
The UML as a Formal Modeling Notation

Andy Evans�� Robert France�� Kevin Lano�� and Bernhard Rumpe�

� Department of Computing� Bradford University� UK
� Department of Computer Science � Engineering� Florida Atlantic University� USA

� Department of Computing� Imperial College� London� UK
� Department of Computer Science� Munich University of Technology� Germany

email� puml�comp�brad�ac�uk

Abstract� The Uni�ed Modeling Language �UML� is rapidly emerging
as a de�facto standard for modelling OO systems	 Given this role� it is
imperative that the UML needs a well�de�ned� fully explored semantics	
Such semantics is required in order to ensure that UML concepts are
precisely stated and de�ned	 In this paper we motivate an approach
to formalizing UML in which formal speci�cation techniques are used
to gain insight into the semantics of UML notations and diagrams and
describe a roadmap for this approach	 The authors initiated the Precise
UML �PUML� group in order to develop a precise semantic model for
UML diagrams	 The semantic model is to be used as the basis for a set of
diagrammatical transformation rules� which enable formal deductions to
be made about UML diagrams	 A small example shows how these rules
can be used to verify whether one class diagram is a valid deduction of
another	 Because these rules are presented at the diagrammatical level� it
will be argued that UML can be successfully used as a formal modelling
tool without the notational complexities that are commonly found in
textual speci�cation techniques	

� Introduction

The popularity of object�oriented methods such as OMT �RBP���� and the Fu�
sion Method �CAB����� stems primarily from their use of intuitively�appealing
modelling constructs� rich structuring mechanisms� and ready availability of ex�
pertise in the form of training courses and books	 Despite their strengths� the
use of OO methods on nontrivial development projects can be problematic	 A
signi
cant source of problems is the lack of semantics for the modelling notations
used by these methods	 A consequence of this is that understanding of models
can be more apparent than real	 In some cases� developers can waste consider�
able time resolving disputes over usage and interpretation of notations	 While
informal analysis� for example� requirements and design reviews� are possible� the
lack of precise semantics for OO modelling makes it di�cult to develop rigorous�
tool�based validation and veri
cation procedures	

The Uni�ed Modeling Language �UML
 �Gro��c� is a set of OO modelling no�
tations that has been standardized by the Object Management Group �OMG
	

[EFL+99] A. Evans, R. France, K. Lano, B. Rumpe. 
The UML as a Formal Modeling Notation. 
In: The Unified Modeling Language - Workshop UML'98: Beyond the Notation. 
Jean Bezivin, Pierre-Alain Muller (eds.) 
Springer Verlag Berlin, LNCS 1618, 1999. 
www.se-rwth.de/publications



It is di�cult to dispute that the UML re�ects some of the best modelling ex�
periences and that it incorporates notations that have been proven useful in
practice	 Yet� the UML does not go far enough in addressing problems that re�
late to the lack of precision	 The architects of the UML have stated that precision
of syntax and semantics is a major goal	 The UML semantics document �version
�	�
 �Gro��b� is claimed to provide a �complete semantics� that is expressed
in a �precise way� using meta�models and a mixture of natural language and
an adaptation of formal techniques that improves �precision while maintaining
readability�	 The meta�models do capture a precise notion of the �abstract
 syn�
tax of the UML modelling techniques �this is what meta�models are typically
used for
� but they do little in the way of answering questions related to the
interpretation of non�trivial UML structures	 It does not help that the semantic
meta�model is expressed in a subset of the notation that one is trying to in�
terpret	 The meta�models can serve as precise description of the notation and
are therefore useful in implementing editors� and they can be used as a basis to
de
ne semantics� but they cannot serve as a precise description of the meaning
of UML constructs	

The UML architects justify their limited use of formal techniques by claiming
that �the state of the practice in formal speci
cations does not yet address some
of the more di�cult language issues that UML introduces�	 Our experiences with
formalizing OO concepts indicate that this is not the case	 While this may be true
to some extent� we believe that much can be gained by using formal techniques
to explore the semantics of UML	 On the other hand� we do agree that current
text�based formal techniques tend to produce models that are di�cult to read
and interpret� and� as a result� can hinder the understanding of UML concepts	
This latter problem does not diminish the utility of formal techniques� rather�
it obligates one to translate formal expressions of semantics to a form that is
digestible by users of the UML notation	

In a previous paper �FELR���� we discussed how experiences gained by for�
malizing OO concepts can signi
cantly impact the development of a precise
semantics for UML structures	 We motivated an approach to formalizing UML
concepts in which formal speci
cation techniques are used primarily to gain in�
sights to the semantics of UML notations	 In this paper we present the roadmap
we are using to formalize the UML� and describe the results of its application to
the formalization of UML static models	

The primary objective of our work is to produce rigorous development tech�
niques based on the UML	 A 
rst step is to make UML models amenable to
rigorous analyses by providing a precise semantics for the models	 This paves
the way for the development of formal techniques supporting the rigorous de�
velopment of systems through the systematic enhancement and transformation
of OO models	 In this paper we show how the formalized static model can be
rigorously manipulated to prove properties about them and their relationships
to other static models	

In Section �� we present an overview of work on the formalization of OO mod�
elling concepts and notations� and outline the PUML formalization approach	



As we 
rmly believe that not the formalization� but the resulting manipulation
techniques and consistency checks are the value add� we give only a small ex�
ample formalization of UML static models in Section � to demonstrate how our
approach of formalization is applied	 In Section � we discuss how the Class Dia�
grams can be formally manipulated and what the bene
ts of such manipulation
techniques are	 We conclude in Section � with a summary and a list of some of
the open issues that have to be tackled if our approach is to bear meaningful
results	

� Formalizing OO Concepts� Overview and Roadmap

��� Classi�cation of Approaches

In �FELR��� we identi
ed three general approaches to formalizing OO mod�
elling concepts� supplemental� OO�extended formal notation� and methods in�

tegration approaches	 In the supplemental approach more formal statements
replace parts of the informal models that are expressed in natural language	
Syntropy �CD��a�CD��b� uses this approach	 In the OO�extended formal lan�
guage approach� an existing formal notation �e	g	 Z �Spi���
 is extended with
OO features �e	g	 Z�� �Lan��� and Object�Z �DKRS���
	 In the methods in�
tegration approach informal OO modelling techniques are made more precise
and amenable to rigorous analysis by integrating them with a suitable formal
speci
cation notation �e	g	� see �FBLP���BC���Hal���
	

Most method integration works involving OO methods focus on the gener�
ation of formal speci
cations from less formal OO models	 This is in contrast
to the PUML objectives� where the OO models are the precise �even formal

models	 The degree of formality of a model is not necessarily related to its form
of representation	 In particular� graphical notations can be regarded as formal if
a precise semantics is provided for their constructs	

A formal semantics for a modelling notation can be obtained by de
ning a
mapping from syntactic structures in the �informal
 modelling domain to ar�
tifacts in the formally de
ned semantic domain	 This mapping� often called a
meaning function� is used to build interpretations of the informal models	

Rather than generate formal speci
cations from informal OO models and
require that developers manipulate these formal representations� a more work�
able approach is to provide formal semantics for graphical modelling notations
and develop rigorous analysis tools that allow developers to directly manipulate
the OO models they have created	 De
ning meaning functions provides oppor�
tunities for exploring and gaining insight into appropriate formal semantics for
graphical modelling constructs	 The method developers �and not the application
developers
 should use these mappings to justify the correctness of analysis tools
and procedures provided in a CASE tool environment	

However� diagrams alone are usually not expressive enough to de
ne all prop�
erties	 Therefore it is to expect that a textual language� such as OCL or also Z�
can be used to supplement the diagrams	 In this case the supplemented textual



language is used as syntactic notation by the developer� but not as notation to
de
ne an appropriate semantics for the syntactic notation �we will use Z this
way
	

��� Roadmap to Formalization

Our experiences with formalizing OO modelling notations indicate that a precise
and useful semantics must be complete �i	e	� meanings must be associated with
each well�formed syntactic structure
� preserve the intended level of abstraction
�i	e	� the elements in the semantic domain must be at the same level of abstrac�
tion as their corresponding modelling concepts
� and understandable by method
developers	 Furthermore� the formalization of a heterogeneous set of modelling
techniques requires that the notations are integrated at the semantic level	 Such
integration is required if dependencies across the modelling techniques are to be
de
ned	

The following are the steps of the formalization approach that we use in our
work on formalizing the UML�

�	 In this step� a formal language for describing syntax and semantics is chosen	
For the UML formalization we chose Z because it is a mature� expressive
and abstract language� that is well supported by tools	 Our experiences with
using Z to formalize OO concepts indicates that it is expressive enough
to characterize OO concepts in a direct manner �i	e	� without introducing
unwanted detail
	

�	 In this step� the abstract syntax of the graphical OO notation is de
ned	
Here� we will refer to this notation as �language
 L	 Language L� like conven�
tional textual languages� needs to have a precise syntax de
nition	 Whereas
grammars are well suited for text� the UML meta�model �Gro��a� works well
as a description of the structure of UML diagrams	 However� a Z character�
ization of the abstract syntax is better able to capture constraints on the
syntactic structures that can be formed using the graphical constructs	

�	 This step is concerned with characterizing the notion of a system in terms
of its constituent parts� interactions� and static and behavioral properties	
The characterization de
nes the elements of the semantic domain� which we
denote by S	 The elements of the semantic domain correspond to modelling
concepts that are independent of particular modelling techniques	 In the OO
modelling realm this is possible because objects have certain properties that
are independent from the modelling techniques� and are thus intrinsic to
�being an object�	 In �KRB��� and �Rum��� a system model is de
ned� and
used as the semantic domains for OO notations in papers such as �BHH����
and �Rum���	 In this paper� the semantic domain is characterized using the
language Z	

�	 This step is concerned with de
ning the meaning function for the OO nota�
tion	 A mapping between the syntactic domain L and the semantic domain S
is de
ned	 The system model domain formally de
nes the set of all possible
systems	 The semantics of a model created using a given description tech�
nique is obtained by applying the meaning function to its syntactic elements	



The semantics of a model is given by a subset of the system model domain	
This subset of the system model consists of all the systems that possess the
properties speci
ed in the model	

�	 In the 
nal step� analysis techniques are developed for the formalized OO
notation	 These techniques enable us to constructively enhance� re
ne and
compose models expressed in the language L� and also allow us to introduce
veri
cation techniques at the diagrammatic level	

An important aspect of our formalization approach is the separation of concerns
re�ected in the language�independent formulation of the semantic domain S	
This leads to a better understanding of the developed systems� allows one to
understand what a system is independently of the used notation� and allows one
to add and integrate new OO diagramming forms	

Though we speak of one language L� this language can be heterogeneously
composed of several di�erent notations	 However� it is important to note that
integration of these notations is more easily accomplished if the semantic domain
S is the same for all these sub�languages	

In the following sections� we illustrate the application of this formalization
approach using a small subset of UML class diagram notation	

� A Formalization Example

In this section we formally de
ne a small subset of the abstract syntax of the
UML static model notation� characterize an appropriate semantic domain for
its components� and de
ne a meaning function for the formally de
ned syntax	
The focus of this paper is not to present this formalization� but to present the
roadmap of the last section by example and to have a basis for arguing about the
bene
ts of a formalization in the next section	 Please note that there are di�erent
formalizations as well as di�erent denotations of the same formalization possible	
Whereas the former di�er in their essential semantics� the later just denote the
same semantics in di�erent ways	

��� Abstract Syntax

In the UML semantics document �version �	�
� the core package � relationships �
gives an abstract syntax for the static components of the UML	 This is described
at the meta�level using a class diagram with additional well�formedness rules
given in OCL	 For reasons given in the previous section� we use the Z notation
to de
ne the abstract syntax	 Unlike the OCL� Z provides good facilities for
proof	 In our work we treat the UML semantics document as a requirements
statement from which a fully formal model can be obtained	

As an example� the following schemas de
ne some of the UML static model
constructs	 Speci
cally� they de
ne a set of classi
ers� associations and a gener�
alization hierarchy� and attach a set of attributes to each classi
er	 We start to
introduce a set for classi
ers �e	g	 class names
 and a set of other names �e	g	
attribute and method names
	



�Classi�er �Name�

An association end connects an association to a classi
er� and has a unique
name and a multiplicity��

AssociationEnd

name � Name

classi�er � Classi�er
multi � PN

Each association has a name of its own and is connected to a number �
typically two � of association ends�

Association

name � Name

connects � F AssociationEnd

The abstract syntax of class diagrams contains to a set of classes� a set of
abstract classes� a set of associations� and a supertype relation between classes	
Each class is attached to a set of attribute names �denoted as Name
	 The com�
ponents of the abstract syntax of class diagrams can be formalized as follows��

Static�
abstract � classi�ers � F Classi�er
associations � F Association
attributes � Classi�er � �� F Name

supertype of � Classi�er � Classi�er

abstract � classi�ers

Well�formedness of the abstract syntax is ensured by further constraints��

� A Z schema is similar to a record	 It introduces a schema name� and elements of the
schema� which are part of the schema	 They can be referred to when the schema is
used	

� Schemas in addition allow to state axioms that must hold between their elements	
� Refering to another schema name includes the elements of the referred schema in the
new one	 All operations� and especially equality� are mathematical set and function
operations	



Static

Static�

supertype of � �classi�ers � classi�ers

supertype of � � id�classi�ers
 � �

� c�� c� � classi�ers 	
c� supertype of c� 
 attributes�c�
 � attributes�c�


�a�� a� � associations 	
a� �� a� 
 a��name �� a��name

�a � associations 	
fe � a�connects 	 e�classi�erg � classi�ers

The above schema describes the constraints governing how elements of the
abstract syntax can be combined �more constraints are possible
	 These con�
straints state that�

� the collection of classi
ers in the supertype hierarchy form a directed acyclic
graph�

� association names are unique and link classi
ers

��� Semantic Domain

Semantically� a classi
er is represented as a set of objects	 We distinguish between
object identi
ers �oValues
 and normal values �integer etc	
�

�Value�

Values

oValues �nValues � PValue

oValues � nValues � �

An object is owned by a classi
er� has a unique identity� and maps a set of
attribute names �denoted as Name
 to values�

Object

classi�er � Classi�er
self � Value
attvals � Name � �� Value

At any point in time� a system can be described as a set of objects� where
each object is referenced by its identity self�



SM �
Values

objects � Value �� Object

dom objects � oValues

�o � Value 	 o � dom objects 
 �objects�o

�self � o

From that snapshot� we can derive sets of links �instances of associations
�

SM

SM �
links � Name � �Value � Value


�at � Name� o�� o� � Value 	
�o�� o�
 � links�at
� o� � ��objects�o�

�attvals
�at


��� Semantic Mapping

The semantic mapping determines how the syntactic elements of the UML static
model� for example� abstract� classi
er� and association� are to be interpreted in
the semantic domain	 The semantic mapping that takes the concepts given in
the syntactic domain AbstractSyntax to elements in the semantic domain SM
is characterized by a Z schema that takes the characterizations of the syntactic
and semantic domains as parameters	

Semantics

Static

SM

fo � ran objects 	 o�classi�erg � classi�ers n abstract

�o � dom objects 	
attributes��objects�o

�classi�er
 � dom��objects�o

�attvals


�a � associations � o � dom objects 	
� e � a�connects 	 e�classi�er � �objects�o

�classi�er 


e�name � dom��objects�o

�attvals
 

���links�e�name

�j fog j

 � e�multi

� s�� s� � Classi�er 	
s� supertype of s� 


fo � Value j �objects�o

�classi�er � s�g �
fo � Value j �objects�o

�classi�er � s�g

The axioms state that each object is assigned to a non�abstract classi
er	
Furthermore� the objects have at least the set of attributes explicitly mentioned
in the classi
er de
nitions	 We also interpret association ends as attributes and
restrict the multiplicities	 Finally� the supertype relationship requires that a



set of objects assigned to a subtype is a subset of the objects assigned to its
supertype	

We have now given a formalization of �a subset of
 the abstract syntax of class
diagrams and an appropriate semantic domain	 Especially the semantic domain
is de
ned in dependency of the abstract syntax	 If a concrete class diagram is

lled in for the schema Static then the semantics for this class diagrams is given
by the resulting schema Semantics 	 Therefore� we implicitly de
ned a mapping
from syntax to the semantic domain without explicitely de
ning this mapping	
An explicit form of the semantics mapping can be expressed as follows�

M � Static � PSM

� st � Static 	
M�st
 � fSemantics j st � �Static 	 �SM g

It can be used to prove properties of this mapping	 One such property is e	g	
the consistency of the mapping� which is stated by the property � st � Static 	
M�st
 �� �	

� Analyzing UML diagrams

As discussed above� a central part of the PUML group�s work is to develop a
formal version of UML that can be used to build precise and analyzable models	
However� how can a UML model be analyzed In the case of a textual notation
such as Z� analysis is carried out by constructing proofs to determine the truth or
falsity of some property being asserted about a speci
cation	 Each proof involves
applying a sequence of inference rules and axioms to the speci
cation to derive
the required conclusion	 At each step� a new formula is derived either from the
original speci
cation or as a result of applying an inference rule to previous
formulas	

To analyze UML models� a very similar approach can be adopted �Eva���	
However� because UML is a diagrammatical modelling language� a set of deduc�
tive rules for UML will consist of a set of diagrammatical transformation rules	
Thus� proving a property about a UML model will involve applying a sequence
of transformation rules to the model diagrams until the desired conclusion is
reached	

This approach is brie�y illustrated by a simple �toy
 example	 Consider the
left hand class diagram D in Figure �� which describes the relationship between
a university and its students	 Given that full�time students are enlightened by a
university� it is an interesting question to deduce the relationship between uni�
versities and students in general	 One �obvious
 conjecture is that some students
are enlightened� but not all	 This is expressed by the right hand class diagram	

Using a suitable sequence of transformation rules� we should be able to trans�
form the original diagram into the second diagram� thereby proving that the
derivation is valid	 In this simple case� only three steps are required to carry out
the proof	 One transformation rule allows us to move an association end from a



0..1 0..*

0..*

1

D D’

enlightens
Student

Student

Part-time
enlightens

Full-time

University

University

Fig� �� Transforming a Class Diagram D to D � to derive information

subclass to a superclass� but requires that the opposite association end becomes
optional	 This rule is justi
ed because a superclass may contain objects that
are not in its subclasses� thus they may not participate in the association	 The
second transformation rule permits the deletion of the full and part�time classes�
as they are of no further interest in the current derivation	 By only applying cor�
rect transformations� the derivation automatically is correct� and a proof for its
correctness exists	 Please note that this is not a mathematical or textual proof�
but a diagrammatic proof that deals with diagrams as axioms and diagrammatic
rules as transformation rules	 Nevertheless� it can be regarded fully formal� pro�
vided a formal syntax� semantics and set of transformation rules exists	 This is
of course just indicated here� but not fully carried out�	

��� Satisfaction Conditions

Whenever a transformation rule is applied to a diagram it must be shown that
the resulting diagram is a valid deduction of the original diagram	 The condition
under which this is true is known as the satisfaction condition	 This states that if
every meaning satisfying one model also satis
es another model� then whatever
property holds for the 
rst model must also hold for the second	 Thus� the second
diagram follows from �or is a logical deduction of
 the 
rst diagram	 Of course�
for this result to be valid� both models must be well formed	

This condition can be expressed in Z as follows� Let us assume� there is a
transformation rule T given	 This is formally represented as a modi
cation on
the syntax� in this case a static model�

T � Static �� Static

Such a transformation can� for example� be the erasure of a classi
er or
association� or weakening of a multiplicity	 This syntactic transformation needs
a semantic counterpart� which relates elements of the semantic domain	 This is
known as the satisfaction relation� and it has the general form�

� Full details of the transformation rules can be found in 
Eva��
	



j� � P�SM 
� P�SM 


� s � s � � P�SM 
 	
s j� s � � s � s �

Thus� a semantic model s �� will satisfy all the properties of s provide that
every property of s is in s �	

Finally� the formal proof of correctness of a transformation can now be de�
scribed within Z �and therefore can be proven within Z
	 A transformation T is
correct� i�

� st � Static 	 M�st
 j�M�T �st



This strongly corresponds to the commuting diagram� 
rst stated in �Rum���
and also in �KR���	

� Summary and Open Issues

In this paper we outlined and illustrated an approach to formalizing the UML	
The objective of our e�orts is to make the UML itself a precise modelling notation
so that it can be used as the basis for a rigorous software development method	
However� it must 
rst be determined how such a formalization can best be carried
out� and what practical purpose it can serve	 This paper aims to contribute to
this ongoing discussion	

The bene
ts of formalization can be summarized as follows�

� Lead to a deeper understanding of OO concepts� which in turn can lead to
more mature use of technologies	

� The UML models become amenable to rigorous analysis	 As we have illus�
trated� diagrammatical analysis techniques can be developed	

� Rigorous re
nement techniques can be developed	

An interesting avenue to explore is the impact a formalized UML can have on
OO design patterns and on the development of rigorous domain�speci
c software
development notations	 Domain�speci
c UML patterns can be used to bring
UML notations closer to a user�s real�world constructs	 Such patterns can ease
the task of creating� reading� and analyzing models of software requirements and
designs	

An integrated approach to formalization of UML models is needed in or�
der to provide a practical means of analyzing these models	 Current work on
compositional semantics �BLM��� has used techniques for theory composition to
combine semantic interpretations of di�erent parts of an OO model set	

Some of the other issues that have to be addressed in our work follows�

� How does one gauge the appropriateness of an interpretation of UML con�
structs In practice an !accepted� interpretation is obtained by consensus
within a group of experts	 Formal interpretations can facilitate such a pro�
cess by providing clear� precise statements of meaning	



� Should a single formal notation be used to express the semantics for all the
models The advantage of a single notation is that it provides a base for
checking consistency across models� and for re
nement of the models	 This
is necessary if analysis and re
nement is done at the level of the formal
notation	 On the other hand� if the role of the formal notation is to explore
the semantic possibilities for the notations� and analysis and re
nement are
carried out at the UML level� then there seems to be no need to use a single
formal notation	

� How will the use of textual constraints �expressed in OCL for example
 inter�
act with and impact on diagrammatical analysis and re
nement techniques 

It is anticipated that� as our work progresses� additional issues that will have to
be tackled will come up	

Acknowledgements

The authors thank their colleagues for fruitful discussions and the referees for
helpful comments	

References


BC��
 Robert H	 Bourdeau and Betty H	C	 Cheng	 A formal semantics for object
model diagrams	 IEEE Transactions on Software Engineering� �����������
���� October ����	


BHH���
 Ruth Breu� Ursula Hinkel� Christoph Hofmann� Cornel Klein� Barbara
Paech� Bernhard Rumpe� and Veronika Thurner	 Towards a formalization of
the uni�ed modeling language	 In Satoshi Matsuoka Mehmet Aksit� editor�
ECOOP��� Proceedings	 Springer Verlag� LNCS ����� ����	


BLM��
 J	 Bicarregui� K	 Lano� and T	 Maibaum	 Objects� associations and subsys�
tems� A hierarchical approach to encapsulation	 In Proceedings of ECOOP
��� LNCS ����	 Springer�Verlag� ����	


CAB���
 Derek Coleman� Patrick Arnold� Stephanie Bodo�� Chris Dollin� Helena
Gilchrist� Fiona Hayes� and Paul Jeremaes	 Object	Oriented Development

The Fusion Method	 Prentice Hall� Englewood Cli�s� NJ� Object�Oriented
Series edition� ����	


CD��a
 Steve Cook and John Daniels	 Designing Object Systems
 Object	Oriented
Modeling with Syntropy	 Prentice Hall� Englewood Cli�s� NJ� September
����	


CD��b
 Steve Cook and John Daniels	 Let�s get formal	 Journal of Object	Oriented
Programming �JOOP�� pages ����� and ������ July�August ����	


DKRS��
 Roger Duke� Paul King� Gordon A	 Rose� and Graeme Smith	 The Object�
Z speci�cation language	 In Timothy D	 Korson� Vijay K	 Vaishnavi� and
Bertrand Meyer� editors� Technology of Object	Oriented Languages and Sys	
tems
 TOOLS 
� pages �������	 Prentice Hall� ����	


Eva��
 Andy Evans	 Reasoning with UML class diagrams	 InWIFT��� Proceedings	
IEEE� ����	




FBLP��
 Robert B	 France� Jean�Michel Bruel� and Maria M	 Larrondo�Petrie	 An
Integrated Object�Oriented and Formal Modeling Environment	 To appear
in the Journal of Object	Oriented Programming �JOOP�� ����	


FELR��
 Robert France� Andy Evans� Kevin Lano� and Bernhard Rumpe	 The UML
as a formal modeling notation	 Computer Standards � Interfaces� to appear�
����	


Gro��a
 The UML Group	 UML Metamodel	 Version �	�� Rational Software Corpo�
ration� Santa Clara� CA������� USA� September ����	


Gro��b
 The UML Group	 UML Semantics	 Version �	�� Rational Software Corpo�
ration� Santa Clara� CA������� USA� July ����	


Gro��c
 The UML Group	 Uni�ed Modeling Language	 Version �	�� Rational Soft�
ware Corporation� Santa Clara� CA������� USA� July ����	


Hal��
 J	 Anthony Hall	 Using Z as a speci�cation calculus for object�oriented
systems	 In D	 Bj�rner� C	 A	 R	 Hoare� and H	 Langmaack� editors� VDM
and Z � Formal Methods in Software Development� volume ��� of Lecture
Notes in Computer Science� pages �������	 VDM�Europe� Springer�Verlag�
New York� ����	


KR��
 Haim Kilov and Bernhard Rumpe	 Summary of ecoop��� workshop on pre�
cise semantics of object�oriented modeling techniques	 In J	 Bosch and
S	 Mitchell� editors� Object	Oriented Technology � ECOOP��� Workshop
Reader	 Springer Verlag Berlin� LNCS ����� ����	


KRB��
 Cornel Klein� Bernhard Rumpe� and Manfred Broy	 A stream�based mathe�
matical model for distributed information processing systems � SysLab sys�
tem model � 	 In Jean�Bernard Stefani Elie Naijm� editor� FMOODS���
Formal Methods for Open Object	based Distributed Systems� pages �������	
ENST France Telecom� ����	


Lan��
 Kevin C	 Lano	 Z��� an object�orientated extension to Z	 In John E	
Nicholls� editor� Z User Workshop� Oxford ����� Workshops in Computing�
pages �������	 Springer�Verlag� ����	


RBP���
 J	 Rumbaugh� M	 Blaha� W	 Premerlani� F	 Eddy� and W	 Lorensen	 Object	
Oriented Modeling and Design	 Prentice Hall� ����	


Rum��
 Bernhard Rumpe	 Formal Method for Design of Distributed Object	oriented
Systems	 Ph	D	 thesis �in German�� Technische Universit�at M�unchen� ����	


Spi��
 J	 Michael Spivey	 The Z Notation
 A Reference Manual	 Prentice Hall�
Englewood Cli�s� NJ� Second edition� ����	




