
Evolving and Implanting Web-Based
E-Government-Systems in Universities

Dirk Reiss, Bernhard Rumpe, Marvin Schulze-Quester, and Mark Stein

Institute for Software Systems Engineering
Braunschweig University of Technology

Mühlenpfordtstr. 23
38106 Braunschweig, Germany

http://www.sse-tubs.de

Abstract. The Bologna Process [1] has triggered a major restructur-
ing of the current university diploma into a bachelor/master system. As
one effect, the administration effort for the new system has increased
dramatically. As a second effect, students need and demand a much bet-
ter information policy, given the new possibilities of the internet. Both
to increase efficiency of the university’s administration and to provide
students as well as lecturers with modern e-government services, it is
inevitable to evolve the current IT-infrastructure of a university into a
modern web-based landscape of systems that support business processes
on campus.
In this paper, we describe the approach taken at the Braunschweig Uni-
versity of Technology to evolve the existing landscape of legacy systems
by adding bridges between previously unrelated parts, adding and cus-
tomizing unused modules of existing software to bring information and
services online and to develop new software, where old modules could not
serve the necessary purposes. Most of all, both implementation of the re-
sults in university’s business processes and the resulting quick feedback
and wishes for feature enhancement are seen as part of the software de-
velopment processes and discussed in this paper.

Key words: E-Government, business process optimization, Hierarchical
XP, web-based information systems, agile software development

1 Current E-Government Situation

Currently German universities undergo major changes in their internal organi-
zation. This has several reasons:

– Since the European Countries signed the Bologna Declaration [1], major
changes in curricula are necessary. In particular the number of exams has
increased by a factor four to six and thus students and lecturers have a higher
demand for efficient organization of these exams.

– The introduction of a two-cycle bachelor/master study system goes along with
an increased demand for course certificates. This enforces universities to pro-
vide online information for students.

[RRSQ+08] D. Reiss, B. Rumpe, M. Schulze-Quester, M. Stein 
Evolving and Implanting Web-based E-Government Systems in Universities 
In: Proceedings to the 2nd International United Information Systems Conference (UNISCON) 
Klagenfurt, Austria, April 22-25, 2008 
R. Kaschek, C. Kop, C. Steinberger, G. Fliedl: LNBIP 5, pp. 282-295 
Springer-Verlag Berlin-Heidelberg 2008 
www.se-rwth.de/publications 



2 Reiss et al.

– The modularization encompassed by the bachelor/master system partly affects
the contents of lectures, but to a much higher degree it affects the organization
of curricula. Lecturers have to provide a lot more and detailed information, e.g.
to allow students (and other universities) to understand contents of courses in
recent and forthcoming semesters.

– While this restructuring goes in parallel with reorganization and optimization
of the administration, it is inevitable to optimize administrative processes
in cooperation with the development and evolution of the software systems
needed.

– Development of new and, in particular, interdisciplinary curricula help mod-
ern universities to emphasize particular strengths in teaching and research and
thus attract more students. This, however, enforces a university to develop in-
tegrated information systems for defining and maintaining module handbooks
and examination regulations. This is necessary to prevent redundancies, in-
consistencies and in particular to help lecturers to ensure correct conduction
of exams.

– And finally, German universities currently undergo a heavy transformation
with regard to evaluation. The evaluation burden has heavily increased, both
for internal evaluation of teaching and research load and quality as well as for
external evaluation and surveys. While each of these evaluations (or at least
most) does make sense, in sum there are far too many and researchers/lectures
are in total too busy to fill in forms instead of actually being productive. To
ease this burden, integrated information systems for statistical and evaluation
information will be necessary.

As described in [2], the shortage of resources caused by the implementation
of two-cycle study systems is not just a theoretical problem. In future years the
quality of education will decrease and the capacity needed for its adminstration
will increase dramatically. This effect is to be expected by the year 2010. In order
to cope with these problems, universities have started to adopt e-Government
principles (see [3]) to improve internal administration efficiency and delivery of
public services to all university members.

Evolution and extension of business software systems in most cases go hand in
hand with change in business processes. Therefore administration departments,
examination offices, lecturers and students most likely have to adapt their pro-
cedures to become more efficient. Some old procedures might completely vanish,
others need to be extended or evolved. Hence, a close integration of the software
development process, its roll-out in form of technical installation and training
on the software is inevitable.

On the technical side, the question how to develop a new system, to evolve
a given legacy system or to add new modules to a legacy system needs to be
tackled. This software landscape needs to be understood and dealt with in co-
operation with their maintainers.

Currently existing software systems supporting integrated information and
business process flows are often far outdated, inefficient and incompatible for
data exchange. Furthermore, modern e-government information delivery models



Evolving and Implanting Web-Based E-Government-Systems in Universities 3

like university-to-student, university-to-lecturer or university-to-staff are often
not supported. Worse, universities first have to understand and explicitly define
their business processes to be able to optimize them.

The Braunschweig University of Technology decided in 2003 to boldly mod-
ernize their software landscape. For that purpose a number of projects were
launched, one of them dealing with administration processes serving teaching
and teaching organization. Goal of this project was and is to serve the goals
listed above, starting with a university-wide module handbook that also serves
as a single source for curricula definitions, class schedules, room assignments,
university calendar, etc.

In the rest of this paper, we record on the development and deployment
of this electronic module handbook. In Section 2 we describe the reorganiza-
tion of the administration primarily implemented through the introduction of
web-based information systems (online portal). Section 3 focuses on the general
development approach to implement and introduce these new information sys-
tems. Section 4 presents the introduction of the module handbook (MHB) as
an example, covering its data model, implemented business functions, and tech-
nical interfaces as well as summarizes the lessons learned from the installment
procedure. Finally, Section 5 discusses planned future actions and concludes the
process of reorganization carried out so far.

2 Situation Analysis and Process/Software Reorganization

Given that the demands discussed above and in particular the restructuring of
the curricula induced by the Bologna Declaration will evoke serious capacity
problems, the first step is to understand what actually had to be done. This step
included the following activities:

– Understand the current business processes within the university, identify prob-
lems and inefficiencies and derive possibilities for improvement.

– Understand the currently used solution (which in Braunschweig is based on
the HIS system (see [4])) as well as its capabilities and deficiencies and possible
alternatives.

– Go public with the project and prepare the university members to accept and
welcome these software based process enhancements.

The outcome of the process analysis mentioned above showed clearly that
the application formerly in use at Braunschweig Technical University (HIS) was
a pure back-office system, capable of administering exams and lectures of single-
cycle study systems only. This means that all administrative processes involved
could only be done by the faculty administration staff and neither students
nor lecturers could get up-to-date information about study progress or lecture
assignment instantaneously. An examination of the current solution revealed
that a switch from the currently used system to an alternative is currently out of
scope. Too many users have learned to adapt to HIS’s strengths and weaknesses.



4 Reiss et al.

So the decision was to evolve the HIS legacy system, both within our university
and together with HIS, while it is also clear that neither technology of the system
nor development capabilities of the creators are optimal.

2.1 Selling the Project

To help our clients to understand the purpose of the development project, we
used the the metaphor of a plane (as shown in Fig. 1 to define roles and according
activities.

Role for airplanes for software
Airbus HIS
Interior fittings our project
maintenance troop IT administration
steward application administration
pilot lecturer
passengers students

Fig. 1. Analogy between airplane construction and software development

The HIS system in its current form is like an airplane. While Airbus (HIS) is
the principal developer, we adapt the existing airplane to fit it to the university’s
specific needs. Ideally, we only have to define the interior fittings like seating
and entertainment system. However, the current HIS system is capable to assist
Diploma "flights", but not very well suited for Bachelor/Master flights. Therefore
we have to enhance this airplane, like extending the wings (which are quite
substantial changes).

2.2 Starting the Development

As indicated above, the most suitable solution was to integrate all relevant in-
formation sources for study, lectures and exams into an integrated landscape of
web-based information systems with a single portal-based front-end.

A web portal is available from everywhere at anytime for anyone. It serves
as a central repository for information shared among university institutions and
ideally assists all business processes that are necessary to guide a student from
initial enrolment to the final completion of the degree. It regulates the import
and export of data from and to subsequent processing systems and enforces the
unification of data maintaining processes.

With the introduction of online portal systems for administrative information
processing, the following major effects in context of e-government at a university
have been identified:

– The use of web systems leads to a unification of information among all orga-
nizational units and study programs, while the responsibility for entering and



Evolving and Implanting Web-Based E-Government-Systems in Universities 5

updating data remains decentralized. For example, all lectures and modules
are fed into an electronic study guide and module catalog system (see Section
4) by the individual institutes and faculties, providing the same description
elements for all of them and thus allowing their cross-faculty reuse for the def-
inition of different study programs. This approach combines the advantages of
decentralized data entry with a common data model and format for all study
programs.

– A central web-interface can be used to generate new information objects, like
semester catalogs for single institutes, individual timetables or electronic cer-
tifications for students and so on. Furthermore it can provide online access
to administrative services, e.g. online seminar and lecture enrollment, online
exam registration, online submission of grades, etc. Thus administration de-
partments are greatly disencumbered, as many time-consuming processes are
relocated to the demanding customers.

– To ensure an efficient, correct and timely administration, business processes
need to be explicitly defined and assisted by the web information system. This
includes deadlines and reminders for late activities. Synchronization of efforts
is necessary e.g. to have an accurate module catalog available in printed as
well as online form. Easy to understand and use definitions of these procedures
are therefore developed together with the system.

A number of further challenges arise, as legacy systems need to be integrated:

– A central identity management is needed to simplify the use of various sub-
systems.

– An integrated graphical user interface (GUI) must be capable of presenting
all necessary and available information in an intuitive and convenient way,
depending on the current user request. Individualization is necessary and must
be provided through the portal.

– Performance is necessary to please users as well as effective, pleasent use of
provided functionality. Especially the latter is difficult for users with hetero-
geneous roles and wishes.

– Various legacy systems need to be integrated, either loosely coupled through
batch data update or firmly through shared use of the date base, or even
through mutual use of service access points. However, this implies that such
service access points need to exist, which in legacy systems often is not the
case.

3 Development approach: Hierarchical XP

To face all upcoming challenge, an agile development approach (see: [5], [6],
[7]) was inevitable. In particular, the many different user roles, potentially and
frequently upcoming new requirements and adaptations need to be handled in
an agile way. Therefore the Hierarchical XP (eXtreme Programming) approach,
as suggested by [8], [9], [10], seemed to be most appropriate.



6 Reiss et al.

Within Hierarchical XP, large projects are decomposed into subprojects of
appropriate size with focus on a compact subset of the desired functionality.
In each of these subprojects, an agile development process is used and adapted
according to their specific needs. According to [11], agile software development
methods are lightweight, iterative and flexible, additionally some are evolutionary
and adaptive. A common charateristic shared among all of them is the availabil-
ity of key customers during the whole development life cycle. Hierarchical XP
however differs in some points to this common understanding of agile projects,
as it aims at coordinating several agile subprojects through a moderator function
(see [8]). It is feasible when a landscape of individual but related product sys-
tems need to be handled, instead of subprojects to be aligned into a synchronized
product release. Its adaptation taken at Braunschweig University of Technology
is described in Section 3.5 in more detail. Further principles of agile software de-
velopment, which were partly taken from the eXtreme Programming approach
and applied to this project, include pair programming, iterative and evolution-
ary development in short cycles, code refactoring and requirements refinement
between subsequent releases and intensive testing.

With the desired result being a landscape of rather individual subsystems
that fit into a larger set of legacy systems, it is useful to embed development into
a superordinate project control process. For a stringent development progress, it
should be given into the hands of a steering group, whose task is to ensure that
the comprehensive requirements are met and to keep track of the overall progress.
This steering group is best composed partly of project members and partly of
stakeholders that represent various viewpoints throughout the university.

This superordinate process - initiated and controlled by the steering group -
consists of five activities, of which the fifth comprises the final breakdown of the
project structure into agile subprojects:

1. Understand the administrative business process as they are carried out by
faculties, institutes and administration departments at the moment and de-
fine how they should look like after the new system has been installed.

2. Map the application landscape as it is currently in use. As mentioned earlier,
we encountered a rank growth of different and mostly incompatible systems
for processing basically the same information in different data formats.

3. Develop roles according to the processes as they should be carried out in the
future supported by the new web application systems to be built.

4. Choose the foremost improvements that will have the greatest effect on
bringing administration processes of study and teaching towards modern
e-government principles (i.e. improved (online) exchange of information and
services between university members).

5. Implement the improvements identified and adequately prioritized in short
iterating development cycles.



Evolving and Implanting Web-Based E-Government-Systems in Universities 7

3.1 Understanding current business processes

To understand which processes have to be supported and where improvements
can be achieved by the installation of web-based systems, current workflows and
business processes need to be analyzed. For this purpose various administra-
tion departments have been interviewed, surveys have been taken and finally
documented in a precise manner using UML activity diagrams.

The adminstration processes taken into account were selected due to the
impact the Bologna Process will have on them, i.e. the ones where the adminis-
tration effort will increase or change dramatically. It became obvious that nearly
the whole student lifecycle is affected by the changes implied by the introduction
of the Bachelor / Master system. Furthermore, some processes varied consider-
ably between different programs of study. Not only the structure of their courses
differed, but also the manner of equivalent processes were performed. Hence, it
was inevitable to unify those processes in order to provide decentralized web-
based applications that alleviate the effort needed to fulfill the adminstration
tasks. The main fields identified - and therefore established as subprojects -
are students registration and enrollment, lecture planning, lecture-to-student
assignment, exam registration, grade submission and the self-service generation
of study certifications.

3.2 Mapping current application landscapes

After documenting the processes, we needed to inspect how to support the exist-
ing processes, so that the increased effort could become manageable. Therefore,
the software landscape present at that time was analyzed. Although identify-
ing a variety of heterogenous software systems with overlapping functionalities
developed and installed at different institutes, it crystalized that at the Braun-
schweig University of Technology, the software system by the HIS GmbH (see
[4]) is primarily in use for study administration tasks. Their software packages
consist of a backend part (the so-called GX modules) and a web-based part (QIS
or LSF). Besides the evaluation of the already existing software system, alterna-
tive products were evalutated. As an outcome, it became clear that none of the
systems would do a significantly better job at supporting the needs burdened by
the mentioned higher education reform. Hence, the already installed system was
kept and modified according to the universities specific needs. Speaking of our
example mentioned previously: we already bought an airplane, only the interiour
has not been modified to suit our customers’ needs yet.

3.3 Roles development

The actors so far participating in the processes have - as they were mostly not
supported by modern information technology systems - not been mapped to any
role in the forthcoming decentralized web-based system. Therefore, new roles
that match the existing fields of administration and the task within each of
them had to be indentified and created afterwards. Examples for the activities



8 Reiss et al.

in the area of course planning and the according roles are lectures who keep their
lecturers and modules up-to-date, persons who dispose and maintain rooms and
timeslots within a certain course of study as well as deans being responsible
for planning and assembling whole courses of study. The decentralized web-
application needed to be configured to suite these actors’ needs best with regards
to usability.

3.4 Choosing most important and helpful improvements

With a given overview of the processes involved in the students’ lifecycle, pri-
orities had to be defined. The expected improvements on the administration of
students and study courses in general has been chosen as the crucial factor for
the order of precedence. As the availability of highly up-to-date module and lec-
ture information (and accompanied by the existence of high-quality courses of
study) is an enabling factor for the installation of the two-cycle study system,
this problem area was given a high priority. Besides online registration and en-
rollment the first focus was put on exam registration and lecture assignment.
Enabling students to conduct these administrative transactions online improves
their situation significantly while unburdening the faculty administration de-
partments. Furthermore, lecturers should benefit from the new possibilities by
allowing them to submit exam grades online and to recieve statistical informa-
tion about their courses and exams taken. Last but not least the need for a
central module repository to keep all study guides in sync became more urgent.
This also includes the generation of study guides in one consistent format for
the whole university. With this approach taken, the planning and management
of lectures - done decentralized by each institute on its own - leads to up-to-date
database of modules that can be supplied to students and lecturers as well.

In Fig. 2, the subprojects chosen for foremost implementation are referred
to as ’ENR’ for online registration and enrollment, ’MHB’ for the electronic
module handbook and lecture catalog, ’ASS’ for lecture assignment, ’EXR’ for
exam registration, ’GS’ for grade submission, ’CERT’ for online certificates and
’STAT’ for online statistics.

3.5 Implementing subprojects in iterating cycles

As the university administration departments can be characterized as ’tradi-
tional’ in terms of process organisation, and many targets for optimization have
been identified, the overall project goal has been divided into several subprojects
as noted above. The general development approach taken within each subproject
follows a typical agile path (see: [6], [7]) with several modifications. These were
necessary as in case of the most subprojects the customer could not be identi-
fied as a single person or department, but as the university (including lecturers,
students and administration departments) as a whole, which contrasts the XP
approach according to [5]. They claim to have one customer in charge to define
all requirements, which implies that this one customer has to know exactly what



Evolving and Implanting Web-Based E-Government-Systems in Universities 9

his or her requirements are. At a complex and heterogenous organization like
a university, the different departments, insitutes and faculties all have different
and sometimes contradicting expectations and want to be supported as good as
possible.

Steering Group

1

2

3

4

ENR
iteration #1

GS

EXR

ASS
#1

MHB
iteration #1

time

pr
oj

ec
ts

2005-10 2006-10 2007-102006-04 2007-04

1 - Business process
analysis 2 - Application

mapping

3 - Roles analysis 4 - Priorization

MHB
iteration #2

MHB
iteration #3

2008-102008-04

ENR
iteration #2

ASS
#2

ASS
#3

ASS
#4

ASS
rollout

GS
rollout

EXR
rollout

MHB
rollout

ENR
rollout

CERT

STAT

ENR

MHB
EXR

ASS
GS

CERT

STAT

- Online
enrollment

- Module
handbook

- Grade
submission

- Exam
registration

- Lecture
assignment

- Online
certificates

- Online
statistics

Fig. 2. Project development approach

With the whole project divided into subprojects, we distinct two different
kinds: (1) subprojects that affect the whole university (e.g., students’ enrollment
and study guides) and (2) subprojects whose implementation needs adjustment
from one program of study to another (e.g., examinations regulation and adjacent
exam registrations). Subprojects of the first case needed some more effort to
unify the processes involved at first hand. The adapted system is then rolled out
in several iterations to certain key users (or at least experts in the field). The
latter induced that each course of study had to be handled seperately. Therefore,
each subproject is prototypically rolled out to a certain number of pilot users
(here: programs of study). This was at least inevitable for processes that were
not alike in the past. Hence, one major obstacle was the necessary unification
of administration processes. The changes ranged from minor modifications in
those processes actually carried out in few courses of study, to a completely
different way of dealing with the affected areas of adminstration. During this
pilot phase, suggestions for improvement regarding the handling of the web-
based application were registered and implemented for better usability. In the



10 Reiss et al.

next iteration cycle, more courses of study were added to the group of web-
assisted ones. This iterative approach was used for the rollout of subprojects
such as the online exam and course registration, whereas subprojects like online
enrollment and decentralized management of modules and lectures were installed
university wide. After several iterations, the subprojects have been stabilized in
a way that administration and IT infrastructure departments were ready to run
the applications in production and extend them to more courses of study. Hence,
this departments’ staff was instructed. Speaking of our metaphor: the plane has
been build and modified, now the staff needed to be taught how to operate it.
Furthermore, passengers not used to use a vehicle of that kind (or have fear of
flying) need to be convinced of the enormous advantages using it than the old
way of travelling.

4 Example: Online module handbook and lecture catalog

4.1 Previous implementation

One central goal of the new two-cycle study system is the re-organization of study
programs into modules. As a consequence, they provide a much more interdisci-
plinary orientation for students. Therefore the variety of courses to choose from
grows immensely. As a disadvantage, the effort needed to keep all study guides
in sync (as one change in a module affects more programs of study than before)
grows as well. Another problem was the variety of formats in which module
handbooks were kept. Some programs of study used Microsoft Word, some Ex-
cel and some even LaTeX documents, although the use of the same application
did not mean documents were interchangeable. Usual practice demanded every
lecturer to submit changes to each program of study that contains the module
or lecture respectively, to discuss these changes with the persons responsible and
come to a consent about the changes. The submission had to be in a different file
format for each program of study and therefore was a time-consuming process.

Until recently, all communication regarding import (asking for a module to be
included in one program of study) and export (offering a module to be included
in another one) had to be agreed on by the offerer of one module (usually the
lecturer of the module) and the dean in whose program of study that module
was to be included. This resulted in enormous effort taken on both sides.

4.2 New approach: central online module handbook system (MHB)

These inefficiencies described previously - added to the fact that the applications
available at that time did not support a decentralized web-based approach to
manage lecture and module data and would not cover the requirements identi-
fied - resulted in the decision to develop a web-based system from scratch. For
implementation, the Java programming language with Apache struts framework
(see [12]) and the Velocity template engine (see [13]) was chosen. As a database
system, the Postgres database management system is in charge of storing all



Evolving and Implanting Web-Based E-Government-Systems in Universities 11

data. User logins are verified by system calls to the Andrew File System (see
[14]) which easily allowed access to the central user database at Braunschweig
University of Technology.

This approach enables each lecturer (or his or her delegates respectively) to
manage the information describing lectures and modules using a browser-based
application. It results in a central repository of up-to-date information about
lectures, modules and program of study contents accessible by every interested
party. Changes made using the online application will immediately take effect in
all adjacent entities (like lecture and module descriptions and course catalogs),
not depending on the publication deadline of a paper-based module and course
catalog. Furthermore, the many various formats previously necessary have been
unified into one central system.

4.3 Data structure of the MHB system

As shown in Fig. 3, each study program consists of either modules or lectures,
depending on the kind of program (single cycle study programs are made up of
lectures, two-cycle study programs consist of modules, which themselves consist
of lectures). Modules are grouped by categories within two-cycle study programs
and use so-called ’topics’ as static containers for lectures possibly changing be-
tween terms. Persons in this data model are associated to lectures (as lecturers),
modules (as module responsible and lecturer), study programs (as dean) and
institutions (as head or member of an institution). Modules and lectures belong
to a certain institution which is primarily responsible for them. Each lecture is
held at one or more specific date.

Access rights within the MHB application are generally regulated by associa-
tions of users to their institutions. This means, an editor for a certain institution
(meant to be the lecturer himself, but according to experience delegated to sci-
entific or secretary staff) only has rights to edit the staff objects, lecture objects
and module objects associated with the corresponding institution. Role assign-
ment is backed up by formal grant by first-place responsible persons (like head
of an institution for instution rights and dean for course of study rights). For
each lecture there is one timetable person in charge, finding times and places to
hold the lecture and to fit into the timetables of affected courses of study. Only
these persons are allowed to verify and change dates, places and times of lectures
after a certain date. Since module catalogs affect legally critical areas like ex-
amination regulations, the access to these is limited. Hence, only study program
responsible persons (granted by the dean of a course of study) are allowed to
alter its contents. As mentioned in section 4.1, assignments of modules to study
programs have to be acknowledged by both parties involved. Therefore module
inclusion is accepted under reserve. A module not acknowledged by both the
module lecturer and the dean responsible for that study program is not included
in study guide documents until the other agreed upon its inclusion.

As data storage in an online course management system is a first step, there
have to be various ways to utilize the data collected. Therefore, different types
of export functionality have been implemented. These range from files of comma



12 Reiss et al.

Fig. 3. MHB class diagram

seperated values (for use in spreadsheet applications and as data source for differ-
ent kinds of serial letter inclusion) over predefined annotated lecture documents
to complete module catalogs in PDF format.

4.4 Lessons learned

Round about half a year after the MHB system was introduced at Braunschweig
University of Technology, we conducted a survey among its users to assess its
acceptance and to explore to which extent the workflow now supported by a
decentralized online system is accepted has become second nature to the different
roles of users. A total of 137 users answered the poll, which was hold online over
a four week’s period. The main tenor of the comments and suggestions given
was that a general improvement of the quality and availability of information
about lectures, modules and study programs could be seen, yet it was consumed
by an increased effort for collecting and feeding the data into the system. It is
expected that this effort reduces over time, when users become more familiar
with the system. Yet we used the following quarter to release a great many
of bugfixes and improvements to the system usability according to the users’
comments and suggestions in short iterating cycles.

As expected, the introduction of a web based system had an integrating ef-
fect on all administration processes that are carried out at the whole university,



Evolving and Implanting Web-Based E-Government-Systems in Universities 13

like building module and lecture catalogs for both semester timetables and study
programs. Faculties and institutes now enter this information directly and decen-
tralized, while the data structure and format is laid down by the MHB system.
Thus overall processes became more transparent to the institutions involved, as
they are now carried out the same way throughout the university. Most of these
processes have been documented in form of checklists, which have proven useful
to communicate with users inexperienced to more formal notations like UML
activity diagrams. At the same time module- and course-of-study information
became interchangable between institutions.

The decision towards a system with decentralized data entry was made with
respect to the heterogenous organization structure within Braunschweig Univer-
sity of Technology. For the same reason, it was difficult to obtain unified func-
tional and user interface (UI) requirements suitable for all end users and user
groups, consisting of faculty, insitute and administration department members.
Agile development processes in their original form include the identification of
key users, which are to be available for early communication with the developers
in all stages of the development process. In our case, we replaced the key user
concept with three measures suitable to the Hierarchical XP approach (see Sect.
3) in combination with a widespread, heterogenous end user group:

– We set up an online request ticket system to channel all support requests, then
transferred them manually into a central project bugtracking system. This way
we were able to integrate feature requests and bug reports from users directly
into our development process.

– When the first release of the system was to be launched, we organized three
major information events, one for each main user group, in which the system,
its capabilities and user interface was introduced in detail to them.

– During the first and second data entry period, we offered special service times,
in which users could enter their data with assistance from experienced devel-
opment team members.

By applying these measures, we were able to uphold the main principle of ag-
ile development approaches - early feedback from and intensive communications
with customers - without needing to explicitly define pilote users in charge for all
others. New or changed user requirements could thus be incorporated as quickly
as new features or changes to business models supported could be communicated
to the MHB customers spread throughout the university.

5 Conclusions

In this paper, we discussed some of the problems arising when evolving the
software landscape to assist e-government processes in a university.

We described the overall development process and how it was established
in the actual project. This process is a combination of hierarchical decomposi-
tion of the development project into loosely related subprojects, where each of



14 Reiss et al.

them uses XP-like techniques. This approach, called Hierarchical XP [8], is most
appropriate as it combines XP ideas like strong integration of users, anticipa-
tion of requirement changes and an iterative approach of development with a
larger overall goal of development. We have sketched, which steps are necessary
to not only successfully realize, but also introduce a larger online system to a
widespread and very heterogenous group of users. As a result, the introduction of
this system indeed had the desired effect of unifying administration processes in
the field of module and lecture management (e.g. creation of module catalogs for
different programs of study), thereby improving the quality and availability of
up-to-date information. These processes became more transparent for students
and teachers, while the administration’s efficiency increased. As a second result,
it follows that a hierarchical structure for the evolution of a software landscape
in synchrony with the evolution of the business process is indeed helpful to im-
plant new or enhanced e-government systems, when appropriate steps are taken
to integrate users into the development process.

References

1. European Ministers of Education. The Bologna Declaration of 19 June 1999. http:
//www.bologna-berlin2003.de/pdf/bologna_declaration.pdf, July 1999.

2. Hochschulrektorenkonferenz. Statistische Daten zur Einführung von Bachelor- und
Masterstudiengängen Wintersemester 2007/2008. http://www.hrk.de, Oktober
2007. Date of last check.

3. Jörn von Lucke; Heinrich Reinermann. Speyerer Definition von Electronic Govern-
ment, July 2000.

4. Hochschul Informations System GmbH. HIS Homepage. http://www.his.de, July
2007. Date of last check.

5. Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2004.

6. Alistair Cockburn. Agile software developent. Addison Wesley, 2002.
7. J. Eckstein. Agile Softwareentwicklung im Grossen. Dpunkt Verlag, 2004.
8. C. Jacobi and B. Rumpe. Hierarchical XP. In G. Succi and M. Marchesi, editors,

Extreme Programming Examined. Addison Wesley, 2001.
9. B. Rumpe and P. Scholz. A manager’s view on large scale XP projects. In Third In-

ternational Conference on eXtreme Programming and Agile Processes in Software
Engineering, 2002.

10. B. Rumpe and A. Schröder. Quantitative Survey on Extreme Programming
Projects. In Third International Conference on eXtreme Programming and Ag-
ile Processes in Software Engineering, May 2002.

11. Fraunhofer-Institut für Experimentelles Software Engineering. Virtuelles Software-
Engineering-Kompetenzzentrum. http://www.software-kompetenz.de/, 2001-
2007. Date of last check.

12. Apache Software Foundation. Apache Struts homepage. http://struts.apache.
org, July 2007. Date of last check.

13. Apache Software Foundation. Apache Velocity homepage. http://velocity.
apache.org, July 2007. Date of last check.

14. OpenAFS project. OpenAFS homepage. http://openafs.org, July 2007. Date
of last check.




