 
channels. In figure 8.1 a composition of a system from several components is 
shown. With a single stream we describe the history on one channel, a component 



behavior is given by a function mapping its input streams to output streams. Certain 
restrictions apply on these functions to ensure the behavior is well-defined. E.g. a 
component (and thus a function) cannot undo messages that have been emitted, and 
it cannot react on future input (and thus predict the future).  

For any realizable component there is a stream-processing function with the 
same input/output behavior. Any state machine (with possibly infinite number of 
states) whose state transition function acts on messages appearing at the input and is 
yielding appropriate streams on the output can also be defined via a stream-
processing function [RUM 97, RUM 99]. Together with the fact that semantic defi-
nition through stream processing functions support composition of components via 
channels, we're able to use state machines and a variant of composite structure dia-
grams as a comprehensive specification language on a well-defined semantic basis. 
These stream processing functions are the primary concept to be mapped to Haskell 
for execution and testing. Furthermore, specification languages are particularly pow-
erful if they allow us to abstract from implementation details and provide concepts 
for underspecification (alternatives, etc.). In terms of our underlying formalism, this 
means that a specification does not correspond to a single function, but to a set of 
functions that describes a set of possible implementations. 

The list given below describes a basic set of operators on streams useful for the 
specification of the components. For a comprehensive introduction to the stream-
based specification and development technique see [BRO 01]. 

- [M] - The set of all streams over a set of messages M. 

- [] - The symbol for the empty stream. 

- [c] - The stream consisting of a message c. 

- head s - Yields the first message of a non-empty stream s. 

- tail s - Returns the rest of a nonempty stream. 

- #s - Returns the length of a stream s (may be N ∪ {∞}). 

- s1 ++ s2 - The concatenation of s1 and s2. 

- filter S s - Filtering a stream s with respect to the members of a set S. 

Please note the special case #s = ∞  ⇒ s1 ++ s2 = s1. Also note that some 
operators like length # count infinite things and therefore cannot be used in an im-
plementation. 
 

As an additional concept, we need the idea of time to model time-sensitive sys-
tems. Time can easily be modeled through the introduction of a special "message" - 
here symbolized with Tk and pronounced as tick - into the underlying set of mes-
sages. For that purpose we define an operator T for the introduction of so-called 
timed streams over a set of messages M: 

T M = { s | s ∈ [M ∪ {Tk}]  ∧ #(filter {Tk} s) = ∞ 



A tick in a stream represents the incrementation of a global digital clock in the sys-
tem. The time is never ending so there are infinitely many ticks in a timed stream. 
Timed streams are nothing more than normal infinite streams with a special struc-
ture. Hence, all operations introduced in the previous section can be applied to the 
timed streams as well. 

8.3 The Alternating Bit Protocol 

In this section we describe how to apply our approach to a simple version of the 
Alternating Bit Protocol that can be found in [BRO 01, BRO 93]. We use the Alter-
nating Bit Protocol here as a simple example of a time sensitive distributed system 
which transmits data safely over unreliable media. The black box specification of 
the ABP is simple: Abstracting from possible delays, the ABP is the identity. An 
appropriate specification of the ABP is therefore given through a set of stream proc-
essing functions: 

ABP ⊆ T M → T M 
 
where for any input inp ∈ T M we have the abstraction of timing information on 
input and resulting output is identical: 

filter M  (ABP inp) = filter M inp 

8.3.1 Informal Description of the ABP Components 

The problem to be solved by the ABP is to transmit information over an unreliable 
medium. Thus the ABP must be decomposed (in a simplified version) like shown in 
figure 8.1. The system consists of a sender, a receiver and two transportation media. 
Both versions of the media are identical, except for the transported kind of mes-
sages. The medium is assumed to be given (e.g. in form of the internet or a bus). 
This means the model of the medium describes a given situation. In contrast, the 
sender and the receiver have to be defined in such a way, that the overall specifica-
tion is correct. Our task is therefore to model all four components accordingly. 

 



Figure 8.1. The alternating bit protocol as a composition of its components 

The medium on the bottom of the figure is used to transport signed data items from 
the sender to the receiver, whereas the upper medium transports the acknowledge-
ments back to the sender. The media however occasionally lose or delay messages 
(see details below). To detect loss of messages, the basic idea is to tag the message 
by a number and let the receiver acknowledge the tagged message by replying the 
number. If a message or acknowledgement gets lost, the sender repeats the message 
after a while (timeout). 

We assume there is only one message in transmission: the sender stores forth-
coming messages in a buffer until the last sent one is acknowledged. For reasons of 
efficiency, the message numbering can now be replaced by a single bit that alter-
nates for each message. Thus each data item from the input channel is alternatingly 
signed by the sender using a bit. The receiver returns the bit and writes the corre-
sponding data to the output. If a message or an acknowledgement was delayed too 
long, then the sender resends the message. Details like what happens when the delay 
is too long can be deduced from the below given specification. To model an unreli-
able, but not demonic transportation medium, we assume the medium to have the 
following properties: 

1. If a message is sent infinitely often, then it will pass infinitely often. 

2. The medium does not change the order in which the messages have been 
sent. 

3. The medium does not duplicate messages or alters the message content. 

Number 1) is a typical fairness condition on a medium. In other words it is always 
possible to transmit an item through an unreliable medium within some finite (but 
unknown) number of transmission attempts. In the following section we give a for-
mal, stream-based specification of the above system.  
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8.3.2. Stream-Based Specification 

The structure of the complete system is already given through the composition of its 
components in figure 8.1. This diagram is a variant of UML's composite structure 
diagrams that allows us to specify a complete system by the composition of its com-
ponents (resp. "parts"), the components communicate asynchronously via unidirec-
tional channels as described in section 8.2. In the reminder of this section we can 
therefore concentrate on the specification of each individual component. We use 
state machines to model the component's behavior. Since we allow a potentially 
infinite number of states, we graphically partition the state space into equivalence 
classes. These classes are given as invariants over variables inside the (graphically 
visible) states. To precisely represent the state space, we define the data types of 
these variables in form of a box (similar to a class definition in class diagrams). 
Transitions are of the form {pre} i /o1,..,on {post} where pre and post 
denote the transition pre- and post-condition, i represents the input and o1,..,on 
is a sequence of outputs. 

Sender: The sender is a time sensitive, "intelligent" component of the protocol. In 
fact it is the most complicated component in the system. We specify the main func-
tionality of the sender given above through the following state machine. 

Figure 8.2 State machine for the sender component 

The sender component owns two input channels: the data input channel (input) 
and the acknowledgement channel (am). For reasons of readability, we do not add 
the channel names to the inputs. Although we do have two input channels, we can 
distinguish inputs from the channels, as their types are disjoint (Boolean vs. abstract 
type Message). For an understanding of the specified behavior, the reader may as-
sume, we conceptually "merge" the two input streams to be able to let the state ma-
chine fire on the union of incoming events from both channels. The senders state 
space basically contains the unbounded buffer for data items still to be sent, and by 
the expected acknowledgement bit. The handling of time is assumed to be done by a 
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timer, that "controls" the state machine by filtering SetTimer-events from its out-
put and injecting TimeoutEvent to its input. So formally, input and output of the 
state machine (but not the sender itself) are extended by TimeoutEvent resp. 
SetTimer-messages. 

 

Figure 8.3 State machine for the medium component 

Medium: For specification of unreliable media in the described form either set 
based specifications or oracles are used. The unreliability of the medium is a given 
property which cannot be overcome, but needs to be modeled. Therefore we handle 
oracles for both media as two inherent system parameters. An oracle is an infinite 
binary stream which predicts the behavior of a particular medium over a complete 
communication history. As the media are time insensitive components, there is no 
need to consider time in the corresponding specifications. Instead, this is done sys-
tematically (and then automatically when mapped to code) through a simple time 
extension of the transition-function of a corresponding state machine. This extension 
just ignores incoming time events. The following state machine specifies untimed 
polymorphic media with the above properties. However, an additional predicate 
#(filter {1} o) = ∞ is needed to describe the desired fairness property as an 
assumption on any oracle o. 
 
Receiver: Just like the media the receiver also is a time insensitive component and 
can straightforwardly be specified as shown in the following figure. 

 

 

 

Figure 8.4 State machine for the receiver component 

8.3.3. A Mapping To Haskell 

To be able to run tests based on the above given specification, we need an compiler 
or interpreter that resembles the underlying communication primitives appropriately. 
We choose the functional language Haskell, for a number of reasons. Most impor-
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tant, the Haskell type of lists can be directly taken to represent streams. Therefore, 
we now show how to automatically transform the system specified above into an 
executable Haskell [THO 99, BIR 98, JON 03, HUD 99] program. First we need 
appropriate data types. We introduce the type Bit to represent the corresponding 
type in the specification. Then the type constructor Ticked is introduced to inject 
the time in streams as described in the previous section. A timed stream of as is 
abbreviated with T a. Oracles are represented as streams of Boolean values. The 
type of a state machine's delta function is aliased with DeltaFct s i o where s 
is the state, i the input and o the output type. As the concept of union of sets is not 
directly present in Haskell, we use the type constructor MergeAB a b to represent 
the union of two types a and b. The rest of data type definitions allow the addition 
of a timeout event or the setting of a timer value to a given type a. 

 

type Bit = Bool 

data Ticked a = V a | Tk 

type T a = [Ticked a] 

type Oracle = [Bool] 

type DeltaFct s i o = (s -> i -> (s,[o])) 

data MergeAB a b   = A a | B b 

data TimerOut a    = MsgO a | SetTimer Int 

data TimerIn a     = MsgI a | TimeoutEvent 

 

Runtime system: To keep the generated "code" as simple as possible, to facilitate 
reuse and to avoid generation of the same functions over and over again, the code is 
generated against a runtime system. This is quite common, as usually some concepts 
of the source domain need to be simulated in the target domain. Due to space con-
straints, only the type definitions of functions we use are shown here. First, we use a 
function to execute state machines. execSTM takes a state, a delta function and a 
list of inputs and produces a list of corresponding outputs. execSTM works on 
timed transition functions as well as untimed ones. To inject time (for time-
insensitive descriptions) the timedDelta function is used. It basically adds behav-
ior that resembles a loop transition to every state, consuming a Tick at the input and 
emitting a Tick at the output. The mergeAB function merges two streams, thus 
covering the merge of messages from several inputs, while retaining the source 
channel in the constructors name (see merge type above). The sender contains transi-
tions that control a timer. In fact, we're able to use timers in a state machine. The 
addTimer function takes a delta function containing these timer control statements 
and generates a timed delta function that reacts to the corresponding events. Please 
recall that the timed function using ticks to model time is the final goal. 

 

execSTM    :: s -> DeltaFct s i o -> ([i] -> [o]) 



timedDelta :: DeltaFct s i o -> DeltaFct s (Ticked i) (Ticked o) 

mergeAB    :: T a -> T b -> T (MergeAB a b) 

addTimer   :: DeltaFct s (TimerIn i) (TimerOut o) -> 

                            DeltaFct (s,Int) (Ticked i) (Ticked o) 

Sender: We use the sender component to demonstrate the mapping of a state ma-
chine to Haskell that interacts with our runtime system, because it has an untimed 
specifications, but uses a timer to check timeouts. 

The SenderState consists of the last sent bit and the unbounded message 
buffer. The input to the sender SenderIn is either a message of type a, the ac-
knowledgement bit or some timeout event (generated by the internal timer).  
SenderOut defines the sender output as an alternating bit together with a message 
of type a but may also be a setting of a timer. The function senderDelta now 
basically is a one-to-one mapping from the specification (see Figure 8.2). We use 
pattern matching on the current state and input to define the delta function. Note that 
transitions with same inputs and states but with different pre-conditions are handled 
in an if-then-else statement. Timer functionality is added to the sender's delta func-
tion using addTimer, giving the new delta function sDelta'. 

According to figure 8.1 the sender takes an input stream and a stream of ac-
knowledgements am and emits a stream of messages with an alternating bit. We 
have chosen to merge the input and the bit stream (in accordance with the specifica-
tion). To complete the mapping, the sender state machine is executed on this merged 
stream, starting with the alternating bit set to True, an empty buffer and disabled 
timer (-1). 

 

type SenderState a = (Bit,[a]) 

type SenderIn    a = TimerIn (MergeAB a Bit) 

type SenderOut   a = [TimerOut (Bit,a)] 

 

senderDelta:: SenderState a -> SenderIn a ->(SenderState a,SenderOut a) 

senderDelta (b,   []) (MsgI (A i))  = ((b,[i]),[MsgO(b,i), SetTimer 3]) 

senderDelta (b,   xs) (MsgI (A i))  = ((b,xs++[i]),[]) 

senderDelta (b,   []) (MsgI (B b2)) = ((b,[]),[]) 

senderDelta (b, x:xs) (MsgI (B b2)) = 

       if      b/=b2   then ((b,x:xs),    []) 

       else if null xs then ((not b,[] ), [SetTimer (-1)]) 

       else ((not b,xs),  [MsgO (not b,head(xs)),SetTimer 3]) 

senderDelta (b,[])   TimeoutEvent = ((b,[]),[]) 

senderDelta (b,x:xs) TimeoutEvent = ((b,x:xs), [MsgO (b,x),SetTimer 3]) 

sDelta' = addTimer senderDelta 

 



sender :: T a -> T Bit -> T (Bit,a) 

sender is am = (execSTM ((True,[]),-1) sDelta') (mergeAB is am) 

 

For the Medium and Receiver component only the type definitions are shown. They 
also correspond to the respective state machine specification and therefore illustrate 
that the resulting system will be composed. Please note, that the receiver component 
has to start with the same acknowledgement bit True as the sender (see above). 

 

mediumDelta :: Oracle -> a -> (Oracle,[a]) 

medium :: Oracle -> T a -> T a 

 

receiverDelta :: Bit -> (Bit,a) -> (Bit, [Bit],[a] ) 

receiver :: T (Bit,a) -> (T Bit,T a) 

8.3.4 Executing the Model 

Finally the complete system is just a composition of its components (compare fig. 
8.1). Since we have a feedback loop in the system, we need to insert a start-up delay. 
This delay is inserted as an extra Tick prepended to the second medium's output. 

 

abp :: (Oracle,Oracle) -> T a -> T a 

abp (os1,os2) is = out 

   where (as,out) = receiver dm 

       dm      = medium os1 ds 

       am      = Tk:(medium os2 as) -- delay for feedback 

       ds      = sender is am 

8.4. Strategies for Testing Distributed, Asynchronously Communicating Systems 

Based on the model of our system and our mapping of the model to Haskell we can 
now discuss strategies for testing distributed, asynchronously communicating sys-
tems. After some general remarks on testing, we discuss how to systematically de-
rive test cases from our component models as well as from the composition model. 
Then we demonstrate how these test cases can be implemented in (or generated for) 
Haskell in a lightweight manner, i.e. not depending on any complex third-party test 
framework, but exploiting the special features of higher-order functional program-
ming languages. First, we recall some general rules for developers and testers [MYE 
79] that also apply for testing of models. 



1. The tests should be regression-enabled. That means that if the program 
changes, the test can be replayed easily to check if all tested properties still 
hold. How this is supported by a  lightweight test infrastructure is mainly 
described in section 8.5. 

2. The tests should be kept local. This is a general problem of complex soft-
ware where it is often the case that testing some method of an object means 
also executing many other interlocked methods of other objects with possi-
ble side effects. Object oriented systems do provide their own solutions 
through substituting parts of the context through stubs. 

Keeping test cases focused also applies to functional programs, where this 
kind of substitution through subclassing unfortunately does not exist. In the 
context of Haskell, we examine techniques that help programmers to write 
effective test cases for the generated functions. 

3. The quality of the test cases should be assessed. A wide range of techniques 
exists to assess the quality of the tests. Since we use state machines for 
component specification, well known coverage criteria like transition cov-
erage etc. can be applied directly [BIN 99]. 

8.4.1. Rules for Testing of Distributed Functionally Specified Models 

Testing models for distributed, asynchronously communicating programs imple-
mented in Haskell as we did, in principle means testing functions. 

In general we can benefit from the fact that these functions are side-effect free. 
That means we can concentrate on the input and output behavior of the function 
under test for black-box testing (and the structure of the function, for glass-box test-
ing). Regardless of the type of system we construct, there are some generally appli-
cable rules that ease the testing of functional programs. For example, the rules from 
equivalence class testing [BIN 99] can be applied. Basically that means by looking 
at the function as a black-box and an informal specification one can identify input 
values that are treated uniformly by the function and make these an equivalence 
class. From each equivalence class it is regarded as sufficient to select one value and 
test this as a representative for the respective class. Furthermore, corner cases or 
extreme values like empty lists, empty strings, number zero and so on should be 
tested as well. It's also advisable to keep functions simple and avoid embedded 
lambda abstractions because anonymous functions are not (easily) testable. Func-
tional programs usually are defined using rules with pattern matching. A coverage of 
these rules as well as their input patterns is advisable as well. 

As we do not in generally deal with testing of functional programs, but with a 
special kind of programs generated from our state machine-based models, we now 



concentrate on the state machine-based testing approach, although we will discover 
that the principles discussed so far lead to very similar test cases. As said earlier, 
well-known test strategies for state machines do exist and can be reused. 

As we described in section 8.3.3 our system includes a "runtime" part. Here we 
provide standard functions for example to execute state machines, to add a notion of 
time and to handle timers as addendum to state machines. Since this functionality 
remains the same regardless of the individual system and since we generate code 
against this functionality in a systematic way, we are able to ignore the runtime 
system for test case generation and concentrate on the specific part which resembles 
mainly the untimed state transition (delta) functions for the individual components. 
This leads to a more comprehensible and optimized set of test cases for each com-
ponent. However, we also keep in mind that we also need to make system tests that 
check the functionality of the overall abp component. 

For each component's delta function the test cases should fulfil transition cover-
age. That means every transition is executed at least once. Since we allow pre- and 
post-conditions in transitions, every expression in a disjunction is evaluated to True 
at least once. Note that this kind of decision coverage is not relevant for the ABP 
example as there are no disjunctions. In general disjunctions in these conditions 
should (and often can) be transformed by splitting the transition and handling the 
resulting transitions separately. If every state is reachable, transition coverage on 
state machines subsumes state coverage. However, we have to distinguish the 
finitely many states of the graphically depicted state machine and the potentially 
infinite number of states (and transitions) of the implementation. The relationship 
between both is handled by grouping the state space into equivalence classes using 
invariants. However, transition coverage now does not imply coverage of these 
equivalence classes anymore. Thus coverage criteria for state equivalence classes 
and transitions can be combined. 

Beyond transition coverage, it is interesting to check the combined behavior of 
transitions, e.g. using full paths through the state machine. A minimized path cover-
age might check every path, where loops are only handled once (similar to "bound-
ary-interior path tests"  [NTA 88]). This technique is costly, as paths may be many, 
but also helpful, because some errors only occur in the combination of unusual 
paths, where nobody has been thinking of. 

As a last issue to be considered, the input itself may be analyzed to derive possi-
ble tests. As we deal with streams of incoming messages, equivalence classes of 
messages may be considered, but also sequences of messages (e.g. what happens if 
the same message arrives twice?) or certain interleavings. This may lead to further 
refinements of the test cases. However, as variants of messages are usually handled 
through different pattern of inputs, coverage on input messages may be implied by 
coverage on transitions. 



8.5. Implementing Tests in Haskell 

Having clarified general considerations, we now show how to define test cases in a 
systematic way and show how they can be executed in an efficient manner, to allow 
us regression testing. 

8.5.1 Test Infrastructure 

Only a few generic functions are needed that serve as the test infrastructure similar 
to the runtime system discussed above. These functions later allow us to write test 
cases in a concise way, quite similar to unit test frameworks for other languages 
(e.g. [BEC 99b]). At first, we introduce a transition tester. transT takes the input 
and current state, executes a transition and compares the result with the expected 
state and output. 

 

transT:: DeltaFct s i o -> (s, i , s,[o]) -> Bool 

transT delta (s,i,expS,expO) = ((delta s i) == (expS, expO)) 

 

Second, we introduce a path tester. The full path tester pathT checks whether a 
sequence of inputs leads to a certain path of states and sequence of outputs. Slightly 
adapted versions of a path tester just check the state or just the output. It's up to the 
test engineer to decide how fine granular a test needs to be defined. All versions 
take a transition function, a start state and a sequence of inputs. The implementation 
is straight-forward and omitted here since we're not going to give concrete exam-
ples for path tests in this paper. Nondeterministic transition functions are realized 
through an oracle, which allows us to fully control nondeterminism, but forces us 
to cover different oracles as well (not shown in the signatures below). 

 

pathT  :: DeltaFct s i o -> (s, [i], [s,[o]]) -> [Bool] 

pathTs :: DeltaFct s i o -> (s, [i], [s]) -> Bool 

pathTo :: DeltaFct s i o -> (s, [i], [o]) -> Bool 

8.5.2. Tests for the ABP Components 

We will now illustrate the implementation of test cases in Haskell considering the 
sender component as example. Our goal is to manually derive transition coverage 
for the sender and show how these transitions can be denoted easily. The sender 
component has a total of eight transitions that need to be tested. This leads to eight 
tests to cover the state machine transitions. 



We start by explaining how a test case that covers a single transition can be de-
rived from the state machine specification. As an example, consider the following 
transition from figure 8.2: 

{b2 = b, #s ≥ 2} 
 b2 / (b, head (tail s)); SetTimer 3 
{b' = ¬b, s' = tail s} 

Furthermore, the transition's source and destination state is characterized by a non-
empty buffer. First, we need to identify a valid start state for the transition. Since the 
buffer needs to be non-empty and, due to the pre-condition, at least two messages 
long, one possible start state can be (True, [3,4]). The transition's input is a 
bit b2 whose value is restricted by the pre-condition. To test the specification, we 
derive the appropriate resulting state and output not from the model, but determine 
from our background knowledge what must happen. In this setting it is necessary to 
act as test oracle ourselves, as we are going to check the specification. We merely 
analyze the transition system to understand, what transitions need to be covered. In 
this case, we derive the resulting state (False, [4]) and expected output 
[(False,4),SetTimer 3]. The rest of the sender transitions can be handled 
in the same manner. A further detailing is not necessary, because neither an oracle, 
nor internal complicated pre/postconditions occur, nor is the sender incompletely 
specified. We collect all transition tests in a table as follows. 

 

no. source state input destination state output 

1 (True,[]) True (True,[]) [] 

2 (True,[]) 3 (True,[3]) [(True,3),SetTimer 3] 

3 (True,[3]) 4 (True,[3,4]) [] 

4 (True,[3,4]) True (False,[4]) [(False,3),SetTimer 3] 

5 (True,[4]) True (False,[]) [SetTimer (-1)] 

6 (True,[3,4]) False (True,[3,4]) [] 

7 (True,[3,4]) TimeoutEvent (True,[3,4]) [(True,3),SetTimer 3] 

8 (True,[]) TimeoutEvent (True,[]) [] 

 

Please note that like in the defining state transition diagram, we do not need to tag 
the incoming input, because the values on both channels are disjoint. Boolean values 
are acknowledgements and integers are used as messages. As discussed, the corre-
sponding Haskell definitions need to deal with this union of channels, resulting in a 
more awkward and less readable definition. Let us assume they are given in a list 
called senderTransitionTests. The defined transition tests can systemati-



cally be mapped to Haskell. Together with the earlier mentioned functions (and 
possible path tests for the sender) a test suite is defined easily: 

senderTestSuite = map (transT senderDelta) senderTransitionTests 

To execute the sender test we consequently only need to evaluate senderT-
estSuite, receiving a larger list of Booleans (hopefully all True. Using the defi-
nition 

all = and (senderTestSuite ++ receiverTestSuite ++ ...) 

allows us to resemble the well known "green/red"-light from unit testing. Due to 
space limitations, only the test case definition and execution for the sender compo-
nent is shown. Analogously, component tests for the medium and receiver can be 
derived. However, the media exhibit special characteristics that we have not dealt 
with so far, as they use an oracle. As we can understand the oracle as a special case 
of input sequence, we therefore just need to analyze possible interesting inputs se-
quences and run those together with the other tests. 

We showed how to systematically define and execute test cases for delta functions 
of state machines. Especially for system level testing of the composed ABP function 
it might also be useful to generate a larger set of test cases randomly. Since this is 
not in the focus of this paper we refer the reader for example to [CLA 00, KOO 03]. 

8.6. Discussion of Results 

In this paper, we have discussed an approach to model behavior of distributed asyn-
chronously communication behavior. To test these models we had to map them into 
an executable form. We chose the functional language Haskell for that purpose, 
because Haskell offers lazy lists as well as pattern matching techniques, which per-
fectly allow us to simulate our underlying semantics. 

As a next step we have understood, how tests cover transitions, state, input or 
even paths. This allows us to systematically derive tests. However, our approach of 
an automatic mapping ("code generation") of the model into the simulation engine 
does not allow us to derive complete tests from the model. Deriving code and tests 
from the same model does not allow us to check correctness of the model, but con-
sistency of the generators. Thus our approach so far only allows us to understand, 
what test inputs are of specific interest, but forces us to manually add the desired test 
result to the test. The situation changes, when we do a manual implementation of the 
model. Then this simulation engine can be used to derive test results that can be used 
as test oracles for the actual implementation. 

When applying this approach to other distributed systems, we found the ap-
proach very effective for us developers. Through systematic and early definition of 



tests, we found some subtle errors very early in the specification model already. 
Deriving tests from requirement and design models is worth the effort – particularly 
in complex distributed settings and when validating protocols. 
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