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The 2007 DARPA Urban Challenge afforded the golden opportunity for the Technische
Universität Braunschweig to demonstrate its abilities to develop an autonomously driving
vehicle to compete with the world’s best. After several stages of qualification, our team
CarOLO qualified early for the DARPA Urban Challenge Final Event and was among only
11 teams from initially 89 competitors to compete in the final. We had the ability to work
together in a large group of experts, each contributing his expertise in his discipline, and
significant organizational, financial, and technical support by local sponsors, who helped
us to become the best non-U.S. team. In this report, we describe the 2007 DARPA Urban
Challenge, our contribution, “Caroline,” the technology, and algorithms, along with her
performance in the DARPA Urban Challenge Final Event on November 3, 2007. C© 2008

Wiley Periodicals, Inc.

1. MOTIVATION AND INTRODUCTION

Focused research is often centered around interest-
ing challenges and awards. The airplane industry
started off with awards for the first flight over the
British Channel as well as the Atlantic Ocean. The
Human Genome Project, the RoboCups, and the se-
ries of DARPA Grand Challenges for autonomous ve-
hicles serve this very same purpose to foster research
and development in a particular direction. The 2007
DARPA Urban Challenge took place to boost devel-
opment of unmanned vehicles for urban areas. Al-
though there is an obvious direct benefit for DARPA
and the U.S. government, there will also be a large
number of spin-offs in technologies, tools, and en-
gineering techniques, both for autonomous vehicles
and also for intelligent driver assistance. An intelli-
gent driver assistance function needs to be able to
understand the surroundings of the car, evaluate po-
tential risks, and help the driver to behave correctly,
safely, and, in case it is desired, also efficiently. These
topics affect not only ordinary cars but also buses,
trucks, convoys, taxis, and special-purpose vehicles
in factories, airports, and more. It will take a number
of years before we have a mass market for cars that
actively and safely protect the passenger and the sur-
roundings, such as pedestrians, from accidents in any
situation.

Intelligent functions in vehicles are obviously
complex systems. Large issues in this project were
primarily the methods, techniques, and tools for the
development of such a highly critical, reliable, and
complex system. Adapting and combining methods
from different engineering disciplines were impor-
tant prerequisites for our success. For a stringent
deadline-oriented development of such a system, it
is necessary to rely on a clear structure of the project,
a dedicated development process, and efficient engi-
neering that fits the project’s needs. Thus, we con-

centrated not only on the single software modules of
our autonomously driving vehicle Caroline but also
on the process itself. We furthermore needed an ap-
propriate tool suite that allowed us to run the de-
velopment and in particular the testing process as
efficiently as possible. This includes a simulator al-
lowing us to simulate traffic situations and therefore
achieve a sufficient coverage of test situations that
would have been hard to conduct in reality. Only
a good collaboration between the participating dis-
ciplines allowed us to develop Caroline in time to
achieve such a good result in the 2007 DARPA Urban
Challenge.

In the long term, our goal was not only to
participate in a competition but also to establish a
sound basis for further research on how to enhance
vehicle safety by implementing new technologies to
provide vehicle users with reliable and robust driver
assistance systems, e.g., by giving special attention
to technology for sensor data fusion and robust and
reliable system architectures, including new meth-
ods for simulation and testing. Therefore, the 2007
DARPA Urban Challenge provided a golden oppor-
tunity to combine expertise from several fields of
science and engineering. For this purpose, the inter-
disciplinary team CarOLO had been founded, which
drew its members from five different institutes. In
addition, the team received support from a consor-
tium of national and international companies.

In this paper, we first introduce the 2007 DARPA
Urban Challenge and derive the basic requirements
for the car from its rules in Section 2. Section 3 de-
scribes the overall architecture of the system, which is
detailed in Section 4, describing sensor fusion, vision,
artificial intelligence (AI), and vehicle control along
with safety concepts. Section 5 describes the overall
development process and discusses quality assur-
ance and the simulator used to achieve sufficient
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testing coverage in detail. Section 6 finally describes
the evaluation of Caroline, namely the performance
during the National Qualification Event and the
DARPA Urban Challenge Final Event in Victorville,
California, the results we found, and the conclusions
to draw from our performance.

2. 2007 DARPA URBAN CHALLENGE

The 2007 DARPA Urban Challenge is the contin-
uation of the well-known Grand Challenge events
of 2004 and 2005, which were entitled “Barstow to
Primm” and “Desert Classic.” To continue the tradi-
tion of having names reflect the actual task, DARPA
named the 2007 event “Urban Challenge,” thus de-
scribing the nature of the mission to be accomplished.

The 2004 course, as shown in Figure 1, went from
Barstow, California, to Primm, Nevada, and had a to-
tal length of about 142 miles. Prior to the main event,
DARPA held a qualification, inspection, and demon-
stration for each robot. Nevertheless, none of the orig-
inal 15 vehicles managed to come even close to the
goal of successfully completing the course. With 7.4
miles (approximately 11.6 km) as the farthest distance
traveled, the challenge ended very disappointingly
and no one won the $1 million cash prize.

Thereafter, the DARPA program managers
heightened the barriers for entering the 2005 chal-

lenge significantly. They also modified the entire
quality inspection process to one involving a step-
by-step application process, including a video of
the car in action and the holding of so-called site
visits, which involved the visit of DARPA officials to
team-chosen test sites. The rules for these site visits
were very strict, e.g., determining exactly how the
courses had to be equipped and what obstacles had
to be available. From initially 195 teams, 118 were
selected for site visits, and 43 finally made it into the
National Qualification Event (NQE) at the California
Speedway in Ontario, California. The NQE consisted
of several tasks to be completed and obstacles to be
overcome autonomously by the participating vehi-
cles, including tank traps, a tunnel, speed bumps,
stationary cars to pass, and many more.

On October 5, 2005, DARPA announced the
23 teams that would participate in the final event.
The course started in Primm, Nevada, where the 2004
challenge should have ended. With a total distance of
131.6 miles (approximately 211 km) and several natu-
ral obstacles, the course was by no means easier than
the one from the year before. At the end, five teams
completed it and the rest did significantly better than
the teams the year before. The Stanford Racing Team
was awarded the $2 million first prize.

In 2007, DARPA wanted to increase the difficulty
of the requirements, in order to meet the goal set

Figure 1. 2004 DARPA Grand Challenge area between Barstow, California (A), and Primm, Nevada (B).
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by Congress and the Department of Defense that by
2015 a third of the Army’s ground combat vehicles
would operate unmanned. Having already proved
the feasibility of crossing a desert and overcoming
natural obstacles without human intervention, now a
tougher task had to be mastered. As the U.S. Armed
Forces are currently facing serious challenges in ur-
ban environments, the choice of such seemed logical.
DARPA used the good experience and knowledge
gained from the first and second Grand Challenge
events to define the tasks for the autonomous vehi-
cles. The 2007 DARPA Urban Challenge took place in
Victorville, California, as depicted in Figure 2.

The Technische Universität Braunschweig started
in June 2006 as a newcomer in the 2007 DARPA
Urban Challenge. Significantly supported by in-
dustrial partners, five institutes from the faculties
of computer science and mechanical and electri-
cal engineering equipped a 2006 Volkswagen Passat
station wagon named Caroline to participate in the
DARPA Urban Challenge as a “Track B” competitor.

Track B competitors did not receive any financial
support from the DARPA. “Track A” teams had to
submit technical proposals to get technology devel-
opment funding awards up to $1,000,000 in fall 2006.
Track B teams had to provide a 5-min video demon-

strating the vehicle’s capabilities in April 2007. Using
these videos, DARPA selected 53 teams of the initial
89 teams that advanced to the next stage in the qual-
ification process, the site visit, as conducted in the
2005 Grand Challenge.

Team CarOLO got an invitation for a site visit
that had to take place in the United States. Therefore,
team CarOLO gratefully accepted an offer from the
Southwest Research Insitute in San Antonio, Texas,
providing a location for the site visit. On June 20,
Caroline proved that she was ready for the NQE in
fall 2007. Against great odds, she showed her abil-
ities to the DARPA officials when a huge thunder-
storm hit San Antonio during the site visit. The tasks
to complete included the correct handling of inter-
section precedence, passing of vehicles, lane keep-
ing, and general safe behavior. After the demonstra-
tion, the team returned to Germany together with
Caroline.

On August 9, the team received the results of
the site visit event together with an invitation to
the next stage of the qualification process, the NQE
in Victorville, California. Being a semifinalist team,
the team returned at the end of September to the
Southwest Research Institute in San Antonio to
finalize the development and tests. Three weeks

Figure 2. 2007 DARPA Grand Challenge Area in Victorville, California.
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later, Caroline and the team arrived in Victorville,
California, and participated in the NQE. To qualify
for the Final Event, three courses had to be mas-
tered by the vehicles, each one covering a certain
part of the requirements. At the first course, called
Track A, the robots needed to merge into moving
traffic, Track B required the handling of very long
and complex routes with stationary obstacles, and
Track C tested intersections and how the vehicles
handle the blockage of roads. Performing repeatedly
in all tracks of the NQE, Caroline qualified early for
the final stage, the DARPA Urban Challenge Final
Event held on November 3. In Section 6, the overall
performance of Caroline in the NQE and the DARPA
Urban Challenge Final Event is illustrated.

3. SYSTEM ARCHITECTURE

Caroline is a standard 2006 Volkswagen Passat sta-
tion wagon equipped with a variety of sensors, actu-
ators, and computers to function as an autonomous
mobile robot. In front, two multilevel laser scanners,
one multibeam LIDAR sensor, and one radar sensor
cover a field of view up to 200 m for approaching traf-
fic or stationary obstacles. In addition, four cameras
detect and track lane markings in order to allow pre-
cise lane keeping. The stereo vision system behind

the windshield and another color camera combined
with two laser scanners mounted on the roof were in-
stalled to provide information about the drivability
of the terrain in front of the vehicle. Very similar to
the front of the vehicle, one multilevel laser scanner,
one medium-range radar, one LIDAR, and two radar-
based blind spot detectors enable Caroline to detect
obstacles at the rear. All these sensors are depicted in
Figure 3.

An array of automotive personal computers (PC)
mounted on a rack shown in Figure 4 functions as
the hardware platform for a distributed software ar-
chitecture with all internal communication based on
Ethernet. The access to Caroline’s by-wire steering,
brake, and throttle system as well as to other low-
level actuators is provided through a CANLOG III
command interface, which also connects to the vehi-
cle’s E-stop system to provide emergency stop func-
tionality even should the complete software system
described below fail. Regardless of those lower level
components described above, all computing and con-
trol hardware is based on industrial PC technology,
thereby reducing hardware variety and simplifying
failure management and component replacement.

The development of Caroline was divided among
a number of institutes and disciplines, including
faculties for computer science and mechanical and

Figure 3. The perception system.
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Figure 4. Computer rack and power supply.

electrical engineering. Mirroring this internal struc-
ture, Caroline’s architecture is grouped into eight
principal modules, interconnected with predefined
interfaces as shown in Figure 5: sensor data acqui-
sition, sensor data fusion, image processing, digital
map, AI, vehicle path planning and low-level control,
supervisory watchdog and online diagnosis, teleme-
try, and data storage for offline analysis. Owing to the
intentionally linear signal flow between each function
module without major signal loops, we were able to
develop different modules independently and with
minimum interference.

Starting at the bottom of this linear flow, the data
acquisition unit provides necessary hard- and soft-
ware modules to collect and process incoming data
from all active sensors for object recognition. Because
all of the sensors used are standard components orig-
inating from contemporary automotive driver assis-
tance systems, they are equipped with a controller
area network (CAN) communication interface. Tak-
ing into account the limitation of this bus standard
regarding data throughput and determinism, a pri-
vate sensor CAN was chosen for each sensor to keep
latencies small and to avoid bus conflicts.

The acquisition of global positioning system
(GPS) and inertial navigation system (INS) data (re-
ferred as ego state in the following) was moved di-
rectly into the real-time vehicle control unit in order
to avoid large latencies within the closed-loop dy-
namic control. The time of day is obtained from the
GPS and distributed via the network time protocol
(NTP) to all subsystems.

Incoming video data are sampled from the
assigned IEEE 1394 interface, preprocessed and in-
terpreted directly on the image acquisition PCs to
avoid overload of the vehicle’s internal network by
image data. Lane detection data are directly passed
to the AI. The stereo vision system delivers three-
dimensional (3D) scan points along with area data de-
scribing the drivability of the road. The data are fused
with further scan points obtained from the laser scan-
ners and area data from the additional color camera
observing the ground in front of the vehicle. This
fusion results in a drivability grid that is sent to the
AI module.

Furthermore, following Caroline’s signal flow,
sensor data of all object-recognition sensors are
processed within a central sensor data fusion unit as
described in Section 4.1, which transmits the object-
based vehicle’s surroundings containing all static and
dynamic targets in Caroline’s field of view to the dig-
ital map. The digital map combines online environ-
mental information with available offline informa-
tion generated from mission definition files (MDFs)
and route network definition files (RNDFs) provided
for the mission. The combined data are the basis for
the AI to generate driving decisions based on a dis-
tributed architecture for mobile navigation scheme
(DAMN) as proposed by Rosenblatt (1997) and de-
scribed in Section 4.3.

The driving commands obtained, e.g., “follow a
given road,” are issued to the soft real-time control
module, which carries out trajectory generation
and optimization based on driving dynamics of the

Journal of Field Robotics DOI 10.1002/rob
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vehicle. The driving trajectories generated are then
passed along into hard real-time control that ad-
dresses the vehicle actuators.

All modules previously described are supervised
by a central watchdog process with the possibility to
kill and restart one or several processes, computers,
or sensors independently. Thus, a maximum of self-
healing capability is installed in Caroline’s systems.

The visualization module is used during devel-
opment in order to display all exchanged object data.
The data consist of, e.g., obstacles, lanes, terrain driv-
ability, the planned path, and MDF. A recorder and
a player module that logs data for the purpose of
offline analysis are also integrated in this module.

4. SYSTEM MODULES

Caroline’s software system consists of five modules.
Tasks to be mastered in order to compete in the 2007
DARPA Urban Challenge are environment recogni-
tion, road finding, situation assessment, and vehicle
control supervised by a safety module. These core
modules are described below.

4.1. Sensor Fusion

Perception is one of Caroline’s key systems. The sys-
tem detects obstacles as well as the drivability of the
environment. The sensor fusion system is separated
in two parts. The first one is responsible for obsta-
bles, such as other cars, walls, or pedestrians. The
other one takes care of the drivability of the environ-
ment. Thus, it is possible to keep the car on the road
even in rough environments. Based on this informa-
tion, the AI is able to find a safe path through traffic.
The perception system will be described in greater
detail in the following sections. The next section in-
troduces the sensor concept, followed by the object-
based data fusion and the grid-based fusion of the
drivability.

4.1.1. Sensor Concept

A variety of sensor types originating from the field of
driver assistance systems were chosen to provide de-
tection of static and dynamic obstacles in the vehicle’s
surroundings as depicted in Figure 3:

• Below the license plate: A stationary-beam LI-
DAR sensor placed in the front and rear of the
vehicle, with a range of approximately 200 m

with an opening angle of 12 deg. The unit has
an internal preprocessing stage and thus de-
livers its readings in an object-oriented fash-
ion, providing target distance, target width,
and relative target velocity with respect to the
car’s fixed sensor coordinate frame.

• White box below four cameras mounted on
the roof: 24-GHz radar sensors were added
to the front, rear, rear left, and right side
of the vehicle. Whereas the center front and
rear sensors provide a detection range of ap-
proximately 150 m with an opening angle of
40 deg, the rear right and left sensors func-
tion as blind-spot detectors with a range of
15 m and an opening angle of 140 deg due
to their specific antenna structure. The front
sensor acts as a stand-alone unit delivering
object-oriented target data, such as position
and velocity, through its assigned external
control unit (ECU). The three radar sensors in
the rear section operate as a combined sensor
cluster using an additional ECU, providing
object-oriented target data in the same fash-
ion as the front system. From the perspective
of the postprocessing fusion system, the three
rear sensors can therefore be regarded as one
unit.

• Laser scanner mounted on the left- and right-
hand sides: Two Ibeo ALASCA XT laser scan-
ners were installed in the vehicle’s front sec-
tion, each providing an opening angle of
240 deg with a detection range of approx-
imately 60 m. The raw measurement data
of both front laser scanners are preprocessed
and fused on their corresponding ECU, deliv-
ering complex object-oriented target descrip-
tions consisting of target contour information,
target velocity, and additional classification
information. Additionally, the raw scan data
of both laser scanners can be read by the fu-
sion system’s grid-based subsection.

• One Ibeo ML laser scanner was added to the
rear side, providing similar detection capabil-
ities as the two front sensors, with a reduced
opening angle of 180 deg due to its mount-
ing position. All Ibeo sensors are based on
a four-plane scanning principle with a ver-
tical opening angle of 3.2 deg between the
top and bottom scan plane. This opening an-
gle enables smaller pitch movements of the
vehicle to be covered.

Journal of Field Robotics DOI 10.1002/rob
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• Two SICK LMS-291 laser scanners were
mounted on the vehicle’s front roof
section. These scanners are based on a
single-plane technology. They were set to
measure the terrain profile at 10 and 20 m,
respectively. The view angle was limited by
software to 120 deg.

• A stereo vision system mounted behind the
vehicle’s front window covers an area of ap-
proximately 60 deg within a range of 50
m, providing 3D terrain profile data for
all stereo vision points retrieved. A simple
classification into the driveway, curb, and
obstacles classes is also available.

• Between the four cameras on the roof: A
universal serial bus (USB)–based color mono
camera installed on the front roof section,
covering an opening angle of approximately
60 deg.

The sensors’ view areas are shown in Figure 6. These
view areas overlap for a more reliable view of the
environment.

The sensor architecture described reflects the hy-
brid postprocessing scheme applied. Whereas the
first four sensors deliver their data in an object-
oriented fashion and are therefore treated within

the system’s object tracking and data fusion stage,
the three last sensors described are evaluated based
on their raw measurement data in the grid-based
subsection. A distributed data fusion system con-
sisting of three interconnected units was set up. To
equally balance the available computing power, the
object tracking system was split into two indepen-
dent modules, covering the front and rear sections
independently. Therefore, two automotive computers
carry out data acquisition and data fusion of the front
and rear object detecting sensors, and the third PC
is used to fuse the raw sensor readings of the SICK
scanners, stereo vision system, and mono color cam-
era as shown in Figure 7.

4.1.2. Object Tracking Fusion

The object fusion system is based on a pipes-and-
filters pattern as depicted in Figure 8. All incoming
sensor data are queued and then processed sequen-
tially using a first-in-first-out strategy. Within the first
step, data association is carried out in order to as-
sign incoming sensor objects to their corresponding
tracks in the fusion system that are taken from a
real-time track database. In case of a positive match
between an existing track and incoming sensor object,

Figure 6. Sensor view areas.

Journal of Field Robotics DOI 10.1002/rob
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Figure 7. Fusion architecture.

this pairing is then pushed into the processing queue
of the system’s extended Kalman filter (EKF) in order
to correct the track with new measurement data. If no
match can be found, the sensor object is regarded as a
potential new target and pushed into the pretracking

system. Within pretracking, sensor data are justified
against time and all other sensors, taking into account
sensor redundancy when applicable. Pretracking and
data association will be described later in greater
detail.

Figure 8. Object fusion system architecture.
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If a sensor object has reached a certain level of
justification, a new track will be instantiated and
pushed into the real-time track database. Parallel to
data association, pretracking, and final object track-
ing, a track management unit periodically scans the
track database for “dead“ tracks, i.e., fusion objects
that have not been updated for a certain amount
of time. In addition to this garbage collection, all valid
tracks are compared to each other for track merg-
ing and track splitting, which is necessary to handle
situations including a passenger entering or leaving
his vehicle or any other situation in which two ob-
jects in the real world converge or split. Instead of
transferring a whole-track database image to down-
stream modules, create, update, and delete messages
of the track database are issued via the network.
Every client is then capable of maintaining its own
track database. Therefore, network load can be sig-
nificantly reduced without any loss of information.

Data association and pretracking Data associa-
tion and pretracking have a key functionality within
Caroline’s fusion system. Imperfect data association
leads inevitably to incorrect tracks, whereas incorrect
track initialization during pretracking leads to im-
perfect data association, because correct tracks and
false alarms will then compete for incoming measure-
ment data. With this central position, the association
and pretracking stage dominates the state estimator
in the main tracking stage, because no state estima-
tor can transform falsely associated sensor readings
into useful update information for a track. In classi-
cal tracking approaches in which objects are mostly
described through a state vector consisting of a gen-
eralized object position, velocity, and, if applicable,
further derivatives of these quantities, data associa-
tion can be performed in a point-to-point matching
process.

Within Caroline’s fusion system, these ap-
proaches had to be extended in order to handle
spread objects with complex shapes. Three different
types of sensor objects have to be processed: complex
contours delivered by laser scanners, line-shaped ob-
jects delivered by the LIDAR system, and classical
point-shaped objects received from radar sensors. It is
not possible to define a common general object posi-
tion seen by all sensors, because each sensor will most
likely see the target differently. For example, the point
of reflection delivered from a radar is unknown com-
pared to precise contour measurements gained from
a laser scanner. Additionally, as the vehicle moves
through the real world, the point of reflection of each

sensor type moves on the outline of a real-world ob-
ject. Therefore a multipoint track model was chosen,
describing a detected object by an arbitrary number
of contour points and postulating a common move-
ment vector following a rigid-body assumption. This
way each contour measurement can be matched to
the tracked contour point with the best fit. A two-
staged data association process was set up, with the
first stage serving as a justification as to whether
track and measurement describe the same real-world
object and the second stage calculating the optimal
contour association between measured and tracked
object points. Within stage 1, a weighting function
counting for the minimum Euclidean distance and
similarity of velocities is calculated:

wi,j = a · min
[∣∣xi

k − x
j

l

∣∣,∀k, l] + b · |vi − vj |, (1)

with wi,j being a scalar weight for association be-
tween track i and measurement j , tracked and mea-
sured velocity vectors vi , vj , xi

k , x
j

l being the kth and
lth contour point position of track i, and measure-
ment j and a, b serving as tuning parameters. A
threshold for this weight is further defined and an as-
sociation below that threshold level will be pushed
into stage 2.

In stage 2, an optimal match between all mea-
sured and tracked contour points is calculated based
on an association matrix:

� =
⎡
⎣

∣∣xi
1 − x

j

1

∣∣ . . .
∣∣xi

1 − x
j

l

∣∣
. . . . . . . . .∣∣xi

k − x
j

1

∣∣ . . .
∣∣xi

k − x
j

l

∣∣
⎤
⎦ . (2)

Optimization can be carried out with standard al-
gorithms such as the Hungarian/Munkres method,
nearest-neighbor, or similar approaches. We used the
fast minimum algorithm. This two-staged associa-
tion process avoids unnecessary computational load
on the system, because unlikely associations will be
filtered out in stage 1 while the computational chal-
lenging minimization is carried out only for positive
matches.

During pretracking, incoming sensor data are
first associated with preliminary track objects (pre-
tracks) using methods similar to those described
above. A pretrack carries along a vector of sensor as-
signments, storing for each sensor type the last as-
signed sensor object ID. A simple Kalman filter based
on a constant velocity motion model is calculated for
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each pretrack to update its position given by incom-
ing sensor data. In addition to the vector of sensor
assignments, an update counter is carried along, stor-
ing the number of positive association events. Taking
into account sensor redundancies read from a config-
uration file, a threshold for track activation is eval-
uated based on this update counter, depending on
the level of redundancy in the affected observation
area of that object. A simple description language was
implemented to efficiently model these redundancies
and to influence the update count threshold for track
activation, e.g.,

polygon={0,2;10,2;10,-2;0,-2}
modifyCount=2000
condition=( RADARFront &&

!( LASERFront || LIDARFront ) ),

which means, for the fusion system, “activate track
in a 2 × 10 m, box-shaped view area after 2,000 pos-
itive matches when it is seen only by the front radar
system and not by the laser scanners or LIDAR sen-
sors,” which, in this case, serves as protection against
random, unstable false alarms from the radar sensor
directly in front of the vehicle.

Tracking and data fusion For the main track-
ing algorithm, a model-switching EKF based on
two-track motion models was implemented. A six-
dimensional (6D) motion model describes fast-
moving objects using a state vector:

x6D =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1...n

y1...n

v

a

α

ω

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

with x1...n and y1...n being the x and y coordinates
of the n contour points, the common velocity, ac-
celeration, course angle, and course angle velocity
with respect to the global Earth-fixed reference frame.
For slow or static objects, a simpler four-dimensional
(4D) state vector was chosen:

x4D =

⎛
⎜⎜⎝

x1...n

y1...n

v

a

⎞
⎟⎟⎠ , (4)

thus taking into account that the majority of detected
objects are of a rather static nature and distribution
of available sensor information in many unnecessary
state variables is suboptimal in that case. As seen in
Eqs. (4) and (5), the classical state vector has been en-
riched by the number of contour points, thus mak-
ing it necessary to extend the Kalman filter algorithm
(Kalman, 1960) to handle multiple positions within
the same state vector. Similarly, we define the sensor
measurement vector for a sensor object consisting of
m contour points:

y =

⎛
⎜⎜⎝

x1...m

y1...m

vx

vy

⎞
⎟⎟⎠ , (5)

with x1, y1, vx , vy being measured contour point
x and y coordinates as well as x- and y-velocity
components with respect to the global Earth-fixed ref-
erence frame. Postulating a common position noise
covariance for all contour points within track and
measurement, the update algorithm can be extended
as follows:

xk(v + 1|v) = f (xk(v)),

P (v + 1|v) = FT · P · F + Q,

sk,l = yl(v + 1) − h(xk(v + 1|v)),

S(v + 1) = H · P (v + 1|v) · HT + R,

K(v + 1) = P (v + 1|v) · HT · S(v + 1)−1,

rk,l(v + 1) = K(v + 1) · sk,l(v + 1), (6)

with xk being the track state vector regarding contour
point k, f (x) the nonlinear system transfer function,
P the common state covariance matrix, F the system
transfer Jacobian, Q the system noise covariance, sk,l

the innovation vector of tracked contour point k com-
pared with measured point l of the associated sensor
object, yl the sensor measurement vector regarding
measured point l, h(x) the nonlinear system output
function, S the common innovation covariance ma-
trix, H the system output Jacobian, R the estimated
measurement noise, K the Kalman gain in this update
cycle, and rk,l the correction vector for tracked con-
tour point k getting updated with measured point l.

The tracked contour points can then be updated
by adding the first two components of the associated
vector rk,l . To calculate updated common velocity,
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acceleration, course angle, and course angle velocity
in the 6D movement model, the mean value for
vector rk,l is calculated over all given contour point
associations:

rmean = 1
N

N∑
k,l=1

rk,l, (7)

with N being the total number of acquired contour
point matches within the second stage of data associ-
ation. Corrected common values can then be acquired
by adding the last four components of vector rmean to
the corresponding elements in the track state vector.

Obviously, by postulating a common system and
measurement noise covariance for all contour points,
Kalman gain can be computed once per update cycle.
Although it would theoretically be possible to calcu-
late a separate Kalman gain for each tracked contour
point and therefore remove the limitations to system
and measurement covariance, this would lead to an
N -times bigger computational load, because matrix
inversion of the system innovation covariance ma-
trix is the most costly part of the algorithm. In this
case, the algorithm would simply calculate a sepa-
rate Kalman filter for each contour point, which is
not practically realizable in a real-time application.
In the approach described we have no significantly

higher computational effort compared to a standard
EKF, while at the same time realizing spread-contour
functionality and removing the need for a stable point
of reference for tracked objects.

To prevent the track from being flooded with con-
tour points, a garbage collection mechanism was in-
stalled by carrying along update counters for each
contour point, which stores the last update time
stamp and the overall number of updates counted to
that point in time. In this manner, inactive contour
points can be detected easily and removed from the
track’s point list.

Object splitting and termination Because of the
track’s polyline object model, it is necessary to imple-
ment a track splitting algorithm. If there is no such
method, one track can collect points from many ob-
jects and grow to a rather huge but meaningless track.
For example, a person dropping off a car and move-
ing away would still be part of the car track because
of the data association algorithm depicted in Figure 9.
When the person just dropped off and is still near the
car, it will become one track. After the person moves
away from the car, the contour points will still be up-
dated because there is an object at the position of the
car and the person is also still there. Between these
two objects there is nothing but the polyline from the
track still describing an outline of an object.

Figure 9. Person who drops off a car. From left to right: Person still in the car, person just dropped off, person moves away.
From top to bottom: Reality, track without splitting, track after splitting.
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To detect these false tracks, an algorithm was de-
veloped to split such tracks. The basic idea is to ex-
amine the objects based on the raw sensor object data
and find indepentent sets of objects. These indepen-
dent sets will become the new tracks. Normally, there
are no such sets, but in the event of an unsplit track,
there are two or more partitions. Polygonal objects
around the track will be described as a planar undi-
rected two-colored graph. The algorithm contains the
following steps:

1. Build planar undirected colorable rectangu-
lar graph. Set the color of every node to
black.

2. Set the polylines of every sensor object of the
track to white.

3. Search for independent sets in the graph
(Cormen, Leiserson, Rivest, & Stein, 2002).

4. If more than one set is found, build
new tracks from the points describing the
outlines.

The algorithm runs periodically during track garbage
collection. Although complexity depends on the max-
imal area a covered by a track O(a), this algorithm
can be implemented efficiently with graphic libraries.

4.1.3. Grid-Based fusion

In contrast to the object tracking subsystem, the grid
fusion system does not describe agents in the vehi-
cle’s environment with discrete state vectors but in-
stead discretizes the whole environment into a rect-
angular matrix (grid) structure. Each grid cell carries
a number of assigned features:

• a height value expressed in the global Earth-
fixed reference frame

• a gradient value describing the height differ-
ence to neighboring cells

• a set of Dempster–Shafer probability masses
counting for the hypotheses undrivable, driv-
able, and unknown

• a status flag stating whether measurement
data have been stored within the correspond-
ing cell

• an update time stamp storing the last time a
cell update was carried out

Data structure The biggest challenge with grid-
based models in an automotive environment is the
need for real-time operation. High maneuvering

speeds in automotive applications require update
rates greater than 10 Hz, which is almost too low
because this equals a travel distance of 1.4 m at
normal urban speeds. The approach of discretizing
the environment into grid cells leads to significantly
high memory requirements and therefore calls for ef-
ficient data structures. As an example, the storage
of a view area of only 100 × 100 m with a resolu-
tion of 25 cm generates 160,000 grid cells. Assum-
ing a four-byte floating point value for each feature
as described above, this grid extends up to 3 Mbyte.
Together with an update rate of 10 Hz, this leads
to a constant data throughput of 256 Mbit/s, which
in any case is more than the standard automotive
bus infrastructure would be able to handle. Efficient
algorithms and data reduction prior to serialization is
therefore the key to a successful application. For ad-
dressing these issues we implemented a rolling grid
data structure wherein the vehicle’s own position is
a pointer to the corresponding grid cell. This posi-
tion will be regarded as a virtual origin for all incom-
ing sensor readings, which can then be subsequently
accessed by moving through the double-linked data
structure relative to that virtual origin. The main grid
is again subdivided into subgrids whose sizes match
the processor’s caching mechanism for optimal us-
age of the available computing resources. Although
it would theoretically be possible to make the sur-
face large enough to cover the expected maneuver-
ing area, this would lead to extremely high memory
usage and is therefore not feasible. Instead, when the
vehicle moves through the world, the reference point
shifts along the double-linked spherical list. As soon
as it crosses the border from one subgrid to the next,
the corresponding subgrids at the new horizon of the
data structure are cleared and are therefore available
for new data storage.

Treatment of laser and stereo vision point data
As the first step within grid data fusion, the 3D
point clouds received from the laser scanners and
stereo vision system are transformed into the global
Earth-fixed reference frame taking vehicle attitude
into account (roll, pitch, and yaw) as acquired from
the GPS/INS unit and sensor-specific calibration in-
formation. The accuracy of these transformations is
crucial to subsequent postprocessing. Vehicle height
as delivered by the GPS is especially important and is
therefore subject to further filtering and justification.
For each measured point, the corresponding grid cell
is retrieved and a ray-tracing algorithm (Bresenham)
is carried out to update all cells from the sensor
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coordinate system’s origin to the measured target
point. Several versions of the Bresenham algorithm
are described in the literature; in this case we will in-
troduce the 2D version following Pitteway (1967) for
reasons of simplicity.

The lines are traced similar to the functionality
of a plotter, which is basically the origin of that algo-
rithm. On the way through the traced lines, each cell
passed is updated according to following rules:

• If the cell lies on the path between sensor ori-
gin and measured target point and its height
value exceeds the current Bresenham line
height value, reduce the stored value to that
of the current Bresenham line.

• If the cell is the end point of the Bresenham
line, store the associated height value.

• In both cases, store update time stamp and
mark that cell as having been measured.

The grid is updated following the direct optical travel
path of any laser ray (or virtual stereo vision ray)
starting at the sensor origin and ending at the target
point as depicted in Figure 10. This model follows the
assumption that any obstacle would block the pass-
ing optical ray and therefore any cells on the traveling
path must be lower than the ray itself.

Data fusion Parallel to entering the 3D point,
data acquired from laser scanners and stereo
vision, vision-based classification are processed us-
ing a Dempster–Shafer approach (Shafer, 1976, 1990).
A sensor model was created for each data source,
mapping the sensor-specific classification into the
Dempster–Shafer probability mass set, which can
then be fused into the existing cell probability masses

using Dempster’s rule of combination:

m∗
c (A) = mc(A)

⊕
mm(A) = 1

1 − K∑
B∩C=A �=∅

mc(B)mm(C), (8)

with mc, mm being the cell and measurement prob-
ability mass set and m∗

c the combined new set of
masses for the regarded cell, whereas the placehold-
ers A, B, and C can describe any of the three hypothe-
ses drivable, undrivable, and unknown. The term K

expresses the amount of conflict between existing cell
data and incoming measurement, with

K =
∑

B∩C=∅
mc(B)mm(C). (9)

The mass set mm has to be modeled out of the ac-
quired sensor data.

With respect to the stereo vision system, which is
capable of classifying retrieved point clouds into the
classes road, curb, and obstacle, this mapping is triv-
ial and can be done by assigning an appropriate con-
stant mass set to each classification result. The exact
values of these masses can then be subject to further
tuning in order to trim the fusion system for maxi-
mum performance given real sensor data.

In the case of the mono vision system, Caroline
assigns each pixel in the retrieved image a drivabil-
ity value Pd between 0.0 representing undrivable and
1.0 representing fully drivable; a mapping function
is then applied, which creates the three desired mass
values D, drivable; U , undrivable; and N , unknown,

Figure 10. Ray update mechanism.
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that can be either drivable or undrivable as follows:

mm(D) = Dmax · Pd,

mm(N ) = (1 − Dmax),

mm(U ) = 1 − mm(D) − mm(N ). (10)

The value Dmax will serve as a tuning parameter, in-
fluencing the maximum trust placed into the mono
vision system and based on the quality of its incom-
ing data. The classification mechanism of the stereo
vision system is beyond the scope of this paper and
will therefore not be explained in detail. Basically,
classification within the stereo system is based on
generating a mesh height model out of the point
cloud obtained and applying adaptive thresholds to
this mesh structure in order to characterize roadway,
curb, and obstacles. The mono vision system is based
on a approach similar to that of Thrun et al. (2006).

Prior to mapping the mono vision data into the
grid data structure, the image must be transformed
into the global world reference frame using the
known camera calibration (Heikkilä & Silvén, 1996)

mm(U ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0,

∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ ≤ GDmax

Umax

GUmin − GDmax

·
(∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ − GDmax

)
, GDmax <

∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ ≤ GUmin ,

Umax,

∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ > GUmin

mm(N ) = 1 − mm(D) − mm(U ), (11)

and height information, which can easily be retrieved
from the grid itself.

The creation of a sensor model for the 3D height
data is more complex: First, a gradient field is calcu-
lated from the stored height profile. In Caroline’s grid
fusion system, the grid is mapped into image space
by conversion into a grayscale image data struc-
ture, with intensity counting for cell height values.
Subsequently, the Sobel operator is applied in both
image directions. The results of both convolutions
are summed and, after proper normalization, trans-
formed back into the grid structure, storing the gra-
dient values ∂h/∂x∂y for each grid cell. Any exist-
ing obstacle will usually lead to a bigger peak within
the gradient field, which can easily be detected. Dur-
ing the process of forward and reverse transforma-
tion, the grid structure in and out of a grayscale im-

age would initially appear to be redundant, because
the gradient operator could easily be applied to the
height field itself. Yet by transforming the informa-
tion into a commonly used image format, the broad
variety of image processing algorithms and operators
found in standard image processing toolkits, such as
the OpenCV library (OpenCV Website, 2007), can eas-
ily be applied, thereby significantly reducing devel-
opment time.

The acquired gradient values will then subse-
quently be mapped into a Dempster–Shafer repre-
sentation, which leads to the desired sensor model
combining all acquired height values. Similar to the
method with the mono vision system, a mapping
function is defined as follows:

mm(D) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dmax,

∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ ≤ GDmax

0, GDmax <

∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ ≤ GUmin ,

0,

∣∣∣∣ ∂h

∂x∂y

∣∣∣∣ > GUmin

with Dmax and Umax serving as parameters for max-
imum drivability/undrivability assigned to the gra-
dient field, GDmax being the maximum gradient value
that is still considered to be fully drivable and GUmin

the minimum gradient value that is considered to be
fully undrivable. By carefully tuning those four pa-
rameters, it is possible to suppress unwanted smaller
gradients resulting, e.g., from unimportant depres-
sions and knolls in the road while supporting higher
gradients as originating from curbs or berms in order
to correctly fuse this information into the grid cells by
using Eq. (8).

4.2. Vision

Caroline’s computer vision system consists of two
separate systems. The first is a monocular color
segmentation-based system that classifies the ground
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in front of the car as drivable, undrivable, or un-
known. It assists in situations in which the drivable
terrain and the surrounding area (e.g., grass, concrete,
or shrubs) differ in color. The output of this algorithm
contributes to the grid-based fusion as described in
Section 4.1.3. The second vision system is a multiview
lane detection that identifies the different kinds of
lanes described by DARPA, such as broken and con-
tinuous as well as white and yellow lane markings.
Using four high-resolution color cameras and state-
of-the-art graphics hardware, it detects its own lane
and the two adjacent lanes to the left and right with a
field of view of 175 deg at up to 35 m. The output of
the lane detection algorithm is directly processed by
the AI.

4.2.1. Lane Detection

Detecting lane markings on roads in an urban
environment is a difficult but very important task.
Although concepts exist that depend on additional
markings, such as magnetic bands in the street, a
more useful method must make intelligent use of
what is available on today’s roads. Toward this
goal, we developed a lane detection system that is
capable of analyzing several high-resolution images
simultaneously and in real time. Our lane fitting
algorithm uses a very versatile lane model and is
robust with respect to outliers and artifacts. It also
takes into account lane markings of adjacent lanes.
It copes with different road setups, lane markings,
and lighting situations. The lane detection process is
divided into four parts, as shown in Figure 11. First,
the raw images are downloaded from the cameras
via the IEEE 1394b interface. Second, they are up-
loaded to graphics hardware, the color information is
retrieved from the raw Bayer pattern, and the images

are transformed into a single top-view perspective
(Figure 12). Third, lane marking features are detected
in the image (Figure 13). In the last step, a lane model
is adjusted to match the features detected.

Data acquisition Three cameras with field of
view of 58 deg cover the area in front of the car.
A 22-deg-telephoto-lens camera provides a high-
resolution view of the street ahead of the car. The four
1,376 × 600 8-bit raw Bayer images are synchronously
acquired via the IEEE 1394b interface at 14 frames per
second (fps). The images are uploaded to the graph-
ics card and converted to the red–green–blue (RGB)
color space using bilinear interpolation. As the lane
fitting algorithm works in a global coordinate system,
the position and rotation of the vehicle, also referred
to as ego state, must be available. A transformation
function fego : pcar �→ pworld can be defined if the ego
state is known, where pcar is a point in the car’s ref-
erence system and pworld is a point in a global Carte-
sian reference system. An inertial measurement unit
(IMU) corrected by a GPS signal was used to generate
the ego state.

Multiview fusion Because local changes in the
light intensity are an indicator for white lines and
local saturation changes indicate colored lane mark-
ings, the RGB images are converted to the HSV
(hue, saturation, value) color space. This color space
encodes saturation and color in separate chan-
nels. Knowing the intrinsic and extrinsic parame-
ters of the camera, and including the orientation
of the vehicle (pitch and roll), a lookup function
that converts top-view coordinates to image coor-
dinates can be used to create a single HSV top-
view image. The lookup operation is applied to
each source image. In regions where the projected
images overlap, precedence Itele > Imiddle > Ileft >

Iright is maintained as shown in Figure 12. The region

Figure 11. The four stages of the lane detection algorithm.
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Figure 12. The four different images (a, RGB color space used for visualization) are merged to a single HSV top-view
image (b).

Figure 13. The direction (a), color (b), and quality (c) of the features are encoded in an RGB image downloaded from the
graphics card. For visualization purposes, the channels encoding the direction (a) and color (b) are colorized.

of interest covers the area of up to 30 m in front of the
vehicle and 12 m to the left and right at a scale of 35
pixels per meter.

Features Lane markings can be described as a
thin pattern of local differences of the road surface
that cover long distances. Therefore, the basic con-
cept underlying feature detection involves identifi-
cation of these local differences in regions of 8 × 8
pixels that resemble road patches of approximately
25 × 25 cm. Analyzing the HSV top-view image,
the feature detection’s output is a downsampled fea-
ture image that encodes the quality, direction, and
color, i.e., white or yellow, of the lane features in
Figure 13. As lane markings exist in various colors,
qualities, and widths and appear differently under

changing lighting conditions, only a few stringent as-
sumptions apply. When analyzing the top-view im-
age for features, we check three criteria that must be
present:

1. The local contrast vdiff must exceed a cer-
tain threshold. The local contrast is the differ-
ence between the local minimal and maximal
values: vdiff = vmax − vmin.

2. Analyzing a local adaptive histogram, the
distance bdiff between the two largest bins
bhigh and blow must exceed a certain thresh-
old. This is because it can be assumed that
blow contains pixels depicting the street and
bhigh identifies the lane marking.
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3. The pixels in bhigh must have a recognizable
shape and orientation. For several discrete
orientations, the ratio of the variances of the
pixels’ x and y coordinates is checked.

A detailed description is given in Algorithm 1
(see also Figure 14). As this algorithm is prone to
discretization errors, supersampling improves the
quality of the feature detection.

Algorithm 1 Feature detection algorithm

Data: An 8×8 region of a HSV top view image,
thresholds tcon, thist , tdir and tcol

Result: A feature quality q, direction a ∈ { 0, 22.5, . . . ,
157.5 } and color c ∈ { white, yellow, undecided }

1 for the saturation and lightness channel do
2 vdiff = vmax − vmin; vmax and vmin are the maximal

and minimal values of the current channel
3 If vdiff < tcon then

4 break;
5 end
6 compute adaptive histogram;
7 determine two largest bins bhigh and blow , Fig. 14(b) ;
8 bdiff = bhigh − blow ;
9 If bdiff < thist then

10 break;
11 end
12 set of pixels phigh = pixels in bhigh;
13 determine center of mass R of phigh;
14 initialize rmax and amax to 0;
15 for i = 0; i <= 157.5; i = i + 22.5 do
16 rotate phigh around R by i degrees. determine

ratio of variances r = V ar(X)
V ar(Y ) ;

17 end
18 if rmax < tdir then
19 break;
20 end
21 label this region as a feature;
22 If current channel is lightness then
23 qwhite = bdiff ; awhite = amax

24 else
25 qyellow = bdiff ; ayellow = amax

26 end
27 end
28 If qwhite > tcol & qwhite > qyellow then

29 c = white; a = awhite

30 end
31 if qyellow > tcol & qyellow > qwhite then

32 c = yellow; a = ayellow

33 end
34 q = max(qwhite, qyellow);

Lane model The lane model consists of con-
nected lane segments. Each segment si is described by
a length li (given parameter), a width wi and an angle
di = αi − αi−1 describing the difference of orientation
between this segment and the previous one as shown
in Figure 15. The first segment is initially placed on
the current coordinates of the vehicle and facing in
the driving direction, assuming that the vehicle is ac-
tually located on the street. Knowing the position c0
of the initial segment as well as the lengths li and
the angular changes di of all segments, the position
pi and global orientation αi of each segment can be
computed. Each segment contains information as to
whether the vehicle’s lane is confined by lane mark-
ings and whether additional lanes to the left and right
exist. Straight streets, sharp curves, and a mixture of
both can all be described by the model.

Lane fitting The main goal of the lane fitting algo-
rithm is to find a parameter set for a lane model that
explains the features found in the current top-view
image and the previous frames. To create a global
model of the lane, all feature points are mapped to
world space coordinates and inserted into a list lp.
This is done using the function fego : pcar �→ pworld
defined by the current ego state. Old data, i.e., feature
points gathered during previous frames, may be kept
if the features of a single image are too sparse. For
each frame, the existing lane model or an initial guess
is used to define four regions of interest as shown in
Figure 16(a). These are the regions expected to con-
tain the own lane’s markings and the lane markings
of the adjoining lanes. If a feature is inside such a re-
gion, it is labeled as outer left, left, right, or outer right.
Otherwise, it is discarded. Afterward, features from
previous frames are mixed with the new data as de-
picted in Figure 16(b).

As the first currently visible segment sf of the
lane model is determined, older segments are no
longer considered. If the list of lane segments is
empty, it is initialized with s0 ← sf . Starting from
sf , each segment si is estimated (or reestimated if it
has previously been estimated). Therefore, an initial
guess as to the orientation αi of si is made as shown
in Figure 15. All local features relevant for estimat-
ing si are rotated by αi around the starting point pi

of si . A RANSAC algorithm is used to estimate the
parameter di and wi : Iteratively, two feature points
px and py are chosen. Assuming that they are lo-
cated on the lane markings they were labeled for, the
gradient gi = mi/li as well as the width wi are de-
rived from their coordinates. All features that are also
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Figure 14. 8 × 8 pixel regions of the top-view image (a, top) are tested for possible features. The distance between the two
largest bins blow (b, blue) and bhigh (b, red) of the histogram determines the quality of the feature. The pixels gathered in
bhigh must be arranged in a directed shape (a, red area).

Figure 15. pi , αi , li , and lgap identify the features relevant for si . After rotating around αi , a RANSAC fitting eliminates
outliers among the features.

sufficiently described by gi and wi are counted as in-
liers. This process is repeated n times, and the param-
eter set with the most inliers is used to define si . A
quality function q takes into account the ratio of in-
liers and outliers, the amount of inliers, and the qual-

ity of the features and states the quality of the seg-
ment. The quality is computed for every region of
interest (outer left, left, right, and outer right). If the
maximum of these qualities exceeds a threshold tq ,
the segment is considered to be valid and the next
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Figure 16. Regions of interest (a, blue boxes) determine to which lane marking features are assigned. Afterward, old and
new features are mixed (b).

segment si+1 is estimated. After all segments are es-
timated as shown in Figure 17, a proposal about the
lane markings’ colors can be made by looking at the
inliers’ average color.

Results and evaluation The algorithm was thor-
oughly tested on several sites in northern Germany
and Texas. A frame rate of 10 fps could be main-
tained using a 2-GHz Intel Core 2 Duo with a GeForce
7600 GTS graphics card. The testing sessions in-
cluded different weather and lighting conditions. The
amount of false positives was reduced significantly
by utilizing the vehicle’s other sensors. The objects
detected by LIDAR and radar sensors were used to
mask out regions in the feature image where other

cars, walls, cones, and poles caused irritating artifacts
in the top-view image.

4.2.2. Area Processor

The area processor consists of a single color camera
whose images are interpreted by a color segmenta-
tion algorithm suitable for urban environments. This
algorithm separates an image into areas of drivable
and nondrivable terrain. Assuming that a part of the
image is known to be drivable terrain, other parts of
the image are classified by comparing the Euclidean
distance of each pixel’s color to the mean colors of
the drivable area in real time. Moving the search

Figure 17. The lane model reprojected onto the original images.
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area depending on each frame’s result ensures tem-
poral consistency and coherence. Furthermore, the
algorithm classifies artifacts such as white and yel-
low lane markings and hard shadows as areas of un-
known drivability. Although Caroline is able to per-
form basic driving tasks without this algorithm, it is
needed in situations when terrain cannot be distin-
guished by other sensors, i.e., sections without proper
lane markings, streets without high curbs, and off-
road tracks.

Related work As a foundation for the area de-
tection algorithm, we used the real-time approach
suggested by Thrun et al. (2006) in the 2005 DARPA
Grand Challenge. The basic idea is to consider a given
region in the actual image as drivable. The predom-
inant mean color values in that area are retrieved
and compared to the pixel values in the entire im-
age. Similar pixels are marked as drivable. The al-
gorithm was designed for off-road terrain; therefore
it cannot be applied to urban scenarios without fun-
damental modifications. We will describe the algo-
rithm in the next section. The expectation maximiza-
tion (EM) algorithm used for color clustering in this
approach is thoroughly described in Duda and Hart
(1973) and Blimes (1997). Instead of the EM algo-
rithm, the KMEANS algorithm that we used during
the competition is also suitable for color clustering,
as described in Bradski, Kaehler, & Pisarevsky (2005).
An algorithm similar to the one mentioned above
points out the advantage of color spaces other than
RGB (Ulrich & Nourbakhsh, 2002).

The Stanford University algorithm for detect-
ing drivable terrain The main idea of the algorithm is
to use the output of the laser scanner, normally a scan
line, which is integrated over time to a height map

in world coordinates. A polygon is defined that cov-
ers an area in front of the car identified as level and
therefore as a drivable surface. This polygon is trans-
formed into image coordinates from the camera and
clipped to the image boundaries. The resulting poly-
gon is considered as the area that is drivable. In this
area the pixels’ color values are collected and clus-
tered by color, for example, bright gray and yellow.
These color clusters are compared to the color val-
ues of each pixel in the image using distance mea-
surements in the color space. If a resulting distance
is smaller than a given threshold, the area comprised
by the pixel is marked as drivable. The main benefit
of the algorithm is that the range in which drivability
can be estimated is enhanced from only a few meters
to more than 50 m.

Problems arising in urban and suburban
terrain Designed for competing in a 60-mile (96.5 km)
desert course, the basic algorithm succeeds well in ex-
plicit off-road areas, which are limited by sand hills
or shrubs. When tested in urban areas, new problems
occur because there are streets with lane markings
in different colors or tall houses casting long shad-
ows. The yellow lane markings are often not inside
the area of the polygon Pscanner (output of the laser
scanner), so they are not detected as drivable. In par-
ticular, nondashed lines prohibit a lane shift as shown
in Figure 18, and stop lines seem to block the road.

Another problem is shadows cast by tall build-
ings during the afternoon. Small shadows from trees
in a fairly diffuse light change the color of the
street only slightly and can be adapted easily. But
huge and dark shadows appear as a big undriv-
able area as shown in Figure 19. Even worse, once
inside a shadowed area, the camera auto exposure

Figure 18. The drivability grid (b) depicts the output of algorithm; the results differ from black (undrivable) to white
(drivable). A yellow line (a) is marked as undrivable (b, black) because the color differs by too much from the street color.
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Figure 19. Large, dark shadows (a, left) differ too much from the street color (b, dark).

Figure 20. Exposure is automatically adapted inside shadows (a). Areas outside the shadow are overexposed and are
marked as undrivable (b, dark).

Figure 21. The vehicle’s own shadow can lead to problems (a), for example, if only the shadowed region is used to detect
drivable regions (b, white).

adapts to the new light situation, such that the area
outside the shadow becomes overexposed and ap-
pears again as a big undrivable area as depicted in
Figure 20.

Another problem during the afternoon is the
car’s own shadow, in this paper referenced as
“egoShadow,” when the sun is behind the car. Some-
times it is marked as undrivable; sometimes it is com-
pletely adapted and marked as drivable, but the rest

of the street is marked as undrivable as shown in
Figure 21. A fourth problem occurs when testing on
streets without curbs but limited by mowed grassy
areas. The laser scanner does not recognize the grass
as undrivable, because its level is about the same as
the street niveau. This causes the vehicle to move
onto the grass, so that colors are adapted by the area
processing algorithm and consequentially keeps the
car on the green terrain.
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Alterations to the basic algorithm Differing from
the original algorithm, our implementation does not
classify regions of the image as drivable and undriv-
able. The result of our distance function is mapped
to an integer number ranging from 0 to 127, instead
of creating a binary information via a threshold. In
addition, a classification into the categories “known
drivability” and “unknown drivability” is applied
to each pixel. These alterations are required because
the decision about the drivability of a certain region
is not made by the algorithm itself but by a sepa-
rate sensor fusion application. For the sake of per-
formance the KMEANS nearest-neighbors algorithm
was chosen instead of the EM algorithm, because the
resulting grids are of almost the same quality but the
computation is considerably faster. Tests have shown
that better results can be achieved by using a color
space that separates the luminance and the chromi-
nance in different channels, e.g., HSV, LAB (light-
ness, a, b = color opponent coordinates), YUV (lumi-
nance, chrominance (u, v)). The problem with HLS
(hue, lightness, saturation) and HSV is that chromi-
nance information is coded in one hue channel and
the color distance is radial. For example, the color at
358 deg is very similar to the one at 2 deg, but they
are numerically very far away from each other. Thus
a color space is chosen where chrominance informa-
tion is coded in two channels, for example, in YUV
or LAB, where similarity between two colors can be
expressed as a Euclidean distance.

Preprocessing To cope with the problems of large
shadows and lane markings, a preprocessing sys-
tem was developed. Before the camera picture is pro-
cessed, it is handed over to the following preproces-
sors: white preprocessor (masking out lane markings
and overexposed pixels), black preprocessor (mask-
ing out large, dark shadows), yellow preprocessor
(masking out lane markings), and egoShadow pre-
processor (masking out the car’s shadow in the pic-
ture). The output of each preprocessor is a bit mask
(1: feature detected, 0: feature not detected), which
is used afterward in the pixel-classifying process,
to mark the particular pixel as “unknown,” which
means that the vision-based area processor cannot
provide valid information about the area represented
by that pixel. In the following, the concept of each
preprocessor is described briefly:

White preprocessor To deal with overexposed
image areas during shadow traversing, pixels whose
brightness value is larger than a given threshold are
detected. The preprocessor converts the given image

into a HSV color space and compares the intensity
value for each pixel with a given threshold. If the
value is above the threshold, the pixel of the output
mask is set to 1.

Black preprocessor As huge dark shadows dif-
fer too much from the street color and would there-
fore be labeled as impassable terrain, pixels whose
brightness value is smaller than a given threshold are
masked out. The preprocessor analogously converts
the given image into a HSV color space and compares
the intensity value for each pixel with a given thresh-
old. If the value is below the threshold, the pixel of
the output mask is set to 1.

Yellow preprocessor Small areas of the image
that are close to yellow in the RGB color space are
detected so that yellow lane markings are not labeled
as undrivable but rather as areas of unknown driv-
ability. For each pixel of the given image, the RGB ra-
tios are checked to detect yellow lane markings. If the
green value is larger than the blue value and larger
or a slightly smaller than the red value, the pixel is
not considered yellow. If the red value is larger than
the sum of the blue and the green values, the pixel
is also not considered yellow. Otherwise, the pixel is
set to min(R,G)/B − 1. Afterward, a duplicate of the
computed bit mask is smoothed using the mean filter,
dilated, and subtracted from the bit mask to eliminate
huge areas. For different areas of the image, different
kernel sizes must be applied. In the end, only the rel-
atively small yellow areas remain. A threshold deter-
mines the resulting bit mask of this preprocessor

EgoShadow preprocessor When the sun is be-
hind the car, the vehicle’s own shadow appears in the
picture and either is marked as undrivable or is the
only area marked as drivable. Therefore, a connected
area directly in front of the car is identified whose
brightness value is low. At the beginning of the whole
computing process a set of base points p(x, y) is speci-
fied, which mark the border between the engine hood
and the ground in the picture. The region of interest
in each given picture is set to ymax, the maximum row
of the base points, so that the engine hood is cut off.
From these base points the preprocessor starts a flood
fill in a copy of each given image, taking advantage of
the fact that the car’s shadow appears in similar col-
ors. Then the given picture is converted to HSV color
space, and the flood-filled pixels are checked to deter-
mine whether their intensity value is small enough.
Finally, the sum of the flood-filled pixels is compared
to a threshold, which marks the maximum pixel area
that constitutes the car’s own shadow.
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Figure 22. How the dynamic search polygon (a, green trapezoid) is transposed to the right (b) because the calculated
moment is positive in the x direction.

The dynamic search polygon Using the output
of the laser scanner to determine the input poly-
gon works quite well if the drivable terrain is lim-
ited by tall objects such as sand hills or shrubs. In
urban terrain, however, the output of the laser scan-
ner must be sensitized to level distances smaller
than curbs (10–20 cm), which becomes problematic
if the street moves along a hill where the distance
is much greater. Thus, the laser scanner polygon
does not remain a reliable source, especially because
both modules solve different problems: The laser
scanner focuses on range-based obstacle-detection
(Ulrich & Nourbakhsh, 2000), which is based on anal-
ysis of the geometry of the surroundings, whereas the
vision-based area processor follows an appearance-
based approach. For example, driving through the
green grass next to the street is physically possible
and therefore not prohibited by a range-based de-
tection approach, but it must be prevented by the
appearance-based system. This led to the concept
of implementing a self-dynamic search polygon (see
Figure 22) that has a static shape but is able to move
along both the X and the Y axes in a given bound-
ary polygon Pboundary. The initial direction is zero. Ev-
ery movement is computed using the output of the
last frame’s pixel classification. For the computation
a bumper polygon Pbumper is added, which surrounds
the search polygon. The algorithm proceeds in the
following steps:

Algorithm 2 Dynamic search polygon algorithm

Data last frame’s grid of classified pixels, actual bumper
polygon Pbumper

Result: updated position of the Polygons Pbumper

1 begin

2 Initialize three variables pixelSum,
weightedP ixelSumX, weightedP ixelSumY to zero

3 foreach pixel of the grid which is inside the bumper
do

4 count the amount pixelSum of visited pixels
5 if drivability of the actual pixel is above a given

threshold then
6 Add the pixel’s x-Position relative to the

midpoint of Pbumper to weightedPixelSumX
7 Add the pixel’s y-Position relative to the

midpoint of Pbumper to weightedPixelSumY
8 end
9 end
10 Perform the division xmoment = weightedP ixelSumX

pixelSum

and ymoment = weightedP ixelSumY
pixelSum

and round the results
to natural numbers
/∗ The value xmoment gives the amount and direction

of the movement of Pbumper in x-direction, the value
ymoment gives the amount and direction of the
movement of Pbumper in y-direction.∗/

11 Add the values xmoment and ymoment to the values of
the actual midpoint of Pbumper to retrieve the new
midpoint of Pbumper

12 Check the values of the new midpoint of Pbumper

against the edges of Pboundary and adjust the values if
necessary

13 Add the values xmoment and ymoment to the values of
the actual midpoint of the search polygon to retrieve
the new midpoint of the search polygon as shown in
Fig. 22

14 To prevent that the search polygon gets stuck in a
certain corner, it is checked, if xmoment = 0 or if
ymoment = 0
/∗ For example if xmoment = 0, it is evaluated, if the

midpoint of Pbumper is located right or left to the
midpoint of Pboundary ; xmoment is set to 1, if Pbumper

is located left, otherwise it is set to −1. An anal-
ogous check can be performed for the ymoment .∗/

15 end
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Figure 23. The results with the black preprocessor. The picture in the center shows the classification results without the
black processor. In the picture on the far right the critical region is classified as unknown (red).

Figure 24. The results with the white preprocessor. The picture in the center shows the classification results without the
white processor. In the picture on the far right the critical region is classified as unknown (red).

Figure 25. The results with the yellow preprocessor. The picture in the center shows the classification results without the
yellow preprocessor. In the picture on the far right the lane marks are classified as unknown (red).

Implementation and performance The algo-
rithm was implemented with the Intel OpenCV li-
brary (OpenCV Website, 2007). The framework soft-
ware is installed on an Intel Core 2 Duo Car PC with
a Linux operating system and communicates with an
IDS uEye camera via USB. The resolution of a frame
is 640 × 480, but the algorithm applied downsampled
images of size 160 × 120 to attain a manually adjusted
average performance of 10 fps. The algorithm is con-
fined to a region of interest of 160 × 75 cutting of the
sky and the engine hood.

In Figure 23 the difference between normal area
processing and processing with the black preproces-
sor is shown. Without the preprocessor, the large
shadow of a building to the left of the street is too
dark to be similar to the street color and is classi-

fied as undrivable. The black preprocessor detects
the shadowy pixels, which are classified as unknown
(red).

The problem of overexposed areas in the picture
is shown in Figure 24, where the street’s color outside
the shadow is almost white and therefore classified
as undrivable in the normal process. The white pre-
processor succeeds in marking the critical area as un-
known, so that the vehicle has no problem in leaving
the shadowy area.

Yellow lane markings differ from pavement in
color space so that a human driver can easily detect
them even under adverse lighting conditions. This
advantage turns out to be a disadvantage for a stan-
dard classification system, which also classifies the
lane markings as undrivable, as shown in Figure 25:
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Lane markings are interpreted as tiny walls on the
street. To counteract this problem, we use a prepro-
cessing step that segments colors similar to yellow.
To deal with different light conditions, the color spec-
trum must be wider so that a brownish or grayish yel-
low is also detected. This leads to some false positives
as shown in Figure 25, but the disturbing lane mark-
ings are clearly classified as unknown. The vehicle is
now able to change lanes without further problems.

A problem with the vehicle’s own shadow occurs
only when the sun is located behind the vehicle, but
in these situations the classification can deliver insuf-
ficient results. Figure 26 shows the shadowy area in
front of the car as unknown.

The benefit of a search polygon that is trans-
posed by the output of the last frame is tested by
swerving about so that the car moves very close to
the edges of the street. Figure 27 shows the results
when moving the car close to the left edge. As the
static polygon touches a small green area, a some-
what green mean value is gathered and so the result-
ing grid shows a certain amount of drivability in the
grassland, whereas the dynamic polygon moves to
the right of the picture to avoid touching the green
pixels so that the resulting grid does not show driv-
ability on the grassland.

4.3. Artificial Intelligence

4.3.1. The DAMN Architecture

To control Caroline’s movement, the artificial intelli-
gence computes a speed and a turning wheel angle
for every discrete step. Turning the steering wheel
results in different circle radii on which the car will
move. Instead of the radii, the approach is based on
the inverse, a curvature.

A curvature of 0 represents driving straight
ahead, whereas negative curvatures result in left
and positive curvatures in right turns as shown in
Figure 28.

This curvature, as the most important factor to
influence, is selected in an arbiter as described in the
DAMN architecture (Rosenblatt, 1997). This architec-
ture models each input as behavior, which gives a
vote for each possible curvature. More behaviors can
be added easily to the system, which makes it very
modular and extendable. The following behaviors are
considered:

• Follow way points: Simply move the vehicle
from point to point as found in the RNDF.

• Stay in lane: Vote for a curvature that keeps
Caroline within the detected lane markings.

Figure 26. The results with the egoShadow preprocessor. The picture in the center shows the classification results without
the egoShadow processor. In the picture on the far right the car’s own shadow is classified as unknown (red).

Figure 27. The same frame first computed with a static search polygon (a, b), and then with the dynamic polygon (c, d).
The dynamic movement calculation caused the polygon to move to the right (c).
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Figure 28. Curvature field: Larger black circles represent
preferred votes.

• Avoid obstacles: Vote for curvatures that keep
the vehicle as far away from obstacles as pos-
sible and forbid curvatures leading directly
into them.

• Stay on roadway: Avoid curb-like obstacles
detected by grid-based fusion with laser scan-
ners and color camera.

• Stay in zone: Keep the vehicle in the zone, de-
fined by perimeter points in the RNDF.

All collected votes are weighted to produce an overall
vote. The weights again are not fixed; they depend on
factors including distance to an intersection, presence
of lanes, and more. A trajectory point is calculated by
following the best-voted curvature for 1 m. A trajec-
tory point holds information such as position, orien-
tation, and speed. Starting at this trajectory point, all
behaviors vote again for curvatures to find the next
point until a list of points is computed. This list has to
be long enough to come to a complete stop at current
speed. The speed is controlled by another arbiter in-
fluenced by different behaviors, which each provides
a maximum speed. The arbiter simply selects the low-
est of these speeds. These behaviors are RNDFMax,
sensor health, zone, reverse, safety zone, obstacle dis-
tance, and following other obstacles. On the basis of
the trajectory points calculated iteratively, we design
a drivable corridor for further processing by the next
module in the chain, the path planner.

4.3.2. Interrupts

Because the AI has to deal with more complex
situations, e.g., stopping at a stopline and yielding
the right-of-way, than the DAMN architecture is
designed for, we extended DAMN by an interrupt
system. At each trajectory point found, each inter-
rupt is called upon to decide whether it wants to
be activated at its location. If so, the speed stored in
the trajectory points is reduced to bring the car to
a smooth stop. If the point is reached, the interrupt
is activated and the arbiters are stopped until the
interrupt returns control to the arbiters. Some of our
interrupts are as follows:

• Intersection: Activated at a stopline until it is
our turn.

• Queue: Wait in a line at an intersection.
• Overtake: Stop the car when the lane is

blocked and wait for other lane to clear to
start passing maneuver.

• U-turn: Activated at a dead-end street; this
interrupt actually performs the U-turn and
turns the car around.

• Road blocked: Activated if the entire road is
blocked. This interrupt then activates the U-
turn interrupt when appropriate.

• Parking: Activated at a good alignment
in front of the parkbox; this interrupt re-
turns control after the parking maneuver is
finished.

• Pause: Active as long as the car is in pause
mode.

• Mission complete: Final checkpoint is
reached.

An example can be seen in Figure 29, where
the queueing interrupt has to be activated at some
point in the future and the speed must therefore be
reduced.

4.3.3. Example

An example of how different behaviors interact
is shown in Figure 30. In the recorded situation,
Caroline just started overtaking another car, blocking
its lane. The plots represent the calculation of one tra-
jectory: 20 trajectory points are calculated from the
front to the back. For each point votes for 40 curva-
tures are made; these are displayed from left to right.

The lane behavior [Figure 30(a)] demands a sharp
left for the first four curvatures and then a right
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Figure 29. Interrupt example.

turn, which finally transitions to straight driving.
This would bring Caroline quickly to the free lane
to pass the obstacle vehicle. The obstacle behavior
[Figure 30(b)] has two obstacles affecting the votes:
On the left, a wall forbids going farther to the left; on

the right one can see the car that is be passed. Finally
the way point behavior [Figure 30(c)] wants to go to
the right all the time, because that is the lane where
Caroline should be and where the way points are, but
is outvoted by the other behaviors in Figure 30(d).

4.4. Vehicle Control

Lateral and longitudinal controls are the basics of au-
tonomous vehicle guidance. In the following, both
concepts as installed in Caroline for the DARPA
Urban Challenge are discussed in detail.

4.4.1. Longitudinal Control

Whereas the maximum and minimum speeds of the
vehicle are chosen by the AI, the controller must cal-
culate the braking and accelerator set points in order
to maintain a given speed.

For this purpose, the longitudinal controller is
separated into outer- and inner-loop controllers.
Based on the given speed set point, the outer-loop

Figure 30. Votes of (a) stay in lane, (b) avoid obstacles, (c) follow way points, and (d) weighted sum.
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controller determines the required acceleration. Fi-
nally, the inner-loop controller calculates throttle and
brake input to track the required acceleration. The ac-
celeration of the vehicle, which is needed for feed-
back of the lower controller, is provided in high reso-
lution by the GPS/INS system.

Gear shifting is handled via an automatic gear
box. However, to switch between forward, backward,
and parking states, an automatic lever arm is attached
at the gearshift. The lever arm position can be com-
manded with a CAN interface.

Longitudinal dynamics The driving power must
be greater than the sum of all driving resistances, that
is, the sum of rolling, air, and acceleration resistance.
Engine torque MM is a function of throttle αA, engine
speed nM , and engine acceleration .

nM :

MM (αA, ṅM,
.
nM )

= r

ηk ik

[
fR mg + cw A

ρ

2

(
nM 2 π R0

ik

)2

+ λ m

.
nM 2 π R0

ik

]
. (12)

The meanings of the parameters are given in Table I.
The model is used for the inner-loop controller to

simulate different control strategies for the longitudi-
nal control. The plant model for the outer-loop con-
troller is the transfer function between desired vehi-
cle acceleration and actual vehicle speed. The inner
loop is approximated as a PT1 element. In addition,
an integral element is needed to integrate the speed
from acceleration:

P (s) = 1
s (T s + 1)

. (13)

Table I. Longitudinal model parameters.

Symbol Parameter

R0 Wheel radius, unloaded
r Wheel radius, loaded
ηk Degree of efficiency, gear box
ik Gear transmission ratio
fR Rolling friction factor
m Mass
g Gravity
cw Air resistance factor
A Cross-sectional area
ρ Air density
λ Molding bodies factor

Introducing measured values of the drive chain into
the model leads to a value of T = 0.6 s for system lag.

P-PD-control controller cascade As mentioned
above, the longitudinal controller is separated into
outer and inner control loops. The block diagram in
Figure 31 depicts the control structure. K(s) stands for
each transfer function of the different controller parts.
Different control parameters are used for acceleration
and deceleration. Whereas a PD controller is applied
for the inner loop, a P controller is introduced for the
outer control loop. Control outputs for acceleration
and braking are combined via a predefined logic to
prevent the system from activating throttle and brake
at the same time.

In addition, an engine map can be used for direct
feed forward of the throttle. Figure 32 shows a typi-
cal implementation of an engine map for longitudinal
control.

Performance of the longitudinal controller
Figure 33 illustrates the performance of the

Figure 31. Block diagram of the longitudinal controller.
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Figure 32. Engine map.

Figure 33. Performance of the longitudinal controller.

longitudinal control strategy. Two different ex-
amples are shown with two different speed profiles.
Whereas in the first example, the desired speed
is changed in long and large steps, in the second
example the speed is changed in shorter and smaller
steps. The desired as well as the actual speeds of
Caroline are illustrated.

4.4.2. Lateral Control

It is the main goal of the lateral controller to follow a
given trajectory with a minimum of track error. Sec-
ond, vehicle driving maneuvers should match certain
comfort parameters for a smooth driving experience.

Vehicle dynamics For simulation of the ve-
hicle as well as design of the controllers, it is
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Figure 34. Bicycle model.

necessary to describe motion behavior with a math-
ematical model. In the following the bicycle model is
used (Figure 34). The bicycle model is based on the
following assumptions:

• The center of mass of the car is located at
street level.

• Two wheels of each axle are combined as one
wheel in the center of the axles.

• The longitudinal acceleration is zero.
• The wheel load of all wheels is constant.
• Lateral forces at the wheel are proportional to

skew angle.

A state space representation within the following
structure is preferred:

.x(t) = A x(t) + B u(t) + Ez(t), x(0) = x0. (14)

Track error and track angle deviation have to be de-
scribed mathematically to take them into considera-
tion. Track angle deviation is defined as the difference
between desired and actual orientation of the car. It is
assumed that the derivation of the track angle ζdesired
can be calculated as the product of the curvature κ of
the track and the current speed v:

ζdesired = κ · v. (15)

Yaw angle ψrel with respect to the desired track is the
difference between absolute yaw angle ψ and desired
track angle ζdesired:

ψrel = ψ − ζdesired. (16)

As a result, yaw rate
.

ψrel with respect to the desired
track can be determined:

.
ψrel = .

ψ − κ v. (17)

Moreover, the derivation of the track error
.

d can be
formulated based on speed v, attitude angle β, and
relative yaw angle ψrel:

.
d = v (β + ψrel) (18)

The state space representation of the bicycle
model can be combined with the mathematical repre-
sentation of the track error, track angle deviation, and
an additional time delay TL between commanded
and actual steering wheel angles. The state vector
consists of yaw rate

.
ψ , attitude angle β, relative yaw

angle ψrel, track error d, and actual steering angle δ.
The result is the following state space model with the
commanded steering angel δdesired as the input vari-
able and curvature κ as the outer noise:

⎛
⎜⎜⎜⎜⎝

ψ̈.
β.

ψrel.
d.
δ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a11 a12 0 0 a15
a21 a22 0 0 a25
1 0 0 0 0
0 v v 0 0
0 0 0 0 −1/TL

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

.
ψ

β

ψrel
d

δ

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0
0
0
0

iL/TL

⎞
⎟⎟⎟⎟⎠ · δdesired +

⎛
⎜⎜⎜⎜⎝

0
0

−v

0
0

⎞
⎟⎟⎟⎟⎠ · κ (19)
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with

a11 = −cαV l2
V + cαH l2

H

θ v
, a12 = −cαV lV + cαH lH

θ
,

a15 = cαV lV

θ
, (20)

a21 = −1 − cαV lV − cαH lH

m v2 , a22 = −cαV + cαH

m v
,

a25 = cαV

m v
. (21)

The parameters are described in Table II. The output
of the system is the track error d:

y(t) = (0 0 0 1 0)T x(t). (22)

Based on the state space model, the transfer func-
tion can easily be determined. The control transfer
function is

Fc(s) = iL

TL s + 1

· a25s
2 + (a15 a21 + a15 − a25 a11) s + (a25 a12 − a25 a12)

s2 − (a11 + a22)s + (a11 a22 − a12 a21)

·1
s

· v

s
, (23)

and the noise transfer function is

Fnoise = −v

s
· v

s
. (24)

Table II. Parameters of the bicycle model.

Symbol Parameter

cαV Skew stiffness, front wheel
cαH Skew stiffness, back wheel
lV Wheel base front to center of mass
lH Wheel base back to center of mass
θ Moment of inertia
m Mass

Parallel structure control As modeled, the vehi-
cle has three degrees of freedom, which are the x and
y positions as well as the orientation ψ of the car.
Only the steering angle δ is available for controlling
the system. As a result, the three degrees of freedom
are handled simultaneously. Track error and track an-
gle deviation are used as feedback signals. The work-
ing point is chosen at the speed of 30 km/h.

Figure 35 shows the structure of the control strat-
egy used. Again, K(s) stands for each transfer func-
tion of the controller. It consists of two parallel con-
trol loops for track error and track angle deviation as
well as a pilot control taking the curvature of the de-
sired trajectory into consideration. The map-based pi-
lot control algorithm calculates the steering angle that
would be needed to follow the desired track based on
parameters of the bicycle model.

Performance of the lateral controller Lateral
control strategy has to handle different kinds of tra-
jectories. On the one hand, the vehicle has to follow
trajectories with a curvature of approximately κ ≈ 0

Figure 35. Lateral control strategy.
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Figure 36. Trajectory.

Figure 37. Speed profile (a) and track error (b) of the trajectory.

at higher speeds. On the other hand, the track error in
twisting areas is supposed to be as small as possible.
Figure 36 shows an example of a trajectory that con-
sists of a long straight part and two sharp curves. On

the straight section, the vehicle is accelerated up to a
speed of almost v = 50 km/h. The curves are driven
at a speed of approximately 20 km/h. The speed pro-
file is shown in Figure 37. The performance of the
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control strategy in terms of track error can be seen
in the same figure.

The control strategy shown worked well during
all tests and missions during the DARPA Urban Chal-
lenge. It has always been stable with quite a low track
error.

4.5. Safety

The safety systems of Caroline have to ensure the
highest possible safety for the car and the environ-
ment in both manned and unmanned operation. They
have to monitor the integrity of all viable hardware
and software components. In case of an error, they
have to bring the car to a safe stop. Furthermore, they
must provide an interface for pausing or disabling
the car using a remote E-stop controller. We extended
these basic features by including the possibility to re-
set and restart separate modules independently using
hardware and/or software means in order to gain the
option of automated failure removal. Figure 38 de-
picts this watchdog concept.

Caroline is equipped with two separate brake
systems: the main hydraulic system and an addi-
tional electrical parking brake. The main hydraulic
brake is controlled by pressure, usually generated
with a foot pedal by the driver. In autonomous mode,
this pressure is generated by a small hydraulic brake
booster. The parking brake is controlled by a push
button in the front console. This brake is a useful ad-

ditional feature. If the button is pressed while the car
is rolling, the main brake system is activated in addi-
tion to the parking brake until the car comes to a com-
plete stop. During autonomous mode, the watchdog
gateway, the emergency buttons on the top of the car,
and the receiver for the remote E-stop controller form
a safety circuit, which holds a safety relay open. This
relay is connected to the push button for the park-
ing brake. If one of the systems fails or is activated,
the safety circuit is opened, the contact of the relay
is closed, and the push button of the parking brake is
activated. During emergency braking, the lateral con-
troller of the car is still able to hold the car on the
given course.

Although the watchdog’s main purpose is to en-
sure safety, it also increases the system’s overall re-
liability. Caroline is a complex system with custom
or preproduction hardware and software modules.
These components were developed in a very short
time and therefore are not as reliable as off-the-shelf
commercial products. For this reason we used de-
vices primarily implemented for all safety-relevant
subsystems in order to also provide the means to
monitor and reset non-safety-relevant subsystems.

Each host runs a local watchdog slave daemon,
which monitors all local applications, as shown in
Figure 39. A process failing to send periodic heart-
beats within a given interval indicates a malfunction,
such as memory leakage or deadlocks. Therefore the
process and all dependent processes are terminated

Figure 38. Watchdog architecture.
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Figure 39. Software watchdog architecture.

by the local watchdog slave, to be restarted with re-
spect to the order required by process dependencies.

The slave watchdog itself is monitored by a re-
mote central master watchdog. This approach al-
lows the detection of malfunctions that cannot be re-
solved by the local slave watchdog, e.g., if a computer
freezes. If a computer should freeze, an emergency
stop is initiated and the failed system is power cy-
cled to restart in a stable state. The master watchdog
is monitored by the CAN gateway, which initiates an
emergency stop on failure of the master watchdog.

5. SYSTEM DEVELOPMENT PROCESS

For developing Caroline’s software and ensuring its
quality, we implemented a multilevel testing process
using elements of extreme programming (Beck, 2005)
partly realized in an integrated tool chain shown in
Figure 40. The workflow for checking and releasing
software formally consists of five consecutive steps.
First the source is compiled to check for syntactical
errors. While running the test code, the memory leak
checker valgrind (Nethercote & Seward, 2003) checks
for existing and potential memory leaks in the source

Figure 40. Workflow for testing and releasing software.
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code. After the execution of the test code, source code
coverage is computed by simply counting the ex-
ecuted statements. The intent is to implement test
cases that completely cover the existing source code
or to find important parts of the source code that are
still lacking test cases. The last step is for optimiza-
tion purposes only and executes the code in order to
find time-consuming parts inside an algorithm.

The tool chain is executed manually by the de-
veloper or by using an integrated development envi-
ronment such as Eclipse. The tool chain itself can be
customized by the developer by selecting only nec-
essary stages for the current run, i.e., skipping test
suites for earlier development versions of an algo-
rithm. Nevertheless, the complete tool chain is exe-
cuted every time a new version of the source code is
checked in the revision system Subversion (Collins-
Sussmann, Fitzpatrick, & Pilato, 2004). Therefore, an
independent bugbuster server periodically checks for
new revisions on the server. If a new version is found,
it is checked out into a clean and safe environment so
that the complete tool chain can be run. The results
are collected, and a report is automatically generated.
The report is easily accessible through the project’s
Web portal (Edgewall Software, 2007) for every de-
veloper. For measuring the performance or consult-
ing the results of a previous revision, the history of
older revisions is kept and accessible via the same
Web portal.

The main development process described above
mainly covers only unit tests (Liggesmeyer, 2002) for
some functions or parts of the complete software
system. For the development of Caroline’s AI, inter-
active feedback tests using riskless simulations are
necessary. Furthermore, the interactive simulations
describe different situations for testing the AI. After

completing the interactive tests, they can be formal-
ized in acceptance tests for automatic execution on
another independent server. These test suites are au-
tomatically executed after every change to the revi-
sion system, comparable to the bugbuster server.

The next section describes the simulator develop-
ment for the CarOLO project. Afterward, the adop-
tion of the simulator in automatic acceptance tests is
explained. This work continues prior work presented
in Basarke, Berger, Homeier, and Rumpe (2007a) and
Basarke, Berger, and Rumpe (2007b).

5.1. Simulator

The simulation of various and partly complex traffic
situations is the key for developing a high-quality AI
that is able to handle many different situations with
different types of preconditions. The simulator pro-
vides appropriate feedback to the other parts of the
system by interpreting the steering commands and
changing the ego state and the surroundings.

The simulator can be used for interactively test-
ing newly developed AI functions without the need
for a real vehicle. A developer can simply, safely, and
quickly test the functions. Therefore, our approach is
to provide a simulator that can reliably simulate miss-
ing parts of the whole software system. Furthermore,
the simulator is also part of an automatic test infra-
structure described in the next section.

Figure 41 shows the main classes of the core sim-
ulator. The main idea behind this concept is the use
of sets of coordinates in a real-world model as con-
text and input. These coordinates are stored in the
model and used by the simulator. Every coordinate
in the model is represented by a simulator object posi-
tion describing the absolute position and orientation

Figure 41. Main classes of the simulator.
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Figure 42. Object factories creating the simulator’s surroundings.

in the world. Every position is linked to a simulator
object that represents one single object. These objects
can have a variety of behaviors, shapes, and other in-
formation necessary for the simulation. The model is
linked with a simulator control that supervises the
complete simulation. The simulator application itself
controls the instantiation of every simulator compo-
nent by using object factories.

Figure 42 shows the factories in detail. The simu-
lator view encapsulates a read-only view of an extract
of the world model. Every simulator view is linked
with a simulator components group. A component
represents missing parts of the whole system, such
as an actorics module for steering and braking or a
sensor data fusion module for combining measured
values and distributing the fused results. Thus, ev-
ery component in the components group can access
the currently visible data of the core data model by
accessing the simulator view. As mentioned above,
every simulator object position is linked with a simu-
lator object, each of them equipped with its own con-
figuration. Thus, every component can retrieve the
relevant data of the owned simulator object.

The main task of the simulator is to modify the
world model over time. For simulating the world it
is necessary to proceed a step in the simulation. A
simulation step is a function call to the world model,
with the elapsed time step δti > 0 as a parameter that
modifies the world model either sequentially or in
parallel.

A simple variant is to modify every simulator ob-
ject sequentially. In this variant, the list of simula-
tor objects is addressed through an iterator and then
modified using original object data. Although this

is an efficient approach, it is not appropriate when
the objects are connected and rely on behaviors from
other objects. Another possibility is to use the algo-
rithm as if a copy of the set of simulator object posi-
tions was created. While reading the original data, the
modification uses the copy and thus allows a transac-
tion such as a stepwise update of the system, in which
related objects update their behavior together.

For modifying an object in the world model,
every nonstatic object in the world model uses an
object that implements the interface MotionBehav-
ior as shown in Figure 43. A motion behavior rou-
tine executes a simulation step for an individual ob-
ject. A simulator component implementing a concrete
motion behavior registers itself with the simulator
object. For every simulation step the simulator ob-
ject must call the motion behavior and therefore en-
ables the behavior implementation to modify its own
position and orientation according to a simulator

Figure 43. World’s model and motion behavior interface.
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component. The decoupling of objects and their mo-
tion behavior allows us to change the motion be-
havior during a running simulation, i.e., because
of weather influences. Furthermore, it simplifies the
implementation of new motion behaviors at devel-
opment time. For testing Caroline, we developed
additional motion behaviors such as MotionBehav-
iorByKeyboard for controlling a virtual car in the
interactive mode by using keys or a MotionBehav-
iorByRNDF that controls a car in its surroundings by
using a predefined route to follow.

The most interesting motion behavior, however,
is the MotionBehaviorByTrajectory because it com-
municates directly with the AI. For the best imitation
of the behavior of the real car, the simulator uses the
same code as the vehicle control module based on tra-
jectories expressed as a string of pearls that form con-
secutive gates. Furthermore, the motion of the simu-
lated car is computed with third-order B-splines such
as the vehicle controller module. Using a B-spline
yields smoother motion in the simulation and a driv-
ing behavior sufficiently close to reality, if it is taken
into account that for intelligent driving functions it is
not necessary to handle the physical behavior in ev-
ery detail, but in an abstraction useful for an overall
correct behavior.

Using motion behaviors, it is possible to compose
different motion behaviors to create a new composed
motion behavior. For example, it is possible to build
a truck with trailer from two related but only loosely
coupled objects. A composition of the motion behav-
iors yields a new motion behavior that modifies the
position and orientation of the related simulator ob-
jects according to inner rules as well as general phys-
ical rules.

Getting such a simulator up and running requires
quite a number of architectural constraints for the
software design. One important issue is that no com-
ponent of the system being tested tries to call any
system functions directly, such as threading or com-
munication, but only through an adapter. Depending
on whether it is a test or an actual running mode,
the adapter decides whether the function call is for-
warded to the real system or substituted by a result
generated by the simulator. Because of the architec-
tural style, it is absolutely necessary that no com-
ponent retrieve the current time by calling a system
function directly. Time is fully controlled by the sim-
ulator, and therefore it knows which time is relevant
for a specific software component if different times
are used. Otherwise, time-based algorithms will be-

come confused if different time sources are mixed
up.

5.2. Quality Assurance

As mentioned at the beginning of this section, the
simulator is used not only for interactive develop-
ment of the AI. It is also part of a tool chain that
is automatically executed on an independent server
for ensuring the quality of the complete software
system consisting of several modules. In the Car-
OLO project, we analyzed the DARPA Urban Chal-
lenge documents to understand the requirements.
These documents contained partly functional and
nonfunctional definitions for the necessary vehicle
capabilities. In every iteration a set of tasks con-
sisting of new requirements and bugs from previ-
ous iterations is chosen by the development team,
prioritized and concretely defined using the Scrum
process for agile software engineering (Beedle &
Schwaber, 2002). These requirements are the ba-
sis for both a virtual test drive and a real test of
Caroline.

After designing a virtual test drive, the availabil-
ity of necessary validators is checked. A validator is
part of the acceptance tool chain and responsible for
checking the compliance of the AI’s output with the
formal restrictions and requirements. Validators im-
plementing intelligent software functions are used to
automatically determine differences in the expected
values in the form of a constraint that cannot be vi-
olated by the test. A validator implements a specific
interface that is called up automatically after a simu-
lator step and right before the control flow returns to
the rest of the system. A validator checks, for exam-
ple, distances to other simulator objects or validates
whether a car has left its lane or exceeded predefined
speed limits. After an unattended virtual test drive,
a boolean method is called upon to summarize the
results of all test cases. The results are collected and
formatted in an e-mail and Web page for the project’s
Web portal.

The set of validators covers all basic require-
ments and restrictions and can be used for automati-
cally checking the functionality of new software revi-
sions. The main benefit is that these high-level tests
are black-box tests and do not rely on the internal
structure of the code. Thus, a subgroup of the Car-
OLO team was able to develop these high-level ac-
ceptance tests without a deep understanding of the
internal structures of the AI. Using this approach,
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Figure 44. Screenshot of the GUI tool for constructing RNDFs.

more-complex traffic situations could be modeled
and repeatedly tested without great effort.

To allow for the quick and convenient creation of
test scenarios, various concepts and tools have been
developed. The following describes how virtual test
drives are defined as well as how certain surround-
ings such as data fusion objects or drivability data
are generated and fed into the simulator. To make this
clear, we briefly illustrate the proceedings on the ba-
sis of an example, which deals with the simple pass-
ing maneuver as described in Section 4.3.3. Assume
that we would like to determine whether the AI is
able to recognize static obstacles in our travel lane
and react properly by adhering to the required mini-
mum distances.

First, an RNDF must be created that contains in-
formation about existing lanes, intersections, parking
spots, and their connections. As an RNDF provides
the basis for every test run, many of those route net-
work definitions had to be created. Therefore we de-
veloped a graphical user interface (GUI) tool to sim-
plify the creation of RNDFs as shown in Figure 44.

Several features including dragging way points,
connecting lanes, and adding stop signs or check-
points speed up the construction process. Completed
RNDFs could be exported to a text file and used as
input for the AI as well as for the simulator.

The purposes of RNDFs within the simulator
vary in different ways. One purpose is to check the

behavior of the AI concerning the RNDF provided
and the actual lane. Therefore a second RNDF can
be passed to the simulator. The additional and inde-
pendent RNDF is used to provide lane data, which
are normally detected by the computer vision system.
This is especially important if there are major differ-
ences between the linear distance and the actual route
to the next way point.

Another use of RNDFs is to define the behavior of
dynamic obstacles during the test run, as mentioned
earlier. Thus we are able to check relevant software
modules for their interaction with dynamic obstacles.
This approach is similar to the one used for provid-
ing detected lanes. Dynamic obstacles are interacting
on a basis of their individual RNDFs by using the
MotionBehaviorByRNDF. This concept can be used
for simulating scenarios at intersections and even
more complex traffic scenarios.

To extend the example of passing a static obsta-
cle, we need to create suitable data, which could be
translated to sensor fusion objects. Two principal ap-
proaches are available to achieve this goal. Gener-
ating scenarios with static obstacles can be accom-
plished by using our visualization application, which
provides the ability to define polygons or by us-
ing a drawing tool. Shapes of fusion objects could
be exported to a comma-separated file. The simula-
tor parses the textual representation of polygons and
translates them to fusion objects to be processed by
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Figure 45. Screenshot with fusion objects.

Figure 46. Screenshot with additional drivability data.

the AI. The use of a drawing tool implies the use
of predefined colors. The positions of static obstacles
are computed by scanning the created image for spe-
cial markers with reference to a known coordinate.
Figure 45 depicts a screenshot of our visualization ap-
plication where the corresponding fusion objects are
displayed.

For a more realistic simulation, the data fusion
objects generated by the simulator could be created
with a different quality. This is used to simulate sen-

sor noise and GPS drifts and makes fusion objects
suddenly disappear or moves them by a tiny offset
away from their original location. The sensor visibil-
ity range could be specified to affect the range of fu-
sion objects that will be transmitted to the AI.

Adding moderate drivability data completes
this test run. This could be accomplished by pass-
ing an image file to the simulator, which specifies
the required information through different colors.
Figure 46 shows the result. The visualization of a
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drivability grid displays drivable terrain in green, un-
drivable terrain in red, and unknown terrain with
blue cells.

6. THE RACE AND DISCUSSION

6.1. National Qualification Event

The NQE took place from October 26 to 31 on
the former George Air Force Base in Victorville,
California, as depicted in Figure 2. The entire area
was divided into three major parts named Area A,
Area B, and Area C, as shown in Figure 47. First,
Caroline had to demonstrate the proper function of
her safety system to participate in the NQE. As ex-
pected, Caroline stopped within the necessary range
using the E-stop remote controller as well as the
emergency stop buttons mounted on her roof.

6.1.1. Area A

For our team, the NQE started in Area A. The main
task for Caroline in that part was to merge into and
through moving traffic. Therefore, several other vehi-
cles controlled by human drivers drove within pre-
defined speed limits to ensure the 10-s time slots as
demanded by the DARPA’s requirements. Figure 48

shows the layout of the track. Caroline was placed
at checkpoint 2. She had to drive downward to the
T-junction, wait for an appropriate time slot, and then
turn left through the moving traffic. Afterward, she
had to pass checkpoint 1 by following other vehicles
and drive to the upper junction. After waiting for an
appropriate time slot, she had to turn into the street
to pass checkpoint 2 again. The goal was to drive as
many rounds as possible in this area.

Compared to other competitors, Caroline had to
pass this task several times. The first run in this part
let Caroline drive into the opposite lane. Analyzing
this obviously strange behavior afterward using our
simulator as depicted in Figure 49, we figured out
that the barriers shown by white lines around the
course narrowed the proper lane. Therefore, Caroline,
shown as a red rectangle driving downward to the
lower T-junction, interpreted them as stationary ob-
stacles in her way, which she tried to overtake, which
can be seen in the computed trajectory shown by yel-
low and black pearls that leads into the opposite lane.

After modifying several parameters, we had our
second try in Area A. She drove five rounds, merged
into moving traffic correctly, waited at stop lines,
and followed other vehicles very well. Unfortunately,
some problems occurred on the above right corner,

Figure 47. Layout of the former George Air Force Base for the NQE. The blue dot indicates the pit area for our team.
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Figure 48. Layout of Area A.

Figure 49. Analysis of Caroline’s behavior in Area A.

when Caroline decided to turn right instead of fol-
lowing the road to the junction. We found out that
Caroline got in trouble with the street surface in
that corner. There was a mixture of concrete and tar,
each with different colors. Thus, Caroline studied that
color difference and tried to drive toward areas with
a similar surface.

After modifying that behavior, we got another
try in that course. Caroline started a perfect first run
but waited too long for the second one. Therefore,
the judges paused our vehicle and demanded a more
progressive behavior of Caroline. Tuning again some
parameters, we tried the course a fourth time a short

time later. This time, Caroline drove very swiftly but
she did not give way to oncoming traffic. So, we
changed the parameters again to get a safer behavior
and convinced the judges in our last try in that area
of Caroline’s abilities to merge correctly into moving
traffic after demonstrating approximately eight per-
fect rounds.

6.1.2. Area B

After encountering difficulties in the first task, we
were unsure how Caroline would perform in Area
B because several teams already failed to complete
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Figure 50. Layout of Area B.

this part. The entire course is shown in Figure 50. The
main task was to overtake stationary obstacles, han-
dle free navigation zones without any lane markings,
and park safely inside those zones between other ve-
hicles. The course itself could not be seen completely,
so Caroline had to drive for herself without any ob-
servation by our team. We could hear her progress
only by the team radio and by her siren.

Caroline started within a concrete start chute laid
inside a free navigation zone. Many other teams al-
ready failed to leave this zone into the traffic circle
correctly. She smoothly entered the traffic circle, left
the circle, and turned into the part on the right-hand
side of Figure 50. In the center of the lower circle, she
had to park between other vehicles. The entry to that
zone was very rough, and several other teams had
already damaged the tires of their vehicles. We an-
alyzed the video right after the task and remarked
heavy vibration of the camera’s picture, but she en-
tered the zone smoothly. After finishing the parking
she left the zone to proceed on the course.

Furthermore, Caroline had to deal with a gate lo-
cated right at the exit of the upper circle. Owing to
our sensor layout, she had to attempt several times to

find the right way for leaving that circle. Returning
to the start chutes again, she honked twice to indicate
the completion of her mission after passing the last
checkpoint. With this successful run, Caroline was
one of only three vehicles to accomplish this course
completely and on time.

6.1.3. Area C

On the same day, Caroline was faced with Area C.
This area is shown in Figure 51. The main task was to
handle intersections correctly and deal with blocked
roads.

Caroline started near checkpoint 30 in the up-
per left-hand corner on the outer lane. She han-
dled both intersections on the left-hand side and
the right-hand side several times correctly with ev-
ery combination of other vehicles she faced. Right
in front of checkpoint 30 in the center part of this
course, Caroline encountered a road blockage, as
shown in Figure 52. We were unsure whether Car-
oline would detect the barrier because it had no
contact to the ground and our sensors could look
right through that barrier. But Caroline detected that
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Figure 51. Layout of Area C.

Figure 52. Blocked round in Area C by a barrier.

barrier properly and initiated the U-turn to choose
another route to the checkpoint. Afterward, she
passed all further traffic and intersection situations
correctly and finished Area C finally. With all results

achieved in the three areas, Caroline qualified early
as a newcomer for the final event along with the
well-established teams with their Grand Challenge
experience.
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6.2. Mandatory Practice for DARPA
Urban Challenge Final Event

The day before the DARPA Urban Challenge Final
Event was scheduled, each of the 11 finalists had to
participate in a practice session. By using this ses-
sion, DARPA would ensure that every vehicle was
able to leave the start chute and turn into the traffic
circle. Assuming that this would be an easy task, we
put Caroline into autonomous mode and waited for
her to begin her run. But she did not leave her start
chute, and our team failed that practice session. We
figured out the problem by parsing the RNDF pro-
vided by DARPA. This issue did not let Caroline un-
derstand the road network for the final. After fixing
this problem, we got another try. But Caroline still did
not leave her start chute. Thus, DARPA placed us in
the last of the 11 start chutes and canceled the practice
for our team.

Later analyzing the data, we figured out that
there was a jitter in the GPS signal while significantly
waiting for the RUN mode that yielded leaving the
calculated trajectory. After fixing this, we finally pre-
pared Caroline for the DARPA Urban Callenge Final
Event on the following day.

6.3. DARPA Urban Challenge Final Event

Figure 53 shows the enlarged Area B track for the
DARPA Urban Challenge Final Event, including the

former Area A as a parking lot. The start chutes were
the same as for the run in Area B. Additionally, in the
lower right corner of the map, there was a sandy off-
road track located yielding a two-lane road returning
to the inner part of the DARPA Urban Challenge Fi-
nal Event area.

On November 3, 2007, at 6:53 a.m. PST we loaded
the first of three mission files into Caroline and set
her into PAUSE mode. She calculated the route for
the first checkpoint and started her run at 7:27 a.m.
PST. Figure 54 shows the first part of her way during
the first mission.

The asterisk in Figure 54 indicates the location
where two members of our team had to accompany
the DARPA judges. Caroline had passed approxi-
mately 2.5 km before she was paused by the DARPA
control vehicle right behind her. Figure 55 shows the
reason for the PAUSE mode.

Caroline got stuck after she turned into the
berms. Figures 55(a) and 55(b) show Caroline ap-
proaching a traffic jam right in front of her. Obviously,
she tried to pass the stopped vehicle by interpreting it
as a stationary obstacle using the clearance to the last
car. The result of this attempt is shown in Figure 55(c):
Caroline got stuck and could not get free without hu-
man intervention.

After she got freed and set in RUN mode again
right at the beginning of the two-lane road, she
continued her route and passed several checkpoints

Figure 53. Layout for the DARPA Urban Challenge Final Event.
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Figure 54. Passed way before the first problem.

Figure 55. Caroline got stuck after 2.5 km.

(Figure 56). The next incident was after 11.4 km,
shown as the asterisk in Figure 57.

At that location Caroline did not yield right-of-
way to Talos, the autonomous vehicle from team MIT.
Therefore, DARPA paused both vehicles and let team
members from MIT come to that location. After re-
placing Talos, both vehicles were sequentially set to
RUN mode and safely passed each other. Unfortu-
nately, the reason for not yielding right-of-way to
Talos could not be figured out by analyzing our log
files. Because the situation was a left turn through on-
coming traffic, it could be a problem detecting and
tracking Talos due to problems either with our front
sensors or with the interpretation in the AI.

As shown in Figure 58, Caroline continued her
route. Additionally, she parked in the parking lot

shown in the upper left picture of Figure 58. After the
parking maneuver, she returned a second time to the
traffic circle and continued her mission 1.

At approximately 9:55 a.m. PST, two team mem-
bers from team CarOLO were again driven to
Caroline, who met Talos from team MIT for the sec-
ond time in a free navigation zone. This incident is
shown as an asterisk in Figure 59.

Our team members were faced with a twisted
carrier rod of the Ibeo laser scanners due to a
collision with Talos from team MIT, as shown in
Figure 60. It is still unresolved which car was the
cause of the accident. Caroline interpreted the situ-
ation as described in the technical evaluation criteria
(DARPA, 2006) in the section “Obstacle field.” There-
fore, Caroline tried to pass the oncoming Talos by
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Figure 56. Caroline went on after she got stuck.

Figure 57. Next incident including Caroline and Talos from team MIT.
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Figure 58. Caroline went on after not yielding right-of-way to Talos.

Figure 59. Passed way before the second problem.

pulling to the right. Unfortunately, further interpre-
tation is impossible due to missing detailed log files
of that situation. Finally, DARPA retired Caroline as
the fourth and last vehicle from the DARPA Urban
Challenge Final Event.

Altogether, Caroline drove 16.4 km and was re-
tired from the race at 10:05 a.m. PST. At 8:03 a.m. PST,
the watchdog module reset the SICK laser scanners

mounted on the roof due to communication prob-
lems. At approximately 9:00 a.m. PST, the watch-
dog missed heartbeats from the IMU and therefore
triggered a reset. Right after the collision with Talos
from team MIT, the watchdog observed communica-
tion problems with the laser scanners mounted in the
front of Caroline. After a reset, the communication
was reestablished. During the race, computer “Daq1”
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Figure 60. Caroline was retired after the collision with MIT.

as shown in Figure 4 froze two times and had to be
reset.

7. CONCLUSION

Team CarOLO is an interdisciplinary team made up
of members from faculties of computer science and
mechanical and electric engineering that are signifi-
cantly supported by industrial sponsors. Our vehicle
Caroline is a standard 2006 Volkswagen Passat sta-
tion wagon built to European specifications that is
able to detect and track stationary and dynamic ob-
stacles at a distance of up to 200 m. The system’s ar-
chitecture comprises eight main modules: sensor data
acquisition, sensor data fusion, image processing,
digital map, AI, vehicle path planning and low-level
control, supervisory watchdog and online-diagnosis,
and telemetry and data storage for offline analysis.
The signal flow through these modules is generally
linear in order to decouple the development process.
Our design approach uses a multisensor fusion of
LIDAR, radar, and laser scanners, extending the clas-
sical point shape–based approach to handle extensive
dynamic targets expected in urban environments.
Image processing detects lane markings along with
drivable areas. AI is modeled according to DAMN ar-
chitecture, redesigned and enhanced to meet require-
ments of special behavior in urban environments.
Our approach is able to handle complex situations
and ensure Caroline’s proper behavior, e.g., obey-
ing traffic regulations at intersections or performing

U-turns when roads are blocked. Decisions of the AI
are sent to the path planner, which calculates optimal
vehicle trajectories with respect to its dynamics in real
time. Safety and robustness are ensured by supervi-
sory watchdog monitoring of all the vehicle’s hard-
ware and software modules. Failures or malfunctions
immediately result in a safe and complete stop by
Caroline. Because we are a large heterogeneous team
with a very tight project schedule, we recognized
very early the need for efficient quality assurance
during the development process. Thus, we imple-
mented an automatic multilevel test process. Each
new feature or modification runs through a series of
unit tests or comprehensive simulations before being
deployed on the vehicle.

As a competitor in the DARPA Urban Challenge
Final Event, Caroline was able to autonomously per-
form missions in urban environments. She drove ap-
proximately 17 km in about 3 h in the final.
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