
Assumptions Under lying Agile Software Development
Processes

Abstract
Agile processes focus on facilitating early and fast production of working code,
and are based on software development process models that support iterative,
incremental development of software. Although agile methods have existed for a
number of years now, answers to questions concerning the suitability of agile
processes to particular software development environments are still often based
on anecdotal accounts of experiences. An appreciation of the (often unstated)
assumptions underlying agile processes can lead to a better understanding of the
applicability of agile processes to particular situations. Agile processes are less
likely to be applicable in situations in which core assumptions do not hold. This
paper examines the principles and advocated practices of agile processes to
identify underlying assumptions. The paper also identifies limitations that may
arise from these assumptions and outlines how the limitations can be addresses by
incorporating other software development techniques and practices into agile
development environments.

1. Introduction
As more organizations seek to gain competitive advantage through timely deployment of
services and products that meet and exceed customer needs and expectations, developers are
under increasing pressure to develop new or enhanced implementations quickly [15]. Agile
software development processes were developed primarily to support timely and economical
development of high-quality software that meets customer needs at the time of delivery. It is
claimed by agile process advocates that this can be accomplished by using development
processes that continuously adapt and adjust to (1) collective experience and skills of the
developers, including experience and skills gained thus far in the development project, (2)
changes in software requirements and (3) changes in the development and targeted operating
environments. Examples of published agile processes are Extreme Programming (XP)
[3][7][8][22][29][39], the Crystal process family, [13], SCRUM [33][34], Adaptive Software

[TFR05] D. Turk, R. France, B. Rumpe.
Assumptions Underlying Agile Software Development Processes..
In: Journal of Database Management, Volume 16, No. 4, pp. 62-87, October-December 2005
Idea Group Inc., 2005
www.se-rwth.de/publications

Understanding Agile Software Development Processes – page 2

Development [19], and AUP (Agile Unified Process) [23] which has grown out of work on the
UML [21][31][38].
 Proper use of agile processes requires an understanding of the situations in which agile
processes are and are not applicable. One way of determining whether an agile process is
applicable in a particular situation is to check whether the assumptions underlying the process
hold in that situation. If the assumptions do not hold then use of the agile process may not be
appropriate. Prevailing descriptions of agile processes seldom present the underlying
assumptions explicitly and thus it is difficult for developers and project planners to determine the
applicability of agile processes to their projects and environments.

This paper identifies some of the assumptions underlying agile processes that can be used to help
determine the applicability of agile processes to particular situations. The paper also discusses
some of the limitations that may be inherent in agile approaches because of these assumptions.
The assumptions were identified by examining published work on Extreme Programming (XP)
[3][5], Scrum [34], the Agile Unified Process (as described by Craig Larman) [23], critiques of
agile processes [10][27], and the principles stated by the Agile Alliance.

It is important to note that our critique of agile processes is concerned with identifying
assumptions underlying a family of agile processes. Other critiques of agile processes have been
published (e.g., see [10],[27]), but none of the critiques we have examined have focused on
identifying assumptions underlying agile processes for the purpose of determining the scope of
their applicability. For example, in the book “Questioning Extreme Programming” McBreen [27]
presents a critique of XP in which he poses some important open questions and provides answers
to other questions based on his personal experience, but he does not explicitly identify
assumptions underlying agile processes. McBreen’s critique was used as a source in our work
along with other experience reported elsewhere (e.g., see [14], [24]).

The remainder of the paper is structured as follows. In section 2 we give an overview of a typical
agile process, eXtreme Programming, to give the reader a concrete example of an agile process.
In section 3 we describe the assumptions that we have identified. In section 4 we identify some
of the limitations that arise in situations in which these assumptions are not met and suggest how
they can be addressed by adapting some of the agile process techniques and practices. We
conclude in section 5 with an overview of the results of our work and an outline of issues that
require further investigation.

2. Overview of eXtreme Programming – A Representative
Agile Process
There are a variety of software development processes that currently claim to be agile. Space
does not allow us to give an overview of all of the agile processes we have reviewed. However,

Understanding Agile Software Development Processes – page 3

since Extreme Programming (XP) is probably the most well-known agile process, we use it to
illustrate representative agile process concepts.

Extreme Programming (XP)
It can be argued that the popularity of XP helped pave the way for other agile processes. Kent
Beck, one of the chief architects of XP, states that XP is a “lightweight” development method
that is tolerant of changes in requirements. It is “extreme” in that “XP takes commonsense
principles and practices to extreme levels” [5, p. xv].

XP is based on the following values:

‚ Communication and Feedback: Face-to-face and frequent communication among
developers and between developers and customers is important to the “health” of the
project and the products under development. Feedback, through delivery of working code
increments at frequent intervals, is also considered critical to the production of software
that satisfies customer needs.

‚ Simplicity: XP assumes that it is more efficient to develop software for current needs
rather than attempt to design flexible and reusable solutions. Under such an assumption,
developers pursue the simplest solutions that satisfy current needs.

‚ Responsibility: The responsibility of producing high-quality code rests ultimately with
the developers.

XP consists of technical and managerial practices that are integrated in a complementary manner.
The architects of XP take great care to point out that the individual techniques and practices of
XP are not new; it is the manner in which they are woven together that is unique. They also
stress that the techniques and practices have proven their worth in industrial software
development environments.

XP Process and Practices
The four core activities of XP are (1) coding, (2) testing, (3) listening to the customer and to
other developers, and (4) designing as an implicit part of the coding process. XP encourages an
informal design specification process in which developers discuss solutions by sketching
informal models on some presentation medium (e.g., whiteboard, flip chart). These models are
created primarily to help developers understand and communicate ideas during development, and
are not intended to be precise descriptions of the solution.

In order to support the five fundamental principles of XP / namely rapid feedback, simplicity,
incremental changes, embracing change, and quality work / XP offers a number of practices.
The early accounts of XP [7] offered twelve practices, but since then the number of practices has
increased (see [26],[40]). We give an overview of some of the original practices in what follows.

Understanding Agile Software Development Processes – page 4

Pair programming, one of the more well-know XP practices, is a technique in which two
programmers work together to develop a single piece of code. The two programmers typically
work together at one computer, collaborating to design, implement and test a software solution
(program) [18][41][42]. At any point in time one programmer is directly working on the code,
while the other observes, provides alternative approaches, acts as a reviewer and provides instant
feedback. The two programmers switch their roles often, sometimes even after just a few
minutes. This approach has been shown to yield significantly higher productivity and code
quality than is achieved by two programmers working separately [40]. The intent is that two
programmers working and evaluating the code and design are likely to complement each other’s
skills, continually propose and evaluate alternatives and are more likely to recognize errors in the
code while it is being developed [41, p. 328]. Pair programming is based on two assumptions: (1)
active reviews are the most effective way to detect errors, and (2) different people see a problem
from different perspectives and will thus have a combined approach to problem-solving that is
more effective than individually applied approaches.

Refactoring, unit and acceptance tests, collective code ownership, and continuous integration
together tackle the problem of evolving code during XP-based development. Refactoring occurs
when a change to the internal structure of a system preserves the externally observable
functionality of the system. Refactoring is especially effective when large changes can be
decomposed into smaller steps that can be carried out using refactorings that have been
developed by Fowler and others [17]. These refactorings can be viewed as code transformation
patterns, and their use allows one to reduce the task of validating code after a complex change to
validation of smaller change steps.

After a refactoring, tests are run to ensure that parts that should not be affected by the changes
are intact and that the changes are implemented correctly. Collective code ownership allows
developers to appropriately change parts of the code that they did not write in order to implement
a change, while continuous integration allows developers to demonstrate the current status of
development more frequently.

XP: An Assessment
Although XP is considered an extreme process it is not devoid of rigor. In particular, XP’s focus
on code should not be interpreted as an endorsement of code “hacking”. XP stipulates that
developers follow all its practices in order to realize the benefits of agile development. As has
been pointed out by McBreen and others [27], it takes enormous discipline to apply XP and, for
this reason, some projects may find it difficult to adopt an XP-compliant process.

A significant problem with XP is its reliance on source code for documentation. This usually
leads to situations in which in-depth knowledge of software products (e.g., design rationale,
trade-off considerations) exist only in the heads of the developers who developed the products.

Understanding Agile Software Development Processes – page 5

Loss of these developers could lead to significant organizational memory loss that could impair
an organization’s ability to complete projects in a timely manner.

XP specifically targets small- to medium-sized projects. XP proponents claim that XP’s unique
composition of best practices, and its omission of time-intensive software engineering activities
(e.g., detailed specification or modeling of requirements and design), can help downsize
otherwise large projects. There have also been proposals for scaling the XP process to large
projects (e.g., see [14]), including an approach that involves hierarchically structuring XP and
installing a steering committee to guide the individual projects [20].

To date, there are few objective surveys of projects claiming to use XP. One such survey [32]
was conducted on 45 projects that were labeled as XP projects by the developers. The results
show that XP is still in the “hype phase”: it was not clear whether the claimed successes were
based on developer enthusiasm or on the XP practices. A summary of the survey results is given
below:

‚ More than 90% of the projects claimed to be successful (as judged by the developers, not
by the customers)

‚ All surveyed said they would like to use XP again. None blamed failures on XP.
‚ The unavailability of customers was frequently the highest risk identified.
‚ Use of unit tests and pair programming were considered important practices.
‚ 33% used XP because it seemed more attractive than alternatives; 28%, because it fit the

project requirements best; and 9% because the management or customer wanted it.

The results of this survey also indicate that there may be situations in which the basic
assumptions underlying XP are valid. XP assumes that the cost of change slowly approaches
some limit over time, rather than increasing exponentially as has been traditionally assumed [7].
XP practices are based on the assumption that correcting requirements errors and design flaws
later does not cost significantly more than if they were detected and removed earlier. This
assumption allows developers to do less than thorough analysis and design in the early phases
and, instead, make improvements throughout the course of the project by refactoring the code.
There is no objective evidence that this assumption is valid in general, but it can be argued that
the cost of change curve can be flattened by using reusable design experiences in the form of
architectural and design patterns, and capitalizing on new technologies supporting rapid program
development (e.g., libraries, components and frameworks, and more powerful compilers that
enable short and incremental compilations).

In the testing area, an issue that XP practitioners face is determining the tests needed to
adequately cover the code. It has been recognized by some advocates that knowledge of
systematic testing techniques can be beneficial when developing unit and acceptance tests in XP
[27].

Understanding Agile Software Development Processes – page 6

The set of tests developed for an application can be viewed as a model of the system: it describes
an exemplar set of data with intended behavior. The tests are not necessarily readable by
customers, but developers can use the tests to gain understanding of code they did not write, by
exercising the code using the tests. This implicit model of the system is a necessary prerequisite
for collective code ownership and refactoring techniques. However, if the rationale behind a test
is not documented, over time it may become unclear what aspects are being tested.

3. Identifying Assumptions Underlying Agile Processes
In recent years a number of processes claiming to be “agile” have been proposed in the literature.
To avoid confusion over what it means for a process to be “agile”, seventeen methodologists and
proponents of agile processes met to discuss and come to an agreement on what “agility” means.
The result of the meeting was the formation of the Agile Alliance and the publication of a
manifesto that included a list of principles agile processes should support [1]. A summary of
these principles (numbered and in order as reported by the Agile Alliance [1] are given in Figure
1 below.

1. “Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.”

2. “Business people and developers must work together
daily throughout the project.”

3. “Welcome changing requirements, even late in
development.”

4. “Deliver working software frequently.”
5. “Working software is the primary measure of progress.”
6. “Build projects around motivated individuals. Give them

the environment and support they need, and trust them
to get the job done.”

7. “The best architectures, requirements, and designs
emerge from self-organizing teams.”

8. “The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation.”

9. “Agile processes promote sustainable development.”
10. “Continuous attention to technical excellence and good

design enhances agility.”
11. “Simplicity is essential.”
12. “Project teams evaluate their effectiveness at regular

intervals and adjust their behavior accordingly.”
Figure 1: Pr inciples of the Agile Alliance

Understanding Agile Software Development Processes – page 7

The manifesto of the “Agile Alliance” is a condensed definition of the values and goals of “Agile
Software Development” and is detailed through these principles which can be viewed as a set of
policies and rules that should be supported by processes claiming to be “agile”. These principles
provide a good base for identifying assumptions underlying agile processes. In the next section
we review these principles and identify assumptions that appear to be made when accepting these
principles.

Principles, Practices, Assumptions, and Limitations
Figure 2 summarizes our view of the relationship between Principles, Practices, Assumptions,
and Limitations. We have taken the view that there are assumptions, usually unstated, that led to
the acceptance of the Agile Alliance’s principles. There are also assumptions made by
developers (again unstated) regarding what these principles mean and their relative importance.
Based on these principles and assumptions, development practices are set in place. Whether
intended or not, these assumptions lead to limitations in the resulting agile processes. The
limitations discussed later in this paper are based in part on our assessment of the assumptions
that exist behind agile process principles and practices. In this section we identify assumptions
underlying the Agile Alliance principles, as we perceive them. The discussion in this section is
organized around clusters of related principles, where each cluster gives rise to a distinct set of
assumptions. We also identify examples of situations in which the assumptions may not hold.

 Assumptions

Assumptions

Principle

Practice

Limitations

Principles

Practices

based on

based on

derived from

lead to

support

have

Figure 2: Relationships Between Pr inciples, Practices, Assumptions, & Limitations

Pr inciple 1. “Our highest pr ior ity is to satisfy the customer through ear ly and
continuous delivery of valuable software.”

Pr inciple 4. “Deliver working software frequently.”
Pr inciple 5. “Working software is the pr imary measure of progress.”

The prominence of Principle 1 serves to remind developers that software is developed to perform
services that add value to users at the time of delivery. (Principles 4 & 5 can be viewed as
consequences of principle 1, and thus are discussed together here.) Developers and project

Understanding Agile Software Development Processes – page 8

planners need to keep in mind that customer needs evolve through use of systems. Support for
Principle 4 allows developers to gauge and address evolving customer needs. Agile processes
provide support for these principles by structuring development activities into short fixed-time
iterations that each produces working code. These fixed-time iterations make agile processes
predictable along the time dimension. The price paid is that product scope can be unpredictable:
in meeting an iteration deadline, developers can choose not to implement features originally
marked for implementation in the iteration. Agile processes utilize practices that help developers
minimize the time it takes to realize elicited requirements in working code. In XP, these practices
include building simple designs, continuous integration, collective code ownership, and
refactoring.

The frequent delivery of working code gives the project visibility in terms that the customer can
relate to (i.e., in terms of an evolving executable product), rather than in terms of evolving plans
in the form of requirements and design documents that are often not presented in terms a
customer can relate to or understand. Customers can use the increments delivered by iterations as
the basis for (1) determining project progress as specified by Principle 5 and (2) clarifying and
refining requirements. Short iteration lengths facilitate timely customer feedback that can help
ensure that the end product will meet customer needs at time of delivery.

The importance of involving end-users and customers in the software development process is
widely recognized, and was the primary motivation of work in the early 1980s on “end-user”
software development [12]. Much of this early work focused on developing mechanisms that
would allow end-users to directly contribute to the development of requirements and designs,
and understand the artifacts created by software designers. The work at that time focused on
developing requirements and design notations that are “customer-friendly”, that is, that can be
used to create requirements specifications and designs that provide customers with significant
insight into requirements and designs. Mechanisms such as fourth-generation programming
languages (4GLs) and executable requirements [4][30][35][36] and design specifications were
considered to be enabling technologies for end-user software development. Rather than
emphasize technical facilitators of customer interaction, agile processes emphasize continual
collaboration of developer and customer teams.

Assumptions Under lying Pr inciples 1, 4, and 5

Visibility Assumption: Project visibility can be achieved solely through delivery of working
code.

Visibility of software development projects is traditionally accomplished through reports,
specifications, and measures of quality and productivity, and the working application (code) is
only seen after the developer has done a large amount of work and spent a great amount of time
working on the project. For customers, it is easier to gain a sense of whether the project is

Understanding Agile Software Development Processes – page 9

progressing in the direction needed if they can actually see the user interface and actually see the
software do the things they need it to do, rather than simply relying on reports, specifications,
and other measures. Because it is the end-product the customer really cares about, the primary
measure of progress in agile processes is based on the code developed in the project.

This works well for software that is equipped with user interfaces that evolve over time. In
projects in which the user-interface is not always part of a deliverable increment, or projects
concerned with developing systems with no human interface (e.g., embedded systems) some
other means of visibility is needed. For such projects, software simulations, coverage of
acceptance tests, and formal reviews and inspections of deliverable increments can provide some
visibility.

Iteration Assumption: A project can always be structured into short fixed-time iterations.

Agile processes require developers to group required features into loosely coupled bundles that
can each be addressed in short, fixed-time iterations. Such decomposition is usually based on an
implicitly imposed architecture consisting of loosely-coupled modules and is thus desirable. The
assumption here is that the developing application can be broken into small, discrete increments,
that can be developed and demonstrated in short fixed-time intervals, and that after each of these
iterations the customer will be able to observe additional functionality in the product. Because of
this, the customer will be able to give frequent feedback as to the progress of the project,
indicating whether it is being developed as needed / expected or not.

Structuring work in small bundles that can be implemented quickly may not always be possible.
For example, in some complex systems an application may be required to interface with a
number of subsystems in complex ways just to provide basic services that are of value to
customers. In these situations it may not be possible create small enough bundles of features to
tackle in an iteration because of the tight dependencies.

Pr inciple 2. “Business people and developers must work together daily

throughout the project.”

The interaction between developers and end-users in agile processes is concerned primarily with
resolving feature-related issues and determining the scope of effort. This interaction does not
occur only at the start of a project; it occurs throughout the process. Specifically, agile processes
advocate interactions that could involve customers (1) providing inputs in the form of informal
descriptions of expected behavior (for example, stories in Extreme Programming), (2) answering
questions about desired features, (3) collaborating with developers in resolving issues pertaining
to features to be implemented, and (4) collaborating with developers to evolve project plans

Understanding Agile Software Development Processes – page 10

One of the most important effects of this close collaboration between users and developers is the
better understanding of each other’s problems and needs, which reduces human interaction
problems and thus significantly enhances the chance for a successful project result.

This principle is not only applicable to the interactions between developers and customers; it also
extends to interactions among developers as well. Frequent interaction allows developers to
quickly resolve problems and misunderstandings, and to more quickly and reliably move forward
on the project.

Assumptions Under lying Pr inciple 2

Customer Interaction Assumption: Customer teams are available for frequent interaction when
needed by developers.

Some major assumptions here are that the customer is available at the time the developers need
to interact with them, and that the customer can always reschedule other work so that there is
time for frequent interactions with the developers. The reality is that it may not always be
possible for a customer to reschedule other work.

Team Communication Assumption: Developers are located in time and place such that they are
able to have frequent, intensive communication with each other.

This assumption is very similar to the Customer Interaction Assumption, but is focused on the
ability of developers to interact with each other. Just as the Customer Interaction Assumption
assumes a certain amount of common time, place, resources, and availability, so does the Team
Communication Assumption. Time, place, resources, and availability must all be coordinated
and provided in order to allow this principle to be supported. Examples of projects in which this
assumption does not hold are plentiful. It is not unusual to have development teams on a single
project that are dispersed in wide geographical areas involving many time zones.

Pr inciple 8. “The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation.”

In agile processes, face-to-face communication is emphasized over formal and precise
documentation, but also over tele-/video-conferences or email conversations. The agile process
community claims that more is gained through informal personal communications than through
communication based on formal documentation, even though the ability to track all information
disappears. An advantage of face-to-face communication is that the parties involved can change
the direction of the discussion as needed to gain insights into the topic under discussion, and can
observe and respond to non-verbal communication cues as developers and/or customers interact.

Understanding Agile Software Development Processes – page 11

Even though formal and technical communication mechanisms are discouraged, protocols or “to
do” lists should be used to keep track of things that have been discussed.

Assumptions Under lying Pr inciple 8

Face-to-Face Assumption: Face-to-face interaction is the most productive method of
communicating with customers and among developers.

It is hard to imagine Principle 8 being realized without having co-located customers and
developers and without schedules that allow frequent interaction during a project. If customers
and developers are all co-located, even to the extent they can walk down the hall and talk with
each other, then any time questions, issues, or problems arise, they can be addressed immediately
and clear resolution may be immediately obtained. Without face-to-face contact there is
increased potential for mis-communication, and there is always the difficulty of getting in
contact – the “telephone tag” or “e-mail tag” problem.

The de-emphasis of documentation as a communication aid is based on an assumption that tacit
knowledge is to be valued over externalized knowledge. Proponents point out that developers
need to internalize externalized knowledge to make it useful and that learning can be
accomplished by sharing of tacit knowledge through conversations [27]. Critics have argued that
the focus on tacit knowledge makes projects that use agile processes dependent on experts [10].
Another concern is that valuing tacit knowledge over externalized knowledge can lead to
corporate memory loss and a reduced ability for an organization to systemically learn from its
collective experience. An organization that is concerned with its ability to effectively learn from
past experience needs to value both tacit and externalized knowledge and understand their
interactions. Tacit knowledge is critical to building externalized knowledge, as pointed out by
Nonaka [25][37], and externalized knowledge can interact with tacit knowledge to reveal hidden
or create new tacit knowledge. Organizations that value systemic learning need to foster
environments that not only support the sharing of tacit knowledge but also support externalizing
tacit knowledge.

Documentation Assumption: Developing extensive (relatively complete) and consistent
documentation and software models is counter-productive.

Given agile developers’ code-centric focus (see principles 1, 4, & 5 above), this downplaying of
documentation and software models is not surprising. The assumption is that it is more reliable
to determine specifications and design from code than from other documents – especially since
specifications, requirements, design documents, and models may not be kept up-to-date when
code is changed. Thus, the code is the most accurate and reliable description of what a system
does and how it was designed.

Understanding Agile Software Development Processes – page 12

A reason for the agile process community’s disenchantment with modeling may be a result of
prior experiences with commercial modeling tools that were nothing more than tailored drawing
environments. Such tools provided very little support for the more difficult tasks of maintaining
(1) traceability links across models and (2) consistency between models and their
implementations. Current modeling tools have moved somewhat beyond this and now provide
support for code generation and round-trip engineering. More importantly, major tool vendors
are currently extending their offerings to support the Object Management Group’s model-driven
software development approach, known as the Model-Driven Architecture (MDA) [28]. MDA is
based on a separation of platform-specific system details from platform-independent details.
MDA-based tools provide mechanisms for mapping platform-independent details to platform-
specific implementations, with a significant portion of the mapping being automated through the
use of patterns, templates, and other forms of reusable experiences. In the MDA approach,
models are the central artifacts, and the use of MDA tools can help speed up development
through automated generation of significant portions of application and middleware code and by
raising the level of abstraction at which developers work.

For customers who contract with developers to provide systems, precise models may not be
necessary. However, there are situations in which models are valuable in their own right, and in
which it would be beneficial to maintain these models for future use. Some of these situations are
described below:

‚ Evolving large complex systems that have long life cycles: The availability of good models

can reduce the cost and effort of modifying such systems. Without these models, developers
are forced to analyze source code to understand it and determine the impact of change.
Studies have shown that a significant portion of the effort required to evolve systems is spent
understanding the code. Good models can help ease this task.

‚ Managing enterprise systems to ensure alignment with business goals: Good models of

business processes and systems can be used by enterprise architects to (1) check that planned
and implemented systems align with business goals, (2) identify how existing systems
services can be composed to create new services, (3) identify redundancies in systems
(particularly when organizations or sub-organizations merge with other organizations or sub-
organizations), (4) identify reusable development experiences, and (5) determine the impact
of change on existing systems. Business- and system-level models, well-defined mappings
between them, and the correspondence with code, can greatly enhance the management of
enterprise systems.

Good models and documentation can also be used to bring new hires up to speed on the business
and the systems being developed, and help component users determine whether a software
component really addresses their requirements.

Understanding Agile Software Development Processes – page 13

Pr inciple 3. “Welcome changing requirements, even late in development.”

Requirements will change during software development to reflect changes in (1) the environment
in which the software will be implemented, and in (2) the development environment. This has
been widely recognized (within and outside of the agile process community) and is one major
reason for rejecting the simple waterfall model. Evolving requirements is often viewed as an
inherent problem of software development. The agile process community views requirements
changes as providing opportunities for evolving software that can enhance the customer’s
competitiveness in a rapidly evolving environment. Development teams that can handle such
changes and produce software that is useful to the customer at the time of delivery (rather than at
the start of the project) are more likely to have satisfied customers. Short iteration cycles and the
“plan one iteration at a time” approach are claimed to provide the flexibility needed to
accommodate changes in agile processes. Agile process proponents claim that adhering to this
principle significantly increases the competitiveness of a company.

Assumptions Under lying Pr inciple 3:

Changing Requirement Assumption: Requirements always evolve, because of changes of
technology, customer needs, business domains or even acquisition of new customers.

The assumption here is basically a re-statement of the principle. Changing requirements are not
regarded as necessarily bad, but are welcomed as an opportunity to satisfy customer needs even
better than when inflexibly sticking to old requirements. If customer needs change late in the
project, then making sure that the project adapts to these changes is important to making the
project a success.

Cost of Change Assumption: Cost of change does not dramatically increase over time.

Agile processes challenge the widely-accepted belief that errors introduced early and detected
late in the process have significantly higher costs than errors detected early. Agile process
proponents argue that appropriate use of new development technologies and practices can reduce
the cost of uncovering errors late in the development process. One can make a credible case that
the use of technologies and practices such as (1) very fast compilers with sophisticated type
systems, (2) integrated development environments, (3) systematic improvement of code through
refactoring, and (4) automated test suites can help manage the cost of detecting and removing
errors even when the errors are uncovered late in the process. It is also clear that the cost of
correcting errors that can be fixed by localized changes – that is, changes with limited impact –
should be relatively stable over time. On the other hand, it is also clear that certain types of errors
– for example, architectural design flaws that seriously compromise the integrity of the design, or
errors that require corrective actions that have wide impact – are more costly to correct the later
they are uncovered.

Understanding Agile Software Development Processes – page 14

Pr inciple 6. “Build projects around motivated individuals. Give them the

environment and suppor t they need, and trust them to get the job done.”
Pr inciple 7. “The best architectures, requirements, and designs emerge from

self-organizing teams.”
Pr inciple 12. “Project teams evaluate their effectiveness at regular intervals

and adjust their behavior accordingly.”

Agile processes such as XP and Scrum emphasize the need to shelter developers from
distractions so that they can focus solely on project activities. Management’s role is to facilitate
development by ensuring that developers have the resources they need when needed, and that
they are not distracted by concerns outside the scope of the project. Management should also
refrain from imposing and micro-managing the development team: developers should be trusted
to get the work done using a process that is based on their collective experiences (i.e., the team
should be self-organizing). Motivation is one of the most important properties humans need in
order to achieve ambitious goals with good quality results.

It can be difficult to transform a traditional team into an agile, self-organizing team. In some
agile processes this can require team leaders to transfer some of their traditional responsibilities
to team members. The short iterations of agile processes allow the project leader to test transfer
of responsibility, and thus incrementally build trust in a team’s ability to get the job done.

It is claimed that support for Principle 6 leads to products that are of higher quality, meet
customer requirements at delivery time, are better structured, and require less effort to build than
those created using more predictive (heavy-weight) processes. However, we are not aware of any
empirical studies that provide evidence of improved quality and reduced effort as a result of
using agile processes.

The frequent reviews advocated by agile processes focus on the products and the process used to
develop the products. The planning of iterations also allows for reflection on previous results and
adjustment of future iterations. As the customer is continuously involved, different viewpoints on
the effectiveness of the project team can be obtained and flexible reaction to this reflection is
possible. The agility in agile processes is achieved through self-examination of the processes
used and corresponding adaptation of the process.

A self-evaluation and adjustment of a project, however, needs a project environment that allows
flexible adaptations. If the environment is “hostile”, this means it is inflexible to change, its
customers are not willing to actively participate, its contractors insist on written specifications to
be fulfilled, etc. It becomes much more difficult to act in an agile manner.

Understanding Agile Software Development Processes – page 15

Assumptions Under lying Pr inciples 6, 7, and 12

Team Experience Assumption: Developers have the experience needed to define and adapt their
processes appropriately.

Another way of saying this is that an organization can always form a team consisting of bright,
experienced problem solvers capable of evolving their process effectively. A development team
that (1) consists of developers with solid programming skills and relevant process and product
experience, and (2) has the ability to converge through rational discussions will likely be able to
effectively define and adapt their project processes. Unfortunately, not all development teams
have these qualities. Some need guidance in determining appropriate processes. For such teams,
a “standard” process may work better than an adaptable process that they could find difficult to
control. Indeed, the Team Experience Assumption is critical to the success of agile development
projects.

It is generally accepted that there is no single process that will be applicable to all projects. On
the other hand, there are a number of best practices, techniques, and experiences that developers
can use in appropriate situations. Software development teams that consist of leading members
that understand the situations in which particular processes and practices are applicable are more
likely to be successful within an agile environment. It is therefore the responsibility of future
agile developers to develop such an understanding by gaining experiences with a variety of
approaches. Teams consisting of developers with these skills are more likely to benefit from the
use of agile processes.

Embedded within the Team Experience Assumption there seem to be two more assumptions:
The Self-Evaluation Assumption and the Self-Organizing Assumption.

Self-Evaluation Assumption: Teams are able and willing to evaluate themselves.

A team must evaluate its process if it hopes to be able to adapt and/or improve the process. The
assumption is that the team is able and willing to do this. This is difficult in a project culture,
where less than optimal behavior is regarded as a serious liability, and thus team members may
be reticent to rive honest self-evaluations. Furthermore, even if the team is willing to self-assess,
the team also needs to have the skills to do so. This basically boils down to the necessity of the
team members having gained experience in previous successful projects to be able to compare
this project’s effectiveness with previous ones and identify possible improvements.

Self-Organization Assumption: The best architectures, requirements, and designs emerge from
self-organizing teams.

Understanding Agile Software Development Processes – page 16

The assumption here is that not only are the best architectures, requirements-elicitation, and
designs produced from self-organizing teams, but that the resources exist for self-organizing
teams to be created, and that management allows and supports this approach.

While this assumption is basically a restatement of Principle 7 it should not be regarded as
simply redundant. It is assumed that teams will self-organize, drawing from the most highly-
qualified talent-pool available, thus creating teams of diverse capabilities, and thus the ability to
create the best products possible. The concept of self-organizing teams is very different from
how many organizations work. Thus, if an organization expects to gain the most from applying
Agile processes it should be aware that its management of teams may need to be radically re-
designed.

Pr inciple 9. “Agile processes promote sustainable development.”
Pr inciple 10. “Continuous attention to technical excellence and good design

enhances agility.”

Using agile processes, developers focus on delivering just the functionality needed and timely
evolution of the software in response to changes in customer needs and the market. Agile
process advocates stress the importance of fostering a development environment that continually
stimulates and motivates developers. Rules, such as XP’s 40 hour weeks and No-Overtime,
target this principle.

The primary quality control activities in agile processes are code testing and customer feedback.
Frequent review meetings are advocated in processes such as Scrum, while Extreme
Programming advocates continuous reviews through pair-development of code. Extreme
Programming also advocates the building of test cases before the building of code, and the use of
regression tests to ensure that implemented changes do not have undesirable effects.

As systems grow through time, an initially well-designed architecture may become increasingly
blurred. Extreme programming uses the refactoring technique to constantly redesign the system
and therefore keep the design quality at an optimum. This keeps implementations enhanceable
for further iterations and maintainable for the future.

Assumptions Under lying Pr inciples 9 and 10

Quality Assurance Assumption: Evaluation of software artifacts (products and processes) can be
restricted to frequent informal interviews, reviews and code testing.

XP replaces the traditional review with pair programming, collective code ownership, and a
rigorous “test first” approach. These approaches provide opportunities for continuous review and
improvement of the product during development. Scrum and Crystal advocate the frequent use of

Understanding Agile Software Development Processes – page 17

workshops, review meetings, and interviews to evaluate products and the process, and use the
results to adapt the process accordingly.

Despite their apparent strengths, it seems that the informal evaluation techniques of agile
processes may not be sufficient for establishing the quality of safety-critical systems – systems in
which in which failure can result in direct injury to humans or cause severe economic damage.
Development and testing techniques which are more formal and/or rigorously planned may help
ensure the quality of these types of systems. Those, however, require significantly more effort
and are thus a lot more expensive. Validating an implementation against its requirements
through analysis techniques, for example, means that a precise and detailed specification model
must be derived from the requirements.

Continuous-Redesign Assumption: Systems can be continuously redesigned (refactored) and
still maintain their structural and conceptual integrity.

One major assumption behind agile development is that a design can and should be continuously
redesigned. Day after day the design is re-evaluated, and as better designs are determined,
refactoring and re-development are carried out. Of course, a big assumption for this is that this
redesign can be carried out for a significant amount of time without destroying the structural and
conceptual integrity of the design and the product.

Pr inciple 11. “Simplicity is essential.”

This principle is a direct reaction to what is perceived as unnecessary complexity imposed by
heavyweight processes. Agile processes therefore advocate simplicity both in the code and the
tools used. Code generators or frameworks are advocated only if they provide clear value to the
project. Of utmost importance, the design is to be kept simple to support future iterations.
Therefore, a focused architecture satisfying today’s needs is preferred to a general architecture
that is “designed for the future”. This follows the idea that future changes are almost absolutely
unforeseeable and it therefore makes little sense to plan for a future that might not happen.
Furthermore, redesign is encouraged if it simplifies the system and removes unneeded
functionality.

Application-Specific Development Assumption: Reusability and generality should not be goals
of application-specific software development.

Part of keeping an application simple is to stay focused on current requirements and needs rather
than trying to build a more general system that will “more easily be adapted to future needs”.
Building a more general and “adaptable” system tends to make the system more complex.

Understanding Agile Software Development Processes – page 18

Agile processes encourage the use of reusable artifacts (e.g. design frameworks, patterns) only
when it is clear that their use can help reduce costs or increase quality. Building a generalized
piece of code (one that can be used in a number of situations) is encouraged in agile processes
when it is clear that such generality can be used in the same project (e.g. factoring common
method parts). Many agile process advocates claim that a focus on creating general solutions can
result in efforts on making systems amenable to changes that may never occur. This is true
especially of those developers who adopt the XP approach to agile development; it is not
necessarily inherent in the principle itself. By focusing on building software that implements the
specific requirements at hand, and keeping this well-designed, agility for completing this
development is enhanced.

Part of this assumption is the idea that the long-term costs of development are smaller if at any
given time the focus is on current requirements rather than on generalization. Of course, this
assumption is debatable, since it may turn out that if the original design had been more general, it
would have been easier, and thus less costly, to add and adapt features over time. But this
viewpoint must be held in contrast to the view that it is hard to know what future changes will be
required, and thus that developers may be investing in generalizations that will never be needed.

Continuous-Redesign Assumption (re-iterated): Systems can be continuously redesigned
(refactored) and still maintain their structural and conceptual integrity.

Generally, when a system is first designed it is in its simplest state. Over time, and after many
changes have been made, the design typically degrades and thus the system becomes more
“complex”. The assumption here is that this continuous re-design actually keeps the system
simpler.

Figure 3 below summarizes the assumptions identified in this section that lie behind the
principles of the Agile Alliance.

Understanding Agile Software Development Processes – page 19

1. The Visibility Assumption Project visibility can be achieved solely through
delivery of working code.

2. The Iteration Assumption A project can always be structured into short
fixed-time iterations.

3. The Customer Interaction
Assumption

Customer teams are available for frequent
interaction when needed by developers.

4. The Team Communication
Assumption

Developers are located in time and place such
that they are able to have frequent, intensive
communication with each other.

5. The Face-to-Face
Assumption

Face-to-face interaction is the most productive
method of communicating with customers and
among developers.

6. The Documentation
Assumption

Developing extensive (relatively complete) and
consistent documentation and software models is
counter-productive.

7. The Changing Requirements
Assumption

Requirements always evolve, because of changes
of technology, customer needs, business domains
or even acquisition of new customers.

8. The Cost of Change
Assumption

Cost of change does not dramatically increase
over time.

9. The Team Experience
Assumption

Developers have the experience needed to define
and adapt their processes appropriately.

10. The Self-Evaluation
Assumption

Teams are able and willing to evaluate
themselves.

11. The Self-Organization
Assumption

The best architectures, requirements, and designs
emerge from self-organizing teams.

12. The Quality Assurance
Assumption

Evaluation of software artifacts (products and
processes) can be restricted to frequent informal
interviews, reviews and code testing.

13. The Application-Specific
Development Assumption

Reusability and generality should not be goals of
application-specific software development.

14. The Continuous-Redesign
Assumption

Systems can be continuously redesigned
(refactored) and still maintain their structural and
conceptual integrity.

Figure 3: Summary of Assumptions Behind Pr inciples of the Agile Alliance

4. Tackling Limitations of Agile Processes
From the discussion in the previous section it should be clear that the assumptions underlying
agile processes do not hold in all software development projects and environments. This should
not be surprising: Agile approaches are not process silver bullets. Because these assumptions are

Understanding Agile Software Development Processes – page 20

not met in all organizations and/or development environments, agile approaches, in their current
forms, do have limitations. It is possible to extend agile processes to address their limitations.
Such extensions can involve incorporating principles and practices often associated with more
predictive, plan-based, or “traditional” development processes into agile processes. In general,
users of agile processes need to ensure that practices based on assumptions that are not valid in
their development environments are modified accordingly.

In this section we identify some limitations associated with the assumptions made by agile
processes and discuss how some of these limitations can be addressed. For each limitation we
characterize the situations in which the assumptions that lead to the limitation do not hold and
discuss how agile processes can be modified to extend the applicability of agile processes. Not
all the assumptions identified in the previous section lead directly to limitations discussed in this
section.

Figure 4 below summarizes the relationships between the limitations discussed in this section
and the relevant assumptions identified in the previous section. We have identified two
categories of limitations: Personnel-related limitations and Product-related limitations. The
assumptions that are people-oriented tend to lead to limitations in the Personnel category, while
assumptions about the types of artifacts produced in a project lead to limitations in the product
category.

Understanding Agile Software Development Processes – page 21

Agile Process Limitations
Personnel Limitations Product Limitations

Assumptions

Limited support
for distributed
development
environments

Limited support
for
subcontracting

Limited support
for
development
involving large
teams

Limited support
for building
reusable
artifacts

Limited support
for developing
safety-critical
software

Limited support
for developing
large, complex
software

Customer
Interaction
Assumption

X X X

Team
Communication
Assumption

X X X

Face-to-Face
Assumption

X X X

Changing
Requirements
Assumption

 X

Documentation
Assumption

X X X X X X

Quality
Assurance
Assumption

 X X X

Iteration
Assumption

 X

Application-
Specific
Development
Assumption

 X

Continuous
Redesign
Assumption

 X X X

Figure 4: Limitations of Agile Processes and Related Assumptions

Limited Support for Distributed Development Environments
Distributed development environments are environments in which the developers are not all
located at the same geographical location, or are not located in close geographical proximity to
each other. Likewise, if the development team is not located in close geographical proximity to
the customer similar issues can result.

Geographical dispersion leads to various issues that do not exist when everyone is located at the
same site, or, at least, are located relatively close to each other (e.g., in the same city or in two
cities that are not far apart). Distributed development typically makes communication more
difficult, because people are not able to interact at the same time and/or same place. Even if
communication is not harder, distributed development requires special supporting tools,

Understanding Agile Software Development Processes – page 22

technologies, and communication mechanisms in order to address the unique requirements and
characteristics of such an environment.

In distributed development environments, the Customer Interaction, Team Communication,
Face-to-Face, and Documentation assumptions may not hold. The first three assumptions
presume that it is very easy for developers to interact with each other and with customers. In
fact, the Face-to-Face assumption assumes that developers and customers are all together where
they can meet face-to-face – that they are co-located – since agile developers believe this is the
most productive way to interact.

Geographical distribution makes interactions harder because of varying work schedules,
differences in time zones, and because developers and clients cannot always see each other’s
reactions, and share ideas as flexibly and as clearly. The emphasis on co-location in agile
processes does not fit well with the drive by some industries to realize globally distributed
software development environments. Differential labor costs in other regions or other countries
may motivate customers to employ offshore developers, or may motivate developers to use
offshore labor. Development environments in which team members and customers are physically
distributed may not be able to accommodate the face-to-face communication advocated by agile
processes. In such cases, one can at least approximate face-to-face communication using
technologies such as video-conferencing, chat and on-line whiteboards, conference calls, etc., but
these technologies can be expensive and are not always as effective as one would hope.

Face-to-face communication can be as important in distributed environments as non-distributed
ones. Such meetings must be planned in advance to ensure that all involved can participate and
that the discussions are effective and not too time consuming. One can use such face-to-face
meetings as major synchronization events in which geographically dispersed developers (1) are
made aware of the progress made by others and (2) discuss plans for further evolving the
product. In between such meetings, documentation (beyond code) may become the primary form
of communication, with e-mail, chat, and video-conferencing technologies supplementing.

Good documentation of requirements and designs, produced and maintained in a timely manner,
is essential to ensure that the distributed team members all maintain the same vision of the
product to be built. This should not be interpreted as a requirement to document or model all
aspects of software. Documentation and models should be created and maintained only if they
provide value to the project and project stakeholders.

Agility is not always possible if communication is restricted to exchange of formal
documentation due to legal reasons or due to world-wide distributed development. In these cases,
only elements of agile process can be introduced locally, with formal processes being used to
coordinate the larger, distributed project.

Understanding Agile Software Development Processes – page 23

Unfortunately, in distributed environments especially, documentation is even more important
because of differing time and place work activities, and different people and teams
simultaneously and sequentially working on the same project. Documentation becomes more
important because of the limited ways in which developers and customers can interact The focus
on minimizing documentation thus creates limitations in how well distributed development can
be done following agile processes.

Limited Support for Subcontracting
Outsourcing of software development tasks to subcontractors is often based on contracts that
precisely stipulate what is required of the subcontractor. Subcontracted tasks have to be well-
defined in the cases where subcontractors have to bid for the contract. In coming up with a bid, a
subcontractor will usually develop a plan that includes a process – with milestones and
deliverables – in sufficient detail to determine a cost estimate. The process could follow an
iterative, incremental approach, but the subcontractor will likely have to make the process
predictive by specifying the number of iterations, and the deliverables associated with each
iteration, in order to compete. Because of this, the Customer Interaction, Team Communication,
Face-to-Face, Documentation and Changing Requirements assumptions may not hold when work
is subcontracted in a project.

As discussed above, the first three assumptions presume that developers and customers are all
co-located so they can have face-to-face interaction whenever needed. It may not be possible to
co-locate subcontractors with developers and customers. In these cases, the same issues that
were identified for distributed development exist for subcontracting as well.

By requiring subcontractors to co-locate with the primary developers and the customer, these
issues can be addressed.

As was discussed above, the documentation assumption states that documentation (other than
actual program code) should only be created when absolutely necessary. In subcontracting, as
was described for distributed development environments, documentation is important because
people and teams who do not work together on a day-to-day basis must communicate and
provide information so that others (other subcontractors, the main developers, the customer, etc.)
can interact with what has been done and evaluate its acceptability within the project.

Given the greater “distance” between the main developers and subcontractors, and between the
subcontractors and the customer, the assumption that documentation is not so important is easily
seen to be invalid.

There is not much an agile development organization can do to address this issue other than to
increase its documentation, or to require subcontractors to co-locate with them.

Understanding Agile Software Development Processes – page 24

The changing requirements assumption states that requirements always evolve. However,
subcontractors typically have won an award to develop software for a fixed set of requirements.
If requirements change frequently, the contract has to change frequently, and this can lead to
significant cost increases, since contracts typically state that there will be extra charges for each
change to the contract. The basis of the contract used by agile developers and that of
subcontractors is fundamentally different, since one assumes changing requirements and the
other assumes a fixed set of given requirements.

In order to address this issue, it is possible that contracts can be written that allow a
subcontractor some degree of flexibility in how they develop the product within time and cost
constraints. This is certainly possible if the subcontractor has a good track record and can be
trusted by the contracting company to develop a product that meets the contracting company's
needs. A contract supporting agile development in the subcontractor environment might ought to
consist of two parts:

‚ Fixed Part: This part defines (1) the framework that constrains how the subcontractor will

incorporate changes into the product (e.g., cost- and time-based criteria for accepting or
rejecting changes to the Variable Part (see below) of the contract, (2) the activities that must
be carried out by the subcontractor (e.g., quality assurance activities), and (3) requirements
that are to be considered fixed and deliverables that must be delivered.

‚ Variable Part: This part defines the requirements and deliverables that can vary within the

boundaries defined in the Fixed Part. This part can evolve within the constraints defined in
the Fixed Part. At the time the contract is signed, a description of prioritized deliverables and
requirements should be included.

Limited Support for Development Involving Large Teams
Large teams often have many sub-teams of specialists, and these may exist at different
geographically-distributed locations. Large teams typically focus on very large projects, where a
large amount of human resources are needed for solving the project’s problems. Because of
these issues, large teams require more interactions among their members and a higher degree of
focus in order to manage them. In these environments, the Customer Interaction, Team
Communication, Face-to-Face, and Documentation assumptions may not hold.

The size of teams can limit the effectiveness and frequency of face-to-face interactions. Agile
processes support process "management-in-the-small" in that its coordination, control, and
communication mechanisms are applicable to small to medium sized teams. With larger teams,
the number of communication lines that have to be maintained can reduce the effectiveness of

Understanding Agile Software Development Processes – page 25

practices such as informal face-to-face communications and review meetings. Large teams
require less agile approaches to tackle issues particular to "management-in-the-large".

There is not much that can be done to address this assumption other than to attempt to minimize
the size of the team and to maximize the interaction that occurs, while at the same time not
allowing the amount interaction to overwhelm the developers and the customer(s).

With large teams, more documentation is inherently needed, simply for coordinating among the
large number of team members. Given their belief that any documentation other than code is to
be minimized, agile development processes provide limited support for development involving
large teams.

Traditional software engineering practices that emphasize documentation, change control and
architecture-centric development are more applicable for large teams. This is not to say that agile
practices are not applicable in such environments. There may be opportunities for large teams to
use agile practices, but the degree of agility possible may be less than that found in smaller
projects. For instance, the large overall team may have strict requirements for documentation,
but, within this, it may be possible for small teams to apply agile development methods while
they work on their project. After the project is completed, or at certain time intervals, the team
may document certain aspects of the project so as to be in line with the large team’s
requirements. This would allow most of the work to be done in an agile manner, and only at the
end (or other specified points) to produce required documentation.

Limited Support for Building Reusable Artifacts
Reusable artifacts are code and other components (analysis and design documents, patterns, etc.)
that can be reused from one project to another, in their entirety or at least in a major part. In
order to create components that are reusable, a big-picture view must be taken while they are
being developed, rather than simply focusing on the current application. What other types of
systems / applications might be able to benefit from this component? How many different ways
might one want to use it? What are the requirements of the domain, in contrast to simply this
application in the domain? These are a few of the questions that must be asked when thinking
about making components reusable and more general-purpose. When developing reusable
artifacts, agile development’s Documentation, Quality Assurance, Application-Specific
Development, and Continuous Redesign assumptions may not be valid.

If documentation other than actual code is minimized, it may be harder to determine when and
where a given artifact can be reused. Additional documentation may be needed to help indicate
the reuse possibilities for an artifact. In order for agile processes to support development of
reusable artifacts, they may need to increase the amount of documentation created.

Understanding Agile Software Development Processes – page 26

Agile processes such as Extreme Programming focus on building software products that solve
specific problems. Development in "Internet time" often precludes developing generalized
solutions even when it is clear that this could yield long-term benefits. In such an environment,
the development of generalized solutions and other forms of reusable software (e.g., design
frameworks) is best tackled in projects that are primarily concerned with the development of
reusable artifacts. This separation of the product-specific development environment from the
reusable artifact development environment is a primary feature of the reuse-oriented framework
called the Experience Factory developed by researchers at the University of Maryland at College
Park [5]. The wide applicability of a reusable artifact requires that the process used to build the
artifact emphasize quality control because the impact of low quality (in particular, severe errors)
is as wide as the number of applications that reuse the artifact. On the other hand, timely
development of reusable artifacts is desirable.

Continuous redesign is difficult when not developing application-specific artifacts. The
opportunity for customer feedback is lessened, and thus the improvements in quality and design
are reduced. In order to address this issue, agile developers must put in place specific processes
that are intended to obtain this type of feedback so that the design and quality of the reusable
artifacts can be enhanced.

It seems apparent that agile development does not naturally fit well for building reusable
artifacts. However, with some careful attention, and some key adjustments made to agile
processes, as mentioned above, it may be possible to successfully adapt and apply agile
processes to development of reusable artifacts.

Limited Support for Developing Safety-Critical Software
Safety-critical software is software where people’s lives, health, or safety may be compromised
if the quality of the software is not extremely high. Some examples include aviation control
software, and software/firmware to control x-ray machines. In these types of environments it is
important to know that software has been tested extensively, and has been designed to guarantee
that there will not be failures that affect the ability to correctly and safely use and control the
machinery. It is not acceptable for a machine to be allowed to give doses of x-rays that would be
fatal to the patient receiving them, or for a pilot to be unable to fly the airplane because of
software failure, for instance. In situations like these, the Documentation, Quality Assurance,
and Continuous Redesign assumptions of agile development may not be valid.

Formal specification, rigorous test coverage, and other formal analysis and evaluation techniques
included in software engineering approaches provide more robust, but also more expensive,
mechanisms to tackle the development of safety- or business-critical software. These approaches
can more reliably “guarantee” that appropriate tests have been run, and code has been analyzed,
so that developers and users are confident in the safety and reliability of the system.

Understanding Agile Software Development Processes – page 27

Applying some agile evaluation practices to such software can also be beneficial. For example,
(1) test-first approaches requires one to define unit tests before writing code, (2) the early
production of working code supported by the iterative, incremental process structure of agile
processes supports exploratory development of critical software in which requirements are not
well-defined, and (3) pair-programming can be an effective supplement to formal reviews.

Therefore, it can be assumed that agile and formal software development are not incompatible,
but can be combined when needed: Formal techniques may be used in combination with agile
processes to handle critical pieces of the software to increase quality and confidence.

Limited Support for Developing Large, Complex Software
Large, complex software is software that includes large amounts of code (many hundreds of
thousands, millions, etc., of lines) and/or may involve very intricate interrelationships between
the various parts of the system to ensure data integrity and to make certain that all parts of the
system interact reliably and run as intended. Development of large, complex software generally
requires a higher degree of management control and a greater amount of more “formalized”
processes to make sure everything fits and works together, and is runs reliably. The
Documentation, Quality Assurance, Iteration, and Continuous Redesign assumptions of agile
development may not be valid in these situations.

As was discussed above regarding large development teams, when developing large, complex
software, it is likely that there is an increased need for documentation. This is necessary for
simply documenting the larger set of requirements, features, and design decisions, as well as for
providing a knowledge base for the larger teams that are likely to be working on such systems.
Focusing almost exclusively on the code for the documentation can lead to a serious lack of
understanding about the system, and the more difficult task of training new team members
during and after the project is completed. If agile developers take the conscious effort to
document key decisions, designs, etc., then this limitation may be able to be avoided.

Likewise, the assumption that informal testing and reviews can ensure the required level of
quality in large complex systems is probably not valid. If the agile approach of creating tests
before writing code (test-first) is carried out, and the process used in coming up with these tests
is thorough and well-documented, then there may not be a problem. However, this needs to be
ensured in order for quality in large, complex systems to be maintained.

The Iteration assumption may not be valid, either, when developing large, complex software
because there may be systems in which functionality is so tightly coupled and integrated that it
may not be possible to develop the software incrementally. In these cases an iterative approach in
which code is produced in each iteration can still be used, but the code produced in each iteration
will include all the pieces in various states of incompleteness.

Understanding Agile Software Development Processes – page 28

Finally, the assumption that code refactoring removes the need to design for change may not
hold for large complex systems in particular. In such software there may be critical architectural
aspects that are difficult to change because of the critical role they play in the core services
offered by the system. In such cases, the cost of changing these aspects can be very high and
therefore it pays to make extra efforts to anticipate such changes early. The reliance on code
refactoring (an application of the Continuous Redesign assumption) could also be problematic
for such systems. The complexity and size of such software may make strict code refactoring
costly and error-prone. Models can play an important role here, especially if tools exist for
generating significant portions of the code from the models. This view of models as the central
artifacts for evolving systems is at the heart of the Object Management Group's (OMG) Model-
Driven Architecture (MDA) approach [28].

5. Open Questions, Conclusions, and Future Work
This paper has discussed claims made by agile developers, and some of the underlying principles
and assumptions upon which agile development proceeds. Some of these assumptions have been
questioned, and implications discussed. Some assumptions may always be true, but in other
cases, these assumptions could lead to situations where agile development may not be applicable,
or even where agile development may fail. In any case, there are a variety of questions that
remain open and future work that needs to be done regarding agile development.

Open Questions
While advances in software technologies and development tools have helped launch new
generations of software products, it is also the case that new generations of software products
drive the development of more sophisticated development infrastructures. It seems natural to
assume that development might become more efficient and effective as the development
infrastructure becomes more sophisticated. It would seem that development processes should
improve over time as they adapt to the increasing sophistication of the development
infrastructure. This raises the following open questions related to software development
infrastructures and agile and “non-agile” processes:

‚ Do non-agile processes have a lot of ‘overhead’ because of the ‘less-sophisticated’

development infrastructure that existed at the time the processes were developed?
‚ Do agile processes work well because of the more sophisticated infrastructure that currently

exists (e.g., component/class libraries, design frameworks, fast incremental compilers)?
‚ Would agile processes work so well if this infrastructure were not in place?
‚ What aspects of this infrastructure are key to making agile processes successful, and what

aspects of agile processes themselves are responsible for their success? (The “nature-
nurture” question.)

Understanding Agile Software Development Processes – page 29

Answers to the above questions are not easy to obtain, but obtaining them can lead to a deeper
understanding of development processes and their evolution.

Need for Empirical Studies
While it appears that there have been many software development project successes based on
agile processes, so far most of these success stories have only anecdotal evidence. For a more
conclusive assessment of these new techniques, a sound scientific evaluation based on a
statistically significant number of comparable case studies would be necessary. This could not
only help one better understand unsolved and pressing problems in software engineering, but
would also allow project managers to guide their decisions on process selection in a better way.
It is invaluable to have hard numbers and data upon which to base our decisions about whether to
adopt agile approaches to software development or not. Therefore, it is necessary to collect and
analyze data about projects that have used agile processes. A first such step was done in [32].
Such studies will lead to a better understanding of how agile processes work, how they differ
from “non-agile” processes, and under what conditions agile processes are applicable and are
most successful.

Empirical data comparing the effectiveness and limitations of agile and non-agile approaches
would greatly enhance our understanding of the true benefits and limitations of agile processes.
In this paper we presented a list of limitations derived from our analysis of principles and
assumptions underlying agile processes. It appears that certain domains are more amenable than
others to agile development processes. Among them are Internet application domains, in which
there are significant time-to-market pressures and the costs of upgrading to the next release are
minimal. However, it also appears that companies that develop long-lasting, large, complex
systems may not be able to use agile processes in their current form.

Spectrum of Development Approaches
In general, some aspects of a software development project can benefit from an agile approach
while others can benefit from a less-agile or more predictive approach. From this perspective,
practical software development processes can be created by drawing techniques from agile as
well as traditional approaches, rather than considering “agile” and “traditional” as discrete
process classification points. Some projects can benefit from techniques that are more purely
predictive, plan-based, “traditional” processes in which the process steps are defined in detail
early in the project, and project goals remain relatively stable throughout the execution of the
process. At the same time, these projects may also benefit from techniques that are more “agile”
in which process steps and project goals are dynamically determined based on analyses of (1)
experiences gained with previously executed process steps, (2) similar experiences gained
outside of the project, and on (3) changes in the requirements and development environment.
From this perspective, the agility of a process is determined by the degree to which a project
team can dynamically adapt the process based on changes in the environment and the collective
experiences of the developers.

Understanding Agile Software Development Processes – page 30

Barry Boehm [10], in his analysis of agile practices, has proposed a process spectrum that is
based on the degree of flexibility one has in developing process plans. Another way of looking
at development processes might be in matrix form, with “agile” characteristics listed across one
dimension and “traditional” ones listed across the other. The actual process used would be a
combination of the characteristics selected from each of the two dimensions. This approach
would fit in the vein of method engineering [16] where the specific processes and techniques that
are desired for a project are selected from a catalog (method base) of available options.

Most agile process practices are adaptations of practices that have been touted by methodologists
over the last two decades and that can be found in more rigorous “traditional” processes. This
has been recognized by agile process advocates who point out that the differences lie not in the
individual practices, but in how they are put together. The cobbling together of best practices to
create processes that fit a development environment’s values and development goals has been
advocated by a number of methodologists and has resulted in at least one tailorable process
framework, known as OPEN [16]. In this light, agile processes can be viewed as reference points
along a spectrum of processes by those seeking processes that have the values embodied in the
agile processes.

Practical processes lie somewhere in between the purely agile and purely predictive extremes of
the process spectrum. Current agile processes are close to the purely agile end of the spectrum,
but they are not purely agile because they provide a process framework that constrains the form
of processes that developers must follow. For example, most published works on agile processes
stipulate an iterative, incremental process and advocate practices such as test-first code
development, pair-programming, and daily review meetings with particular formats.

Conclusions
It is important to be aware that agile development approaches are built on many, possibly
implicit, assumptions, and that these assumptions are probably not appropriate for all
organizations or development projects. When the assumptions made by agile development
methods are not in alignment, or even directly conflict, with those of the organization, managers
in charge of development need to take steps to adapt the agile development process if such an
approach is adopted, or be confident in choosing a “traditional” approach, knowing that it will
better fit their environment. If this is not done, an agile development approach may very likely
provide less than desirable results because of the limitations that result from these assumptions.

6. References
[1] Agile Alliance. (2002). http://www.agilealliance.org. Visited 2002 Aug 9.
[2] Ambler, S. (2002). Agile Modeling: The Official Agile Modeling (AM) Site.

http://www.agilemodeling.com. Visited 2002 Aug 9.
[3] Auer, K.; & Miller, R. (2002). Extreme Programming Applied. Boston: Addison-Wesley.

Understanding Agile Software Development Processes – page 31

[4] Barghouti, N.S.; & Kaiser, G. (1992). “Scaling Up Rule-Based Software Development
Environments.” International Journal of Software Engineering and Knowledge Engineering,
2:1 (March), 59-78.

[5] Basili, V.; Caldiera, G.; & Rombach, H. D. (1994). “The Experience Factory. ” In:
Marciniak, J. (ed.) Volume 1 of the Encyclodepdia of Software Engineering. John Wiley
Sons. Chapter X, pp. 469-476.

[6] Basili, V.; & Turner, A. (1975). “Iterative Enhancement: A Practical Technique for Software
Development.” IEEE Transactions on Software Engineering, 1:4.

[7] Beck, Kent. (2000). Extreme Programming Explained. Boston: Addison-Wesley.
[8] Beck, K.; Fowler, M. (2001) Planning Extreme Programming Applied. Boston: Addison-

Wesley.
[9] Boehm, B. (1986). “A Spiral Model of Software Development and Enhancement.” ACM

SIGSOFT Software Engineering Notes, 11:4 (August), 22-42.
[10] Boehm, B. (2002). “Get Ready For Agile Methods, With Care.” IEEE Computer, 35:1

(January), 64-69.
[11] Boger, M.; Baier, T.; Wienberg, F.; & Lamersdorf, W. (2001). “Extreme Modeling.” In:

Succi, G.; & Marchesi, M. (eds.) Extreme Programming Examined. Boston: Addison-
Wesley.

[12] Briefs, U.; Siborra, C.; & Schneider, L. (eds.) (1983). Systems Design For, With, and By the
Users. Amsterdam: North-Holland.

[13] Cockburn, A. (2001). Agile Software Development. Boston: Addison-Wesley.
[14] Crocker, R. (2001). “The 5 Reasons XP Can’t Scale and What to do About Them.” In:

Proceedings of XP 2001.
[15] Cusumano, M.; & Yoffie, D. (1999). “Software Development on Internet Time.” IEEE

Computer, 32:10 (October), 60-69.
[16] Firesmith, D. G.; & Henderson-Sellers, B. (2000). The OPEN Process Framework. An

Introduction. Addison-Wesley.
[17] Fowler, M. (1999). Refactoring. Boston: Addison-Wesley.
[18] Fraser, S.; Beck, K.;Cunningham, W.; Crocker, R.; Fowler, M.; Rising, L.; & Williams, L.

(2000). “Hacker or Hero? – Extreme Programming Today.” Addendum to the Proceedings
of the 2000 ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2000), Mineapolis, MN, USA, October 15-19, 2000, pp. 5-7.
SIGPLAN Notices, 35:10 (October), 2000.

[19] Highsmith, J. (2001). Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House Publishing.

[20] Jacobi, C.; & Rumpe, B. (2001). “Hierarchical XP – Improving XP for Large Scale
Projects”. In: Succi, G.; & Marchesi, M. (eds.) Extreme Programming Examined. Boston:
Addison-Wesley.

[21] Jacobson, I.; Booch, G.; & Rumbaugh, J. (1999). The Unified Software Development
Process. Addison-Wesley.

Understanding Agile Software Development Processes – page 32

[22] Jeffries, R.; Anderson, A; & Hendrickson, C. (2001). Extreme Programming Installed.
Boston: Addison-Wesley.

[23] Larman, C. (2001, 2nd ed.). Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice-Hall.

[24] Lindvall, M.; Basili, V.; Boehm, B.; Costa, P.; Dangle, K.; Shull, F.; Tesoriero, R.;
Williams, L.; & Zelkowitz, M. (2002) “Empirical Findings in Agile Methods” In:
Proceedings of Extreme Programming and Agile Methods – XP/Agile Universe 2002,
August 2002, Springer, pp. 197-207.

[25] Nonaka, I; & Hirotak, T. (1995). The Knowledge Creating Company. Oxford: Oxford
University Press.

[26] Martin, R. C. (2003). Agile Software Development. Principles, Patterns, and Practices.
Prentice Hall.

[27] McBreen, P. (2003). Questioning Extreme Programming. Addison-Wesley.
[28] MDA (Model-Driven Architecture). (2002). http://www.omg.org/mda. Visited 2002 Aug

9.
[29] Newkirk, J.; & Martin, R. C. (2001). Extreme Programming in Practice. Boston:

Addison-Wesley.
[30] Osterweil, L. (1987). “Software Processes are Software Too.” Proceedings of the 9th

International Conference on Software Engineering (ICSE’97), April.
[31] Rational Corporation. (1998). “Rational Unified Process: Best Practices for Software

Development Teams”. A Rational Software Corporation White Paper.
http://www.rational.com/media/whitepapers/rup_bestpractices.pdf. Visited 2002 Sep 16.

[32] Rumpe, B.; & Schröder, A. (2002). “Quantitative Survey on Extreme Programming
Projects.” In: Proceedings of the Third International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP2002), May 26-30, Alghero, Italy, pp.
95-100, 2002.

[33] Rising, L.; & Janoff, N. (2000). “The Scrum Software Development Process for Small
Teams.” IEEE Software, 17:4 (July/August), 2000, pp. 26-32.

[34] Schwaber, K.; & Beedle, M. (2001). Agile Software Development with Scrum. Prentice
Hall.

[35] Sutton, S.M., Jr.; Heimbigner, D.; & Osterweil, L. (1995). “APPL/A: A Language for
Software Process Programming.” ACM Transactions on Software Engineering, 4:3 (July),
221-286.

[36] Sutton, S.M., Jr.; Osterweil, L. (1997). “The Design of a Next-Generation Process
Language.” Proceedings of the 6th European Software Engineering Conference (ESEC’97);
5th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE’97), Sep
1997, Zurich, Switzerland, 142-158.

[37] Takeuchi, H.; & Nonaka, I. (1986). “The New Product Development Game.” Harvard
Business Review, pp. 137-146, 1986.

[38] UML (2002). “OMG Unified Modeling Language Specification”, Version 1.4.1, ad/02-06-
22. Object Management Group (OMG). http://www.omg.org. Visited 2002 Aug 12.

Understanding Agile Software Development Processes – page 33

[39] Wake, W. (2002) Extreme Programming Explored. Boston: Addison-Wesley.
[40] Wells, D. (2002) http://www.extremeprogramming.org/. Visited 2002 Aug 12.
[41] Williams, L.; Kessler, R.; Cunningham, W.; & Jeffries. R. (2000). “Strengthening the Case

for Pair Programming.” In: IEEE Software, 17:4 (July/August), 2000, pp. 19-25.
[42] Williams, L.; & Upchurch, R. (2001). “In Support of Student Pair-Programming.”

Proceedings of the 2001 ACM Special Interest Group on Computer Science Education
(SIGCSE 2001) Conference, Charlotte, NC, USA, February, 2001, pp. 327-331.

