
TESTING AGILE REQUIREMENTS MODELS  

Jewgenij Botaschanjan, Markus Pister, Bernhard Rumpe 
 

 Software & Systems Engineering,  
Technische Universität München,  

Boltzmannstr. 3, 84758 Garching/Munich, Germany 
http://www4.in.tum.de/ 

Abstract: 
This paper discusses a model-based approach to test 
software requirements in agile development processes. 
The use of models as central development artifact 
needs to be added to the portfolio of software engi-
neering techniques, to further increase efficiency and 
flexibility of the development beginning already early 
in the requirements definition phase. Testing require-
ments is one of the most important techniques to give 
feedback and to increase the quality of the result. 
Therefore testing of artifacts should be introduced as 
early as possible, even in the requirements definition 
phase. 

Key words: Requirements, UML, Model-based test-
ing, Requirements evolution 

1   Introduction 

One main purpose of requirements is to describe the 
functionality of software. Thus requirements often 
serve as a basis for contracts as well as for commu-
nication between customers and developers. How-
ever, they are usually captured in natural language 
accompanied by a few top-level informal drawings 
like use cases or activity diagrams that denote the 
structure of the functionalities in an abstract way. 
The disadvantage of natural language is that the 
developer has to cope with its ambiguity. The usage 
of precise or even formal descriptions for require-
ments helps to get along with this problem. How-
ever, preciseness of the language used does not 
mean that the description needs to be very detailed. 
Instead, given an appropriate language, one can 
specify very precise and very abstract. Further on 
precision also allows increasing the degree of tool 
support. Especially in innovative environments, 
where the requirements as well as the design and the 
implementation change rapidly, the probability for 
inconsistencies between formulated requirements 
and the implemented system is very high. Simula-
tions of the behavior described in the specification 
and automatisms to synchronize the requirements 
with the design and the implementation increase as 
well quality of the result as efficiency of the devel-
opment. 

The approach taken here consists of a number of 
partially already well proven techniques, applied in 
different areas. The key idea is to combine the ad-
vantages of these techniques and apply them in at 
least one of their domains. The idea of upfront test 
design and refactoring comes from the Agile Meth-
ods Community, namely Extreme Programming, the 
use of modeling techniques from object-oriented 
software development methods (or from software 
engineering best practices in general), and the inten-
sive use of code generators including behavior gen-
erators from automotive industry, where simulation 
and lately also production code generation from 
high level, state based modeling techniques is com-
mon already. The goal of this paper is to combine 
these concepts and transfer them to the already early 
phases of requirements modeling. 

The usage of the Unified Modeling Language 
(UML, [1]) as a formal requirements description 
language is the main topic of Section 2. As primary 
technical element of model-based development, the 
form of model-based tests for the production code is 
discussed in Section 3. In Section 4 the validation of 
the requirements models is considered to ensure a 
high quality of the specification. As a remark for 
further work, the evolution (refactoring) of models 
is discussed in Section 5. Section 6 gives a conclu-
sion. 

2   Requirements Modeling with Executable 
UML 

The UML undoubtedly has become the most popu-
lar modeling language for software intensive sys-
tems used today. Based on the ongoing standardiza-
tion process its precision increases. Thus with some 
adaptations and interpretation guidelines for the 
language an unambiguous description can be created 
with relatively small effort. The UML consists of as 
many as nine kinds of diagrams usable for the de-
scription of the architecture and the design of the 
software. This variety of diagrams can be used for 
requirements models as well. Therewith the devel-
opers do not have to handle different and incom-
patible modeling languages within the same project.  

[BPR03] J. Botaschanjan, M. Pister, B. Rumpe. 
Testing Agile Requirements Models.  
In: Proceedings of the First Hangzhou-Lübeck Conference on Software Engineering (HL-SE 03) 
C. Chen, W. Dosch, Y. Qian, H. Lin (Eds.) 
Hangzhou, China, Nov. 1-2, 2003. 
www.se-rwth.de/publications 



Though using the same language, there are some 
distinctions between design and requirements mod-
els:   

1. Requirements models are usually less detailed 
and less precise than design models.  

2. Requirements models describe properties of the 
system as a black box and do not describe the in-
ternal structure. 

3. Requirements models often model the system 
and the environment (neighbor systems as well 
as user behavior), whereas design and implemen-
tation models concentrate on the system under 
development. 

Regarding point 1, there is a general misconception 
about formality and precision of languages and 
statements: A requirement can and should be cap-
tured using a precise formal language. But even in a 
formal language it is possible to formulate abstract 
and thereby imprecise statements that only describe 
the details really needed and not anything more [9]. 
Although the UML has some deficits in allowing an 
abstract specificational modeling style, it is well 
suited to model abstract requirements. 

Regarding point 2, it is clear today, that abstract 
behavioral specifications work for algorithms, such 
as sorting. In business information systems instead, 
we observe the data structure and accompanying 
functionality to be an integral part of the require-
ments model even so it serves also as part of the 
design. Thus most requirements engineering ap-
proaches distinguish between system requirements 
describing the black box view and constraints influ-
encing the design, architecture and implementation 
[7]. One possibility to distinguish between data 
structures that are fixed by requirements / con-
straints and “auxiliary”  data structures that only 
assist to describe required behavior and are there-
fore subject to change later, is to mark them explic-

itly, e.g. through stereotypes like «requirement» or 
«auxiliary data structure». 

Requirements models are usually build from the user 
view of the system. Though having vague ideas of 
the design of the application the user often describes 
the system by formulating exemplary working steps 
that should be supported. By this, the software is 
described as a service to support working situations. 
These exemplary situations and the interaction with 
the software system can be described using se-
quence and object diagrams, but also using OCL 
and class diagrams for data structures and invari-
ants.  

The task of design models however is to define 
interfaces and precisely describe the behavior in a 
white box view of the system. The black-box de-
scription provided by requirements is refined into 
the “white-box”  architecture and design of the sys-
tem. This motivates the notion of refinement, de-
fined as a mapping between an abstract system inter-
face and a set of concrete design elements (e.g. 
interfaces or classes). In today’s practice however, 
we have continuously evolving systems. Thus re-
quirements, design and implementation evolve and 
the mapping between them has to be synchronized 
continuously. 

This task needs tool and methodological support. 
Some UML-based tools today offer functionality to 
directly simulate models or generate at least parts of 
the test code for the software. As tool vendors work 
hard on continuous improvement of this feature, this 
means a sublanguage of UML will become a high-
level programming language and modeling at this 
level becomes identical to programming. This raises 
a number of interesting questions, mainly dealing 
with the implications of using an executable UML in 
the development process. For example the degree of 
abstraction has an influence on the complexity of 
models. It is discussed, how fine grained an execu-

Figure 1: Mapping of an UML –requirements model to code and tests. 

parameterized
code
generator

system test code

test code
generator

statechartsclass 
diagrams sequence 

diagrams
object 
diagrams

__:

__:

__:

C++, Java …

deployment 
diagram

name
name

name

OCL
parameterized
code
generator

system test code

test code
generator

statechartsstatechartsclass 
diagrams
class 
diagrams sequence 

diagrams
sequence 
diagrams

object 
diagrams

__:

__:

__:

object 
diagrams

__:

__:

__: __:

__:

__:

C++, Java …

deployment 
diagram

name
name

name

namenamename
namenamename

namenamename

OCL



table model can be without loosing its clarity. 

In [2,3] we have partly discussed issues like that and 
have demonstrated, how the UML in combination 
with Java may be used as a high-level programming 
language (see Fig. 1). Executable models are usually 
less abstract than design models, but they are more 
compact and abstract as the implementation. There-
fore, having an executable modeling language for 
requirements definition is not a contradiction, but 
instead an important tool for analysis of require-
ments. Among others the UML can be used for 
modeling tests at various levels (class, integration, 
and system tests). Thus it can be used to describe 
tests for requirements at many abstraction levels. 

3   Model-based Testing 

The use of models for the definition of tests and 
production code can be manifold: 

• Code or at least code frames stuffed with de-
fault behavior can be generated from a re-
quirements model. 

• Test cases can be derived from requirements 
models that are not used for constructive gen-
eration of production code. For example be-
havioral models, such as statecharts, can be 
used to derive test cases that cover states, 
transitions or even paths. 

• Models can be used for an explicit description 
of a test case or a part thereof. 

The first two uses are for example discussed in [11]. 
Since the nature of requirements models is mainly 
descriptive, this section concentrates on the test 
case generation from requirement models and the 
use of models to describe tests. There already exists 
a huge variety of testing strategies [10, 11]. A typi-
cal test, as shown in Fig. 2 consists of a description 
of the test data, the test driver and an oracle charac-

terizing the desired test result. In object-oriented 
environments, the test data can be described by an 
object diagram (OD). It shows the necessary objects 
as well as concrete values for their attributes and the 
linking structure. The test driver can be modeled 
using a simple method call or, if more complex, a 
sequence diagram (SD). An SD has the considerable 
advantage that not only the triggering method calls 
can be described, but it is possible to model desired 
interactions and check object states during the test 
run.  

For this purpose, the Object Constraint Language 
(OCL, [12]) is used to support the description of 
properties during and after the test run. It has 
proven efficient to model test oracles using a com-
bination of object diagrams and OCL properties. An 
object diagram in this case serves as a fine grained 
property description and can therefore be rather 
incomplete, just focusing on the desired effects. The 
OCL constraints used can also be general invariants 
or specific property descriptions. The advantage of 
using OCL for the property description is the possi-
bility to formulate general predicates for values of 
attributes. Thus, the same result description or at 
least parts of it can be reused for several test inputs.  

As already mentioned, being able to use the same, 
coherent language to model the production system 
and the tests gives us a good integration between 
both tasks. It allows the developer to immediately 
define tests for the constructive model developed. It 
is imaginable that in a kind of “test-first modeling 
approach”  (see [4, 5]) the test data in form of possi-
ble object structures are developed before the cur-
rent implementation. This test-first approach per-
fectly fits with the modeling of requirements. The 
models mostly describe the behavior of the system 
at the interfaces in a form that these requirements 
can be used as test drivers as well. For the creation 
of tests the developers only have to create represen-
tative test inputs. The following section explores the 
issue of describing behavior in greater detail.  

Figure 2: Structure of a Test modeled with Object Diagrams (OD) and Sequence Diagrams 

objects under
test

o1

o3 o4

o2 o1

o3 o4

o2

o5

OD OD 

OCL

SD or method call

+

test data test driver

expected result and/or
OCL-contract as 
test oracle

objects under
test

o1

o3 o4

o2
o1

o3 o4

o2 o1

o3 o4

o2

o5

o1

o3 o4

o2

o5

OD OD 

OCL

SD or method call

+

test data test driver

expected result and/or
OCL-contract as 
test oracle



4   Testing Requirements 

As explained in Section 2, at least functional re-
quirements can be defined using the UML. Based on 
an “architecture”  model in form of one or more 
class diagrams, requirement definitions may also 
have constraints formulated in OCL, state models of 
individual elements in the system denoted as state-
charts and exemplary descriptions in form of se-
quence and object diagrams. Figure 3 shows such a 
sequence diagram that is typically used for a test 
case validation. The initial part (marked with the 
steroptype «trigger») acts as driver for the test, the 
other interactions of the sequence diagram are ob-
servations to be made during a successful test run. 
This sequence diagram was derived almost directly 
from a requirements definition and only little extra 
effort was necessary to transform it into a test 
(namely adding the stereotype). The underlying data 
structure was reused from exemplaric requirements 
models, namely an object diagram. Furthermore the 
OCL property description at the end of the sequence 
diagram is perfectly suited for a post-condition 
check. 

Additionally to the validation of the implementation 
to ensure the conformity with the modeled require-
ments, the quality of the requirement definitions 
themselves has to be validated. It is of strong inter-
est to gain feedback on the formulated requirements 
as early as possible to prevent long lasting and 
therefore expensive errors. Besides through reviews, 
the primary technique for that purpose is the anima-
tion of the requirements models and furthermore the 
run of automated tests against the animated models.  

As explained, sequence and object diagrams are 
perfectly suited to define tests, assumed they are 
detailed enough. This imposes some additional work 
on the requirements model, but results in a highly 

valuable early feedback already in the requirements 
definition phase. The major problem with this ap-
proach is usually the missing complete behavioral 
description for elements that participate in a test. 
For example it may be that the behavior of a com-
ponent is only defined in terms of a finite number of 
sequence diagrams, but no implementation or state-
chart is given. In this case, the implementation has 
to be simulated according to the given information. 
We can for example use the approach from Ingolf 
Krüger [13] or the Play-In/Play-Out Approach [14] 
to construct the overall behavior from the given 
sequence diagrams.  

This technique is for example useful for components 
of the environment or neighbor systems that actively 
participate in tests, but will not become a part of the 
implementation. It allows to animate the environ-
ment for testing purposes, but not to test the envi-
ronment itself, because if tests and production code 
are generated from the same models, both tests and 
code are consistent with each other and therefore 
errors in the models cannot be detected. 

The idea of automatically creating an executable 
simulation from the requirements model is an exten-
sion of the concept of rapid prototyping. The auto-
matic generation delivers immediately a prototype 
that demonstrates the behavior of the system. By 
receiving this fast feedback, the developers and 
customers can early get an imagination of the run-
ning system and adapt the specification before hav-
ing designed the implementation. Additionally to 
checking the consistency, this technique can espe-
cially be used for the validation of the completeness 
of a specification by presenting the customer the 
whole defined functionality. This decreases the 
effort to be spent for changes and therefore leads to 
a higher quality of the software and to reduced 
development costs.  

OCL constraints 
describe 
properties during
the test run

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

test driver

validateBid(bid)

return OK

return t

newCurrentClosingTime(copper912, bid)

t.time == 
bid.time + extensionTime

«trigger»
handleBid(bid)

Sequence
Diagram 

OCL constraints 
describe 
properties during
the test run

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

test driver

validateBid(bid)

return OK

validateBid(bid)

return OK

return t

newCurrentClosingTime(copper912, bid)

t.time == 
bid.time + extensionTime

return t

newCurrentClosingTime(copper912, bid)newCurrentClosingTime(copper912, bid)

t.time == 
bid.time + extensionTime

«trigger»
handleBid(bid)

Sequence
Diagram 

Figure 3: Test Case Description with Sequence Diagrams 



However, the generation of automated tests goes 
considerably beyond the mere prototyping approach. 
First, the automated tests can be rerun and used in 
regression testing not only during the requirements 
modeling, but also during design and implementa-
tion. Second, automated tests can be run by every-
one in the project, not only by the experts who 
know the requirements. Third, experiments with the 
testing approach have shown that in the long run 
automated tests pay off, even though it is initially 
more time consuming to develop tests. Using re-
quirements models for that purpose, however, also 
increases efficiency in test development.    

Of course, not all inconsistencies can be detected 
within the requirements model and modifying or 
extending the models over time is necessary as well 
in requirement as in design models. Therefore the 
next section outlines the evolution of models.  

One might argue that requirements elicitation is 
nowadays usually a step where very informal tech-
niques are used. Mostly, requirements elicitation 
results in a specification are written in natural lan-
guage. Only after its approval the requirements are 
mapped into high level analysis models. However, 
we would like to stress again that we strongly favor 
the approach taken here, where the understood 
requirements are translated into a machine under-
standable, ideally also executable form. This greatly 
eases the feedback of the elicitation process with the 
user, allows automated consistency checks and test, 
as well as analysis for completeness of requirements. 
This, however, is not applicable in every project, as 
there may be obstacles like user demands, legal 
requirements, or very large groups of project mem-
bers. But we are sure that an increasingly higher 
portion of projects will be able to use an approach 
that includes the concepts described here. 

5   Model Evolution using Automated Tests 

Neither requirements nor design models are initially 

correct. It is expected that the development and 
maintenance process is capable of being flexible 
enough to dynamically react on changing require-
ments. In particular, enhanced business logic or 
additional functionality should be added rapidly to 
existing systems, without necessarily undergo a 
major re-development or re-engineering phase. The 
extension of functionality of the software often 
requires a transformation of design as a preliminary 
step. The refactoring techniques for Java [6] have 
shown that a comprehensible set of small and sys-
tematically applicable transformation rules seems 
optimal. Transformations, however, cannot only be 
applied to code, but to any kind of model. Figure 4 
shows a transformation on a class diagram. It essen-
tially moves up two elements along a hierarchy. This 
may e.g. happen when it becomes apparent in the 
requirements elicitation process that a data structure 
element is common to several subclasses or that an 
operation behaves uniformly on several branches of 
the inheritance tree. Even if this transformation 
looks rather easy, it might trigger a number of addi-
tional refactorings to ensure that the specifications 
resp. implementations for the moved method are 
consistent. A number of possible applications for 
refactoring are discussed in [8]. 

Many of the necessary transformation steps are 
rather simple and easy to apply. However, some 
transformations are deeper changes on the system 
and their application involves context conditions. 
Fortunately most of them can be structured in a 
number of individual steps. This means that the 
power of these simple and manageable transforma-
tion steps comes from the possibility to combine 
them and evolve complex designs in a systematic 
and traceable way. 

Following the definition of refactoring [6], trans-
formational steps for structure enhancement do not 
affect “externally visible behavior” . By “externally 
visible behavior”  Fowler in [6] basically refers to 
behavioral changes visible to the user. However the 
change of requirements mirrors explicitly in a 

Person
CD 

Guest

checkPasswd()

Bidder

long ident

checkPasswd()

Bidder

Person

checkPasswd()

long ident

Guest

CD 

Refactoring

Person
CD 

Guest

checkPasswd()

Bidder

long ident

checkPasswd()

Bidder

Person

checkPasswd()

long ident

Guest

CD 

Refactoring

Bidder

Person

checkPasswd()

long ident

Guest

CD 

Bidder

Person

checkPasswd()

long ident

Guest

CD 

RefactoringRefactoring

Figure 4: Example for a Model Transformation 



change of the external behavior. The difference 
between changes in design and requirements can be 
precisely understood by introducing an abstract 
“system border” . This border serves as interface to 
the user, but may also act as interface to other sys-
tems. It is therefore necessary to explicitly describe, 
which kind of behavior is regarded as externally 
visible. For this purpose tests are the appropriate 
technique to describe behavior, because tests are 
already available through the development process 
and tests are automated which allows us to check 
the effect of a transformation through inexpensive, 
automated regression testing. A test case created 
from a requirements model thus acts as an “ob-
server”  of the behavior of a system under a certain 
condition A test can thus be understood as “implic-
itly defining an observed system border” , like shown 
in Figure 5.  

Depending on the level and origin of tests, they may 
have a very different observational interface. To be 
able to manage tests in case of evolution of re-
quirements or implementation, it is therefore inevi-
table to test against clear interfaces (namely “pub-
lished” , stable ones). A number of test patterns like 
defined in [2] helps to define tests in a rather clear 
way. However, it surely needs also a better under-
standing of how to cut tests from requirements, how 
deep these tests should go and how stable require-
ment based tests are in the evolutionary develop-
ment process. For that purpose we need improved 
test generation tools and in particular more empiri-
cal assessments in real projects. 

6   Conclusions 

The discussion in this paper can be summarized as a 
pragmatic approach to introducing feedback in the 
requirements definition through model-based test-
ing. It suggests using models as primary artifact for 
requirements and design documentation, code gen-

eration and test case development. The validation of 
the requirements by executable UML models allows 
an early detection of errors in the specification. The 
test case generation from requirements models also 
allows checking the correctness of the implementa-
tion and thus enables to validate the correctness of 
transformations of the code. Finally the management 
of evolution of the requirements, the design and the 
implementation is systematically supported by a set 
of predefined transformations on the models. 

However, the methodology sketched here still is a 
proposal. Some major efforts still need to be done 
and are currently under development. On the one 
hand, even a number of works on various model 
transformations do exist. But, they are not very well 
put in context and not very well integrated with the 
UML in its current version.  

On the other hand, model based evolution will be-
come successful only if well assisted by tools. This 
includes parameterized code generators for the 
system as well as for executable test drivers, analysis 
tools and comfortable help for systematic transfor-
mations on models.  

 

Reference 

1. OMG. Unified Modeling Language Specifica-
tion. V1.5. 2002. 

2. Rumpe, B. Agiles Modellieren mit der UML. 
Habilitation Thesis. Technische Universität 
München, Institut für Informatik, 2003. 

3. Rumpe, B. Executable Modeling with UML. A 
Vision or a Nightmare? In: Issues & Trends of 
Information Technology Management in Con-
temporary Associations, Seattle. Idea Group 
Publishing, Hershey, London, pp. 697-701. 
2002. 

4. Link J., Fröhlich P. Unit Tests mit Java. Der 
Test-First-Ansatz. dpunkt.verlag, 2002. 

test = driver and “observer”

setup &
call

compare with 
expected result

time axis

snapshots
of the 
test run

observe
creation

check
property

observe
interaction

test = driver and “observer”

setup &
call

compare with 
expected result

test = driver and “observer”

setup &
call

compare with 
expected result

time axis

snapshots
of the 
test run

time axis

snapshots
of the 
test run

observe
creation

check
property

observe
interaction

observe
creation

check
property

observe
interaction

Figure 5: Tests implicitely defining the System Border 



5. Beck K. Aim, Fire (Column on the Test-First 
Approach). IEEE Software, 2001. 

6. Fowler M. Refactoring. Addison-Wesley. 1999. 
7. Wiegers Karl E., Software Requirements. Mi-

crosoft Press, 2003 
8. Philipps J., Rumpe B.. Refactoring of Programs 

and Specifications. In: Practical foundations of 
business and system specifications. H.Kilov and 
K.Baclawski (Eds.), 281-297, Kluwer Aca-
demic Publishers, 2003. 

9. Kiczales G., Lamping J., Mendhekar A., Maeda 
C., Lopez C., Loingtier J.-M., Irwin J. Aspect-
Oriented Programming. In ECOOP'97 - Object 
Oriented Programming, 11th European Confer-
ence, Jyväskylä, Finnland, LNCS  1241. Sprin-
ger Verlag, 1997. 

10. Binder R. Testing Object-Oriented Systems. 
Models, Patterns, and Tools. Addison-Wesley, 
1999. 

11. Briand L. and Labiche Y. A UML-based Ap-
proach to System Testing. In M. Gogolla and C. 
Kobryn (eds): «UML» - The Unified Modeling 
Language, 4th Intl. Conference, pages 194-208, 
LNCS 2185. Springer, 2001. 

12. Warmer J., Kleppe A. The Object Constraint 
Language. Addison-Wesley. 1998. 

13. Krüger, I. Distributed System Design with 
Message Sequence Charts, Ph.D. Thesis, Tech-
nische Universität München, 2000. 

14. Harel, D. and Rami, M.: Specifying and execut-
ing behavioral requirements: the play-in/play-
out approach. In: Journal on Software and Sys-
tems Modeling, SOSYM. Vol:2(2), pg. 82 – 
107,  Springer-Verlag Heidelberg, 2003. 




