
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Critical Systems Development with UML -
Proceedings of the UML’03 workshop

Jan J̈urjens, Bernhard Rumpe,
Robert France, Eduardo B. Fernandez

TUM-I0323
September 03

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

[JRF+03] J. Jürjens, B. Rumpe, R. France, E.B. Fernandez.
TUM-I0323
Critical Systems Development with UML - Proceedings of the UML 2003 Workshop.
Technical Report TUM-I0323, TU Munich, 2003.
www.se-rwth.de/publications

Nunnemann
Schreibmaschinentext

TUM-INFO-09-I0323-80/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�

2003

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

�������� ��	�
�	 �

����
�� ���� ��� �

����

����	 �� ��
 ������ ����	���

��� ��������	
������� ����	
����� ������	 �������
� ���������

�������

��� ���� �����	
 ���������	 � ���	���� �
�	��� ��� �	 �����	���� ������	
�
���	����� ���������������	
����	����� ��������������	����� � �
���� �
�	����
�� ��Æ���	� ���
 ���	���� �
�	��� ��� ��������� ����
��� ��� ���� 	��	 �
�	 ��	���
 	���� ���	�����	
 ����������	�� ���	���� ��	� ����	������ �����
�����

���	 � 	�� ��Æ���	
 � ���	���� �
�	��� ���������	 �� 	��	 �����	����
�� �	�� �� �����	 ��	� ��	 ��� 	����	���� �	� !���� 	����� ��	���
� �
�	�� ������ ��� ���� ��	 	����� �������� 	������� ��� ���� 	��

��� ��� 	 �	�� ������� ��� "�# $��� �� ����������	�� ���	���	

�� ����������	
 ���	���� �
�	��� ���������	 	��	 �� �������� �� �� �����	����
��	�%	�

��� �� ��� ������ � &'��	���� (
�	���)��������	 ��	� "�#
�'()"�#�* ���� 	 ��	��� ����	�	����� ��� ����������� 	 ��	����	� 	
�������� 	�� ���������� �� ����� ���� 	�
��� 	 �%���	 	��� ���	���	
�

��� �������� ��� +��	� ���	�� � 	�� ������ ��� 	�� '()"�#,-. ��	����	�
�� ��� � 	�� "�#,-. ��������� ��)������ �/�����
�� ����� ��� ����
���
 ����������� ��� ��� 	�� ������	 ������ � ���	������	� � ��� �� ����
����� "�#,-.�

��� ���������� �	 ���� �� ������	 	�� �����	�� ��	����	��� �� 	��
'()"�#,-0 �� ���� ����� 	� �� ����� � 1�	��� .2� .--0� �� ���	 �
	�� "�#,-0 ��������� �1�	��� .- � .3� .--0� �� (�� 4�������� '����������
5	 �� ����� �����6�� �� �����	�� ��	� 	�� �"�# �������� "�#� ����
��� 	�� �� ��� ���� � 4���� ��	��� ��� (�	���� 7���������� ��
(���	
 ��� (�����	
 �4�(7((� � 	�� /����� '���	�� (���	
 �/5��

1�	 � � ������ � ���� �����	
 ������ �����		�� 	 	�� �� ���� ��%
���� �����	�� 	 �� ������	�� �� 	�� � �	 	�� �� ��� ��� �������� �� ����
������ �� 	�� ����������� ��� +�� ���� �����	�� 	 �� ������	�� �� ��	���
��� �������� �� ���	 ������� ���� ��������� 	 � �����	��� ���� �����
�����	���� ��	� � 08�9: �	 � 	�� �����		�� ��	����	���� ����� ����
	�� �� ��� ������� ��� � � ���� ����� � �����	
� ��� ������� ��Æ����	
	��� �� ����������

5� ����	��� 	�� �� ��� ���	���� �� ����	�� 	�� �
 ;��� (���� �5;�
(�	���� /��� < =�	���� (�	����� � &��� "�� � ������� ����������
�� (���	
�'��	���� (
�	��)�����*� >��� 	���� ���� �� � ����� ��	� 	��
������	���� 	�	�� &!��	,� ���� ��	� "�# �� ���	���� �
�	��� ������ ?*

��	� �������	� ��������� =���	 4������ @���� @�������� @������� @����
����� >��%����� A����� 5���� A�B����� ��� ;��� (����� ����� ���� �����

����	� �����
 ���������� � 	�� ���C��	� 4�����
� �	 �� ������� 	 ���� � 	�
������ 	 �����	��	� 	�� �� ���	���� �
�	��� ���������	 ��	� "�#�
��� 	 ������� ����	�� ����	����

>� ��	� 	�� '()"�#,-. �� ���� �	 �� ������� 	 ���	 � ������� ���	��
� 	�� D����� � (�	���� ��� (
�	��� ������� �(��������E������ ��	�
�����	�� ��	����	��� � 	�� �� ���� "��	���	� ������	�� � 	��� ���
	�� �� ��� ��� �� ���� �	 	�� �� ��� ����������

!� ���� �� � 	 �%����� �� ������	 ��������	�� 	 	�� ��	��� � ����
��		�� ������� ��� 	 	�� ������ ����		�� ������� ��� 	�� ����	����
��������� !� ���� ��� �� � 	 	��� 	�� "�#,-0 ��������� ����� D�!��	�
	�� �F((/��� 5��� G>(> >��� =������� '��	���� 	�� �� ��� ����� >��
������ �G�� "�������	
 � #������ 	�� ���� ����������	� ����� (����� H��
��� �@����		 ��� ��� #����	������ ��� �� ���	������ ;�� /�� �� ���
	�� 	��� �	����	� ������� �� 	�� �����6�	�� �	 �" ������ �� 	���� �����
5� ����	��� ��� � 	�� �����6��� 	��� 	���� ������ ��C��	� �����������
E�(7A� G>�7� ��� E�����	� �� 	���� ������� ��������

D�� DB��C��� (��	����� .--0
;������� =����
=���	 4�����
7����� ;� 4�������6
�1�����6�	�� 	��� �� '()"�#,-0�

��������������	��
��������
����

������� �������		

D� >��I�C� "����������� G�� �� #����
)���� ;����� 7�@ J�B����
��� ;���� /��	������
=�	� ;���� "�������	
 � 5�������
������� ;�
� �" ������
/���� 7������ "�������	
 � ��������
���	�� /����� "�������	
 � ;�����
=��� /���� (�	� "�������	
 � G�� H� �	 (�
 ;�
���� @������ >���� ##' ��� (
������ "�������	

@������� @�K����� #�" ������
>��%����� A����� #�" ������
5���� A�B����� "'()
=������ ������ "�������	
 � H�
GB�� ���6���� 5=5(>�5G=5> =�����
/����� =����� "�������	
 � /����
>��
 (��B���� �")����	��	
;��� (����� 5;� � =�	����
A�	�� (L���� (5G�74 G���

D� !��		��� G>(> >��� =������� '��	��

� � � ��� 	�� �����6����

�������� �	�	�		�

4� �� ��� ;������ (5G�74
���� ;� �� "�������	
 � ��
��	�
D���� '����� �1� �� "�������	
 � 5�������
DB�����)���� "�������	
 � 4�������
/��� /���� '���� (�	� "�������	

D�� @����� @�������� "�������	
 � ��������
(���@���� @���� G�G"
A��	�7���� @���� 7������
D���� AB��	��� "�������	
 � ��������
���	�� #�����	��	� "�������	
 � 4�������
���� (���� #���� (5G�74
>	�� =������� "�������	
 � 1��
����	�� (���� /��	������
D��� �� E��� /��	������

�	������ ������������

;�� /�� ��� �" ������

�������	��

D�� DB��C���� �" ������
;������� =����� �" ������
=���	 4������ '���� (�	� "�������	

7����� ;� 4�������6� 4����� >	���	�� "�������	

����� �� ���	��	

��� ��� �� ����	
�� ����
����
� ���������
�
�	 ������ ���
�� �
��
��� ��	�� �

�� �����

�� ������� �� ���
��
�� ������ ��
�
�	 ������� ��
�� ��� ��
 �� ����		
�� !�������" #

�� �	
���� �� ����� �� �	��

�� $%���
����
� ���	�
�� ��! &"' �� ��� ����	������ �� �� (������
�	 ��
�
�	 ���	
��
�� �)

�� ������� �� ����	��� �� �	�	������ �� �	�������� �� �	����� ����� !� ��������� �� ���������

�����
�� ����
�� �����
�� ����� ����	� ���� �*����� ����
�� ����� ����	� #+

"� "����� �� #�	���� �� �	�

$%�	��
�� ��! ����	������ ������� ��
 ��
�� ,-

$� ������� �� ��%���	��

��������� .����	 /��
 ��
�� �� ����	 �����������
��� 0#

�� &	���� !� �	�	����	

������1 2����� ��� 3� ������
� ��!�& (������
��� -)

�� ��'�����

��4���� � ��! 5�� 	� ��� ����	�*���� 3
�� ���������� �� ����
�� ��
�
�	 �������)+

�� �� ���(��)�)� �	���

5���
�
�� ����4��� 5��������� 6���� �� ��! ����	� ���
�� �'+

��� ��
 �� ����4��� ����	������ 5�����

*� +�� ,� ���� �� !� �� (��

� ���	 !������� ������� �� ��� ����	������ �� �
�����
�
�	 ��#

�� �	-	��	� �� ���	�	� !� ��������

�� ������� �� $��	���� 3��	��
�� ����4��� ���
������� ��� ���������
�
�	 ������� �&�

,�)	�
�%�� �� �	����� ,� *	��
��

��
��� �� ��
�
�
�� ��� ��
�
�
�� �� 5���
 ���� �&)

,� �	���� �� "�(�

����������� ��	
���

�������� ���	�
�� ��	��� ������ ��	� ���

���� ������	
������ �� ���� ��� ����� � �������� �� ������� ������ ��������

������� ��� ��� !�"�	 #�	����� $�� ���%

��&� ������ ������� '������� $�(���� ���)����� #�������� ��� #�	������

#���� #�** �������� ����� #��*���� '���� ��������� � +,������� � ������� !#$ -%�
�� ��� ��)������� �� � �	 ������ �������� ����������

.���� /��� /����� ��(��� 0����� �	������ ����

������� ��� ���� �������� ������ ��	��� ���� �(������ ��� ���� ������ ��	���

.��&� ����� ����� ��� ���	�� �������

�������� ��� �� � ������ ������ ��	�	���

..��� +���� ������ #��� � � 1���� � +,������ !#$ 	�)������� ���� �� �"�����

..�&� ����� 2����� �	�� '������*�� � ������	 0����� 2���"����� �� #�	�� �������������

.-���
����	 ��3������ ������� 4����� �	 ��"���� � !#$5- ����������

.-�&� ���
� ��� ���	�� �������

.6��� ��� ������

��� !�� �� #�	���� �����7 �� � ������5�������� ������ ����� 8����	�� 	���9

.:��� ���� ����

.:�&� ����� ����� ��� ���	�� �������

.;��� ����� 8�% 0�����
%
������
%
 <��� �% =���� �% =�3 ���� �% �����>

��	������ ?% ?3 �1��9� @A���B� ���� ���� !#$ ��� �������� ������� 	����C@

.D��� ���� ������� 8������� 	��� ���� �	 	��� ������9

.D�&� �������

.���� ���� 8�	 �����E �� �����*���� ��� ���!#$B�69

���	����

��)
��	�
� �(� =�� =)�����	
����

�����	� � !#$ '��"�� ��� #�	��5(���	 ���� ��������� �� ��� ���� �������� �������

F���� G � ?����� $ ����� �,�� $����� '��	����� �������� '��������� ����	

� !#$ #�	��� 	 ��� ��� !�"�	 �������� ��)������� '������

$ ��� $�)�**�� ��	�� #������� ����� #��*����

� � �� $�� ��� �������� �� ��� ��)������� �� ����5��������

?�)� =����1�� �� ��	�� ?� �* F�������� � �������� �� +)�� ��� ����5����

�������� ��������� ��� ��� ������5�������� �������

?��� ������� $ �� /����� ������ �� ����)����� �	 ����)����� �� '���� ���

��� ��� �� ����	
�� ����
����
� ���������
�
�	

������ ���
��

���� �����

	�
 ������� ����� � ������� �������

������ ������� ������

�����������������

������ �������	
�������
�
��
 ���
� ���������	 ����������
 �� ���
���������		� ��Æ��	� ��
��� ����	� �� �����������	����
�������� ����
�������	 ����������� ����	����� ���������
 ��� ����	� ��
� 	���� ��� �����
���������� �� ��� ���� ��
��� ����������� ���	������ �� ���
 ��	�� �� ���
���� ��� ���	������� �����
 ��
�� ��� ������ ��� �� ���
 ��
�� ��
�������	��� �� ����
 �� ���
��������� ��� ����	�����
 �� ��� ����� !���
�	��� "������� ��� ����� ��� �� ��� ���������	 ���	����� �� ����������	
����	����� �����
�

An Approach to Designing Safety Critical Systems
using the Unified Modelling Language

Richard Hawkins, Ian Toyn, Iain Bate

Department of Computer Science
The University of York

Heslington, York
YO10 5DD, UK

{richard.hawkins, ian.toyn, iain.bate}@cs.york.ac.uk

Abstract. In this paper an approach to using the UML for developing safety
critical systems is presented. We describe how safety analysis may be
performed on a UML system model and how this analysis can derive safety
requirements for classes in the system. We show how these requirements can be
expressed in the form of safety contracts using the OCL. This makes it possible
to reason about the safety of individual elements of the UML model and thus
makes it easier to safely change the UML design, as well as facilitating
maintenance and reuse of classes or components in the system. A tool is also
described which has been developed to automate some aspects of this analysis.

1 Introduction

There is increasing interest in the use of an Object Oriented (OO) approach for
developing safety critical systems. OO systems have improved maintainability due to
encapsulation, high cohesion and low coupling, and the facility for reuse through
inheritance and design patterns. These benefits could bring potentially large savings
in terms of time and cost for developers of safety critical systems. However they also
raise specific challenges which must be addressed if the full advantage of these OO
features are to be realised for safety critical systems. To realise these benefits requires
an ability to reason about the safety of individual classes or components in a system.
This requires firstly that safety and hazard analysis be successfully performed on OO
designs.

The Unified Modelling Language (UML) has become a de-facto standard for
modelling OO systems and is widely used throughout industry. In this paper we
initially look at performing hazard analysis of UML models. Moreover, however,
most existing safety analysis techniques tend to decompose hazards in a functional
manner. It is therefore difficult to reason about the safety of individual classes or
components. If the benefits discussed earlier are to be realised, these existing
techniques must be adapted such that the required results are obtained. Therefore we
go on to look at how safety requirements may be captured in the form of safety
contracts. These safety contracts can be specified using the Object Constraint

Language (OCL) and incorporated into the UML model of the system. This could
contribute towards the development of a safety critical profile for UML. We show
how the safety contracts can be generated through analysis of different aspects of the
UML model, covering functional, timing and value behaviours.

2 System Safety Analysis

Leveson provides us with the following definitions [1]. Safety is the freedom from
accidents or loss. Safety critical systems are systems which have a direct influence on
the safety of their users and the public. A hazard is a state or set of conditions of a
system that, together with other conditions in the environment of the system, will lead
inevitably to an accident. The primary concern of system safety analysis is the
management of hazards: their identification, evaluation, elimination, and control
through analysis, design and management procedures. One aspect that distinguishes
system safety from other approaches to safety is its primary emphasis on the early
identification and classification of hazards so that corrective action can be taken to
eliminate or minimize those hazards as part of the design process. The system safety
process culminates in a safety case being produced that gathers all the necessary
evidence to justify the system is safe.

The system safety analysis process can be basically split into the following steps:
• Hazard identification – This step identifies the potential hazards in the

proposed system.
• Risk assessment – This examines each of the identified hazards to

determine how much of a threat they pose. This assists in deciding the
steps required to reduce the risks to acceptable levels. Many initial safety
requirements are set at this stage.

• Preliminary system safety assessment (PSSA) – This phase is concerned
with ensuring that a proposed design can meet its safety requirements and
also with refining these safety requirements as necessary

• System safety assessment – This stage is concerned with producing the
evidence that demonstrates the safety requirements have been met by the
implementation.

• Safety case delivery – This involves producing a comprehensive and
defensible argument that the system is safe to use in a given context. The
analysis performed as part of the PSSA stage will form part of this
argument.

In this paper we are primarily concerned with the PSSA. This is very closely linked
with design activities. A key part of this is the identification of specific derived safety
requirements to guide the detailed design of the system. The majority of the safety
analysis techniques used in PSSA are deductive. This means that they investigate
possible causes of a specific hazard or condition, starting from system level hazards
and requirements identified during the hazard identification phase. The majority of
techniques used for PSSA tend to decompose hazards functionally. System level
hazards are identified, and for each, functional failures which may contribute to that
hazard are elicited.

For a functionally decomposed system it is much easier than in an OO system to
allocate a functional failure to the failure of a system component. This is because
there is often a direct mapping between a functional failure and a subsystem. An OO
design is not decomposed functionally, but rather into classes and objects. The
functionality of the system is realised by many objects collaborating through message
passing to achieve a system function. Therefore a functional failure will not map
easily onto a single element of the design. In theory it would be possible to put all
functionality into just one class and to apply standard safety analysis techniques. In
doing this however, all advantages of adopting an OO approach would be lost. It is
important therefore, for OO systems and indeed for UML system models that existing
techniques can be adapted such that failures can be allocated between classes.

Our approach achieves this by allocating derived safety requirements to individual
classes and controlling the interactions between classes through the use of contracts.
This allows the impact of changes to be understood. An appropriate allocation of
constraints would also allow better support for change in that change would be
contained within a class or within a small hierarchy of classes. Other work looks at
this in more detail.

3 Safety Analysis for UML

There have been attempts to adapt safety analysis techniques to apply them to UML.
In [2], Lano et al examine how Hazard and Operability Studies (HAZOP) can be
adapted to UML. HAZOP is a predictive safety analysis technique which uses a set of
guidewords to consider the behaviour of ‘flows’ between system components. Lano et
al take the standard guidewords for HAZOP defined in Defence Standard 00-58 [3]
and reinterpret them such that they are applicable to different views of the UML
model. For example, when considering state transition diagrams, the ‘flow’ is taken to
be the transition and the guidewords are interpreted accordingly. Similarly, for class
diagrams ‘flows’ are taken to be relationships. This is a very useful approach to
analysing failures, however it would demand that the technique be applied to every
class, attribute, state transition and interaction in the system to be effective. Even for a
fairly small system this could be prohibitively time consuming.

Nowicki and Gorski have also developed analysis based largely around state
charts. In [4], three methods are introduced. The first method, detailed in [5] centres
around the development of a hazard model, which explicitly models safe and unsafe
states and the transitions between these states. Reachability analysis can then be used
to check if the hazardous state is reachable. This method assumes that the system and
environment are reliable in the sense that they behave as specified. The second
method [6] accepts that this assumption isn’t always valid as objects are exposed to
random failures and the environment can violate assumptions made about it. This
method provides a set of templates of faulty behaviour, which are deviations from the
normal behaviour of the object. The templates consider possible faults in transitions
and are applied to the state chart of the object under consideration. This generates a
state chart for an ‘unreliable object’. Reachability analysis is then performed to see if
a hazard can occur for the unreliable object. Whereas the first two methods were

concerned with analysing the system design, the final method aims to strengthen the
safety guarantees of the system by enriching the system with a ‘safety monitor’
object. This is of less interest here. It is the second method which is perhaps most
useful. There are certain weaknesses, particularly in identifying which objects to
apply the templates to. Again, applying them to all objects in the system would be
potentially very time consuming. It is also unclear how hazardous states are correctly
identified.

In the remainder of this section we take some of the ideas discussed above and
incorporate other techniques such as Fault Tree Analysis (FTA) to produce a more
focussed approach to analysing UML models such that safety requirements can be
derived for classes in the system in the form of safety contracts. Safety contracts
constrain the design of the interactions which occur between objects, and hence can
ensure system behaviour is safe. The properties of an interaction that we are interested
in from a safety perspective are function, timing and value. Analysis of each of these
aspects results in requirements which are included in the safety contract. Safety is a
system property and therefore, the analysis process will begin with the consideration
of a system level hazard.

3.1 Functional Aspects

+getCurrentInventory()
+checkConfig()
+initialise()
+checkWOW()
+checkIntervals()
+runRecorder()

-WOW : bool
-late_arm : bool
-MASS-live : bool

Stores_Manager

+addStore()
+removeStore()

-ID
-configError : bool

Station

+jettison()
+release()
+select()

-type
-status
-mnemonic
-ID

Store

1

*

1

*

1 0..*

+locate()

-stationID
-storeID

Location

Weapon Fuel Tank

Dumb Weapon Smart Weapon

Fig. 1 – Class Diagram for Part of a Stores Management System

To illustrate the analysis we use an example of a highly simplified aircraft Stores
Management System (SMS). In the context of an aircraft, a store could be such things
as a weapon or a fuel tank. These are connected to the aircraft via stations on the
wings. The UML class diagram for this system is shown in figure 1. The initial hazard
identification process performed on the SMS identified a number of general system
hazards including:

• Inadvertent release of store
• Release of store whilst on the ground
• Inadequate temporal separation of store releases
• Unbalanced stores configuration
• Release of incorrect store

Release of store
whilst on ground

Aircraft
on

ground

Store
released

Uncommanded
Release

Commanded
Release

WOW
ignored

WOW not
detected

Stores Man.
Fails to respond
to WOW signal

WOW signal not
received by
Stores Man.

WOW not
checked
by store

Store
releases
anyway

Failure of
communication

Failure of
WOW sensor

Fig. 2. UML Sequence Diagram for a
Normal Operation Scenario.

Fig. 3. Simplified Fault Tree for the Release of
Store Whilst on the Ground

Stores Manager Store Station

Pilot
Select()

Release()

CheckWOW()

RemoveStore()

Select()

Release()

CheckWOW()

RemoveStore()

For all hazards identified it is necessary to perform analysis to identify how the
hazard may be brought about. For this example we will look solely at the release of
store whilst on the ground hazard. A UML sequence diagram is developed to illustrate
the dynamic behaviour of the system for the relevant normal operation scenario. This
can be seen in figure 2. A fault tree is constructed using system information collected
from the UML diagrams and domain knowledge. Fault Tree Analysis (FTA)
represents graphically the combination of events and conditions which contribute to a
single undesirable event. Starting from the top event, the immediate causes of that
event are identified. The manner in which these causes contribute to the event is
expressed with the use of logic gates (basically AND and OR). This continues down
the tree until the tree consists entirely of basic events, i.e. events which cannot be
decomposed further, or until the desired level of detail has been reached. The fault
tree in figure 3 shows the faults that can occur to bring about the top event “Release

of store whilst on ground”. It should be noted that WOW is ‘Weight on Wheels’, used
to indicate when the aircraft is on the ground.

It is possible to relate leaf nodes (undeveloped failure events) in the fault tree,
represented by diamonds, to classes in the system. For example the ‘WOW not
checked by store’ event can be associated with the Store class in the system design.
Not all leaf nodes in the fault tree will relate to classes in the system design. Of the six
leaf nodes in figure 3, three can be related to classes in the system design. For
example ‘Failure of WOW sensor’ cannot be attributed to a class, since the WOW
sensor is not part of the Stores Management System. For the three leaf nodes
identified as related to the SMS’ classes, the information from the fault tree can be
used to generate a definition of the hazardous behaviour of the system. This
information is recorded in a table as shown in table 1.

Table 1. Table of hazardous class behaviour

Hazardous
event (from
FT)

Class Interaction Role Hazardous class behaviour

WOW not
checked by
store

Store checkWOW() client Stores_Manager.checkWOW()
call not made as required

Store releases
anyway

Store release() supplier Store moves to released state
inappropriately

SM fails to
respond to
WOW signal

Stores
Manager

WOW(true) –
signal

supplier Stores_Manager fails to move
to WOW state

In this table, the hazardous event field is the event identified in the fault tree. The
class field is the class with which that event is associated. The interaction is the
operation identified from the interaction diagram as corresponding to this event. The
role is that played by the class in that interaction (either client or supplier of that
operation call), and the hazardous class behaviour is that which would be exhibited by
an instance of the class to bring about the hazardous event.

3.1.1 Analysing State Charts

We have now derived hazardous conditions for classes in the system. It is therefore
possible to start constructing safety requirements and safety contracts for these
classes. However to identify more detailed derived safety requirements it is necessary
to understand how the class may behave such that these conditions can occur. This
can be done by studying the state charts of these classes. For the purposes of this
example we will consider just the Store class. A simple state chart has been developed
for this and is shown in figure 4. A store may be jettisoned or released, jettison is a
special case of release when a store is in a ‘safe’ state (e.g. dropping an unarmed
weapon). The hazardous class behaviour for the Store class taken from table 1 can be
summarised as:

• State = release ^ ¬checkWOW
• State = release ^ WOW = true

Now that hazardous states have been defined it is possible to apply the ideas of
Gorski and Nowicki discussed earlier [6]. Firstly it is assumed that the system
behaves as specified in the design, that is that the class exhibits no faulty behaviour.
In this simple example it can be seen from examining the state chart that this design
does not exhibit any of the hazardous behaviour defined above. Checking that a
proposed design does not exhibit hazardous behaviour can be achieved using a
reachability analysis tool. The effects on the safety of the system if an object were to
behave in an unexpected manner, that is to behave in a way other than that specified
in the design due to mistakes in implementation, must also be investigated. To do this
we mutate the transitions in the state chart [6]. Transitions in a state chart are of the
general form event[condition]/action. The event triggers the state transition, the
condition is a Boolean expression which must evaluate to true for the transition to
occur and the action is triggered when the transition fires. Transitions may have any,
all, or none of these elements. In order to identify possible faulty behaviours for the
transitions we can apply guidewords to each of the elements of the relevant
transitions. In order to be able to simulate these faulty behaviours, extra transitions
must be added to represent these deviations in the state chart. Applying the
guidewords omission, commission and value to each of the elements results in five
distinct transitions:

1 - e[c] self-transition – event or condition is ignored (omission)
2 - not e[c] / a – event spuriously generated or action performed without initiating
event (commission)
3 - e[not c] / a – condition taken as true when false (value)
4 - e[c] – action is ignored (omission)
5 - e[c] / b (where b is an action other than a of the initiator object) – wrong action
performed (value)
For each of the transitions in the state chart relevant to the hazardous behaviour,

these five extra transitions are added to the diagram to simulate faulty behaviour. The
results of this can be seen in figure 5. The transitions between the unselected and
selected states have not been included as they are not relevant to the hazardous
behaviour we are interested in. It is now possible to identify if any of the faulty
behaviours are unsafe. These are the faulty behaviours that can lead to the hazardous
object behaviour which was defined previously.

The faulty transitions that could lead to the hazard ‘Release of store whilst on the
ground’ can now be analysed. The results of this are shown below.

A1. release – Not Hazardous
A2. not release / check WOW - Not Hazardous
A4. release – Hazardous – WOW is not checked but class may enter release state
A5. release / remove store – Not Hazardous
B1. [WOW=false] – Not Hazardous
B3. [WOW=true] – Hazardous – class enters release state when WOW is true
C1. [WOW=true] - Not Hazardous
C3. [WOW=false] - Not Hazardous

Fig. 4. State Chart for Store Class Fig. 5. Mutated State Chart Showing Faulty
Transitions

WOW Checked

Release

Select /
status=select

Deselect /
status=deselect

Release/
check WOW

Selected

[WOW=true]

[WOW=false]

Unselected

Jettison / remove
store

/ remove store

It is possible for more complex system designs to use an automation tool to
generate the mutated transitions and to check which of these transitions may bring
about the hazardous condition. Such a tool is under development at the University of
York and is discussed in section 5. Although most of the faulty transitions identified
through this method are not hazardous (i.e. will not contribute to the system hazard)
they still result in incorrect operation. In defining a safety contract we are only
interested however in constraining the hazardous behaviour and not all correct
behaviour. There is now sufficient information about the intended and faulty
behaviour of the class to begin to construct a contract for operations which may
contribute to the system hazard. We look at constructing these contracts in section 4.

3.2 Timing Aspects

Although a large part of the safety requirements generated for any given system
will be functional in nature, it is important to also consider the impact of non-
functional properties on the safety of the system. Firstly the timing of the interactions
is investigated. This analysis process hinges on identifying deadlines, separations and
priorities for tasks performed by the system. A task is an encapsulated sequence of
operations that executes independently of other tasks [7]. Therefore a task will consist
of a number of interactions between classes in the system. Again the analysis begins
with the identified system level hazards and at this point we focus on the normal
scenario for releasing a store as shown in the sequence diagram in figure 2. This
scenario can be broken into the following tasks:

• Select store – This task begins with the pilot choosing a store and ends with
that store being selected

• Release store – This task begins with the pilot requesting a release and ends
with the store being removed from its station. This task also includes a
subtask of checking WOW.

 The analysis involves investigating the effect of deviations on the tasks that are
performed to identify which of these deviations may contribute to a system hazard.
The deviations considered are tasks occurring too quickly or too slowly and early or
late. Early and late correspond to a task occurring too soon or too long after the
previous task or event. The result of applying these deviations to the identified tasks is
shown in table 2.

Table 2 – The effects of timeliness of tasks on system hazards

Task Deviation Effect
Quick No safety consequence (positive effect) – It is desirable that the

selection of the correct store occur as quickly as possible
Slow Potential safety impact – Delays in selecting the appropriate

store for release may delay release
Early

Select Store

Late
This task is triggered by the pilot who’s decision to select a store
will impact safety only if incorrect store is chosen

Quick No safety consequence (positive effect) – It is desirable that the
store be released as quickly as possible when requested

Slow Potential safety impact – A delay in releasing a store could be
hazardous to the aircraft under certain circumstances

Early Hazardous – A weapon released too soon after a previous
weapon could be catastrophic

Release Store

Late No safety consequence

Those tasks whose timeliness may have an impact on the safety of the system have

now been identified and constraints must now be specified for these tasks. For quick
and slow interactions it is necessary to constrain the response time of the task. If
necessary a minimum response time and a maximum response time, or deadline can
be specified for a task. A minimum response time will be specified for those tasks
where too quick is identified as being hazardous and a deadline is specified for those
where too slow could be hazardous. For tasks where early or late may be hazardous,
minimum and maximum separations respectively between the completion of one task
and the triggering of the next or between an event and the triggering of a task must be
specified. These constraints can be used to define a safe scenario of tasks.

Domain knowledge is used to place the following requirements on the tasks
identified above as being hazardous or potentially hazardous. It should be noted that
this analysis is not trying to produce accurate estimates of execution times for
operations or transactions, but to specify the minimum requirements for a safe system.
Requirements should therefore have as much tolerance as possible whilst still
constraining the task sufficiently to ensure it is safe. This will allow maximum
flexibility to the implemented system. In [8] we presented an approach and
framework for identifying, in control systems, an appropriate and valid set of timing
requirements, and their corresponding control parameters. The approach is based on
decomposing the systems objectives to a number of design choices and assessment
criteria. Each design choice can be evaluated using a combination of static analysis
and simulation. Heuristic search techniques can then be used to search the design
space for the design solution considered most appropriate. The figures given below
are for illustration purposes only.

• Select store – From pilot choosing a store to that store being selected should
be no longer than 200ms – Deadline = 200ms

• Release store – The minimum permissible time between store releases will
vary depending on the type of store being released. For this example we will
specify – Min Separation = 100ms

• Release store – The time from the pilot requesting a store release to that
store’s removal from the station should not exceed 50ms – Deadline = 50ms

Up to this point only the normal scenario has been identified. A scenario is a
sequence of actions that illustrates the execution of a use case. Therefore a normal
scenario simply represents the normal or expected sequence of actions which occurs
for a particular use case, in this example releasing a store. When considering safety
however it is important to consider alternative scenarios which may occur as these
could potentially be hazardous, but may also lead to a requirement for extra timing
constraints. In order to illustrate the scenarios clearly, the UML notation of activity
diagrams can be used to show the different sequences of tasks which may realise the
use case. Although activity states in an activity diagram are normally used to model a
step in the execution of a procedure, here each activity state is used to represent a task
or sub-task. We have found activity diagrams to be particularly suited to this
application as they emphasize the sequential and concurrent nature of the tasks in a
scenario. However, it is acknowledged that sequence diagrams could also potentially
be adapted for this purpose. The alternative scenarios can be identified by omitting
tasks from the normal scenario, adding in extra tasks (i.e. repetition of existing tasks),
tasks occurring concurrently with other tasks or tasks occurring in an alternate order.
It is necessary to identify if any of the alternative scenarios identified could be
hazardous. That is to say that they could provide an additional contribution to the
hazard. These scenarios could also necessitate additional timing requirements, which
will form part of the safety contract (see section 4).

3.3 Value Aspects

The data represented in the system can also contribute to system hazards if
important data attributes are incorrect. It is important for each system hazard to
identify which data attributes are critical. These critical data items must be
constrained to ensure that they won’t contribute to the hazard. It is possible to take
advantage of the information hiding principle inherent in OO when trying to place
constraints. If the attributes of a class are private, it is only possible for them to be
manipulated by operations provided by the class. It is therefore possible to protect the
accuracy of data items by constraining the interactions that may manipulate that data.
It is therefore important for safety critical systems that attributes of classes are
declared as private such that they may be constrained in this manner.

For the system hazard ‘incorrect store released’ it can be identified (through a fault
tree) that the pilot selecting an incorrect store, or the wrong store information being
displayed to the pilot could cause incorrect store selection. This would be caused by
the incorrect store being associated with a particular station. The critical attributes
here (as identified from the class diagram in figure 2) are the station ID and store ID,
which are associated through the location class. The only operation specified in this
system design which can manipulate this data is the addStore() operation of the
station class. When this operation is called on a station, the store ID passed as a

parameter is associated with the station through the creation of a location object. By
constructing constraints it is possible to assure the store ID being passed is correct.

The nature of constraints can only be properly specified with a great deal of
understanding about the system under consideration. Even more so than with
functional and timing aspects of the system, the data within a system is very
dependant on domain knowledge for deriving effective safety requirements

4 Specifying Safety Contracts

Once the safety requirements for the classes in the system have been derived it is
necessary to specify them in a useful and meaningful way. There are a myriad of
techniques such as Douglass’ real-time annotations [9] suitable for specifying
constraints in UML. In this work we have chosen to use OCL [10], which is a
constraint language compatible with UML. The pre- and post-condition constraints
from OCL can be used as the basis for safety contracts on operations. An OCL
expression for an operation can be expressed as follows:
context Typename::opName(param1 : Type1,…):ReturnType
 pre: param1 > …

post: result = …

The constraints expressed in this manner are all requirements on static aspects of
the system. As can be seen with the example in section 2, it is often necessary from a
safety perspective to express that events have happened or will happen, that signals
have or will be sent, or that operations are or will be called. An extension to OCL then
known as an action clause was proposed by Kleppe and Warmer [11] to address this
problem. This has formed part of the response to the UML 2.0 OCL request for
proposals submission where it has become known as a message expression [12]. To
specify that communication has taken place, the hasSent (^) operator is used. A
simple example is given below:
context Subject::hasChanged()
 post: observer ^ update(12,14)

The post condition here results in true if an update message with arguments 12 and
14 was sent to observer during the execution of the hasChanged() operation. Update()
is either an operation that is defined in the class of observer, or it is a signal specified
in the UML model. The arguments of the message expression must conform to the
parameters of the operation/signal definition. Messages in OCL are particularly useful
for describing the functional aspects of the safety requirements. From the results of
the analysis carried out in the example, a safety contract can be defined for the store
class which restricts the hazardous behaviour. This safety contract is shown below:
context Store ::release()
 pre: none
 post: WOW=false
 and

 Stores_Manager ^ checkWOW()

A further limitation of OCL is that no way is provided for representing constraints
over the dynamic behavior of a system. Again an extension to OCL has been
proposed for modeling real-time systems [13]. This provides a mechanism for
representing deadlines and delays. Deadlines for operations can be represented in the
following manner:
context
Typename::operationName(param1:Type1,…):ReturnType
 pre: …
 post: Time.now <= Time.now@pre + timeLimit

Where Time is a primitive data type that represents the global system time and
timeLimit is a variable representing a time interval. In our examples we take the unit
of time to be ms. The above constraint represents a maximum permissible execution
time equal to timeLimit for the operation operationName().

Delays in reactions to signals or events can be represented in the following
manner:
context
Typename::operationName(param1:Type1,…):ReturnType
 pre: lastEvent.at + timeLimit >= Time.now
 post: …

Where lastEvent.at is the arrival time of the last event. This represents a maximum
delay equal to timeLimit for reaction to the lastEvent. The requirements derived for
the timing aspects of the store class can thus also be represented as part of the
contract. The safety contract for the store classs of the SMS would therefore be of the
form:
context Store ::release()
 pre: previous_release.at + 100 <= Time.now
 post: WOW=false
 and
 Time.now <= Time.now@pre + 50
 and
 Stores_Manager ^ checkWOW()

By using OCL to specify contracts in this way the safety requirements on each
class in the system design are explicit. For all our case studies, OCL with the
extensions described has proved suitably expressive. If necessary however, other
constraint languages or extensions could be considered. To ensure it will not impact
on the safety of the system, the class must meet the set of safety requirements
consisting of all preconditions of interactions for which it is the client, and all post
conditions of interactions for which it is the supplier. To know that a system will be
safe it is necessary to show that the complete set of safety requirements are met.
Specifying contracts in this way also makes it easier to deal safely with maintenance,
change, and reuse. This is discussed more thoroughly in [14].

5 Tool Support

Our tool support, as developed to date addresses the analysis discussed in section
3.1.1. Tool support for this part of the analysis is particularly important given its
potential complexity for real systems. The tools developed provide assistance in a
number of ways. They can identify sequences of transitions that could lead to an
identified hazard. The tools are also capable of generating mutations of transitions
which may arise due to mistakes in implementation. It is possible to perform these in
combination to identify which mistakes in implementation could lead to an identified
hazard. The tools can also be used for test data generation by identifying what input
values would trigger a transition, and what output values would result from that
transition and inputs. This allows us to create test cases for any of the hazardous
potential mistakes in our implementation. Before any of this can be done however it is
first necessary to check that the state chart under consideration uses only notations
that are analysable by the tools, and to formalise the state chart ready for analysis.

5.1 Well-formedness and Formalisation

The tool first checks that the state chart provided is analysable, that is that the state
chart is well-formed. If this is the case then the state chart is translated into an ISO
standard Z representation [15]. Both of these steps are fully automated. Once the tool
has been initiated with the state chart design no user intervention is necessary. The
rest of the toolset works from the resulting Z representation. This should ensure that
the analysis is less dependant on any particular state chart dialect. We currently cope
with Statemate and Stateflow. Each of the transitions in the state chart is represented
by a Z schema. The inputs and outputs of the state charts become inputs and outputs
of the schema. The labels on transitions become predicates over these inputs and
outputs.

5.2 Mutant Generation

In section 3.1.1 it was shown how extra transitions can be added to the state chart
to simulate faulty behaviour. These extra transitions are referred to in the toolset as
mutant transitions. The five basic cases in 3.1.1 are the basis for the mutant generation
by the tool.

1 - e[c] self-transition – This involves changing the destination state to be the same
as the source state and dropping the action.

2 - not e[c] / a and 3 - e[not c] / a – These are generalised to negate any conjunct of
the e[c] trigger, and also to negate the entire trigger. Where the trigger involves
ordering relations, each can be mutated to use a different relational operator, e.g. <
becomes <=.

4 - e[c] – This involves deleting the action. If the action is a sequential
composition, further mutants are generated by deleting one of those actions.

5 - e[c] / b – This involves changing the actions. Where an action is the assignment
of a Boolean, the Boolean assignment can be negated. Where an action is an

assignment of a number, the number assigned can be incremented/decremented, and
any arithmetic operator can also be changed, e.g. + to –.

The tools generate all mutants that they can, for all transitions. The user merely
initiates the mutant generation. It should be noted that using the tools allows many
more mutants to be considered than would otherwise be feasible.

5.3 Hazard Detection

Section 3.1 illustrated the identification of hazards for a class in the system. In
section 3.1.1 these were shown in a notation that is basically Z predicates, but which
need declarations of the names to be legal Z, these were:

• State = release ^ ¬checkWOW
• State = release ^ WOW = true

By writing them in a Z schema with inclusion of the state chart’s inputs and
outputs, the identified hazards become available to the tools. This small and relatively
simple step currently has to be done manually, but since it involves manipulation of Z
could be automated. Hazard detection involves conjecturing whether a composition of
transitions implies the hazard. The hazard might be implied never, sometimes or
always. This can be done for the original state chart and for the mutant transitions.
When composing only original transitions, sometimes is sufficient for concern. When
composing transitions involving mutants, it may be preferable to focus on the always
cases. The user chooses the maximum length of compositions to be considered, then
the tools perform automatically. The cost increases rapidly with the number of
alternative transitions exiting each state. Generating a large number of mutants can
also have a devastating effect on the cost of hazard detection. It would be possible to
allow the user to limit the number of mutants generated by the tool in order to ensure
hazard detection remained practical. This could be based on the complexity of the
initial state chart and the severity of the resulting hazard. Further work may look at
this.

5.4 Test Data Generation

Test data generation for a transition amounts to finding a binding that exists in the
schema. This determines input and output values simultaneously. The solutions are
written out in a form suitable as input to a test harness tool. The user has only to
choose the transition for which to generate test data. This allows tests to be
constructed to check for the existence in the implemented design of any of the
hazardous mutant transitions identified previously by the toolset.

6 Conclusions and Future Work

In this paper we have outlined an approach to developing safety critical systems
using UML. This is based on analysis of the UML system model. We have described
with a simple example how this analysis may be carried out. We have also described a

tool for automating some aspects of this analysis. This analysis derives safety
requirements for classes in the system. We have shown how these requirements can
be expressed in the form of safety contracts using OCL. This approach makes it
possible to reason about the safety of individual elements of the UML model and thus
makes it easier to safely change the UML design, as well as facilitating maintenance
and reuse of classes or components in the system.

Future work will focus on verification that a design will meet derived safety
requirements arising from safety contracts, and deal with violation of conditions. We
will also look at supporting traceability, particularly with a changing or evolving
UML model. It will also be necessary to define safety arguments in support of this
approach such that UML may be successfully adopted into safety critical domains.

The work presented in this paper was funded by BAE Systems through the DCSC,
and by the EPSRC through the MATISSE project. A great deal of work on developing
the toolset was carried out by Stuart Bass, an intern student at the University of York.

References

1. Leveson, N., Safeware - System Safety and Computers. 1995: Addison-Wesley.
2. Lano, K., D. Clark, and K. Androutsopoulos, Safety and Security Analysis of Object

Oriented Models. Lecture Notes in Computer Science, 2002. 2434: p. 82 - 93.
3. MoD, Defence Standard 00-58: Hazop Studies on Systems Containing Programmable

Electronics. 1996: HMSO.
4. Nowicki, B. and J. Gorski, Object Oriented Safety Analysis of an Extra High Voltage

Substation Bay. Lecture Notes in Computer Science, 1998. 1516: p. 306-315.
5. Gorski, J. and B. Nowicki, Safety Analysis Based on Object-Oriented Modelling of Critical

Systems. Proc. SAFECOMP '96, 1996: p. 46 - 60.
6. Gorski, J. and B. Nowicki, Object Oriented Approach to Safety Analysis. Proc. ENCRESS

'95, 1995: p. 338-350.
7. Douglass, B.P., Real-Time UML - Developing Efficient Objects for Embedded Systems.

1998: Addison-Wesley.
8. Bate, I., J. McDermid, and P. Nightingale, Establishing Timing Requirements for Control

Loops in Real-Time Systems. Journal of Microprocessors and Microsystems, 2003.
27(4): p. 159 - 169.

9. Douglass, B.P., Doing Hard Time - Developing Real-Time Systems with UML, Objects,
Frameworks, And Patterns. 1999: Addison-Wesley.

10.OMG, Object Constraint Language Specification, in Unified Modeling Language
Specification version 1.4. 2001, Object Management Group.

11. Kleppe, A. and J. Warmer, Extending OCL to Include Actions. Lecture Notes in Computer
Science, 2000. 1939: p. 440-450.

12. Warmer, J., et al., Response to the UML 2.0 OCL RfP - Revised Submission, Version 1.6.
2003, OMG.

13. Cengarle, M. and A. Knapp, Towards OCL/RT. Lecture Notes in Computer Science, 2002.
2391: p. 390-409.

14. Hawkins, R.D. and J. McDermid, Developing Safety Contracts for OO Systems. Proc. 21st
International System Safety Conference, 2003.

15. ISO, Information Technology - Z formal Specification Notation - Syntax, Type System and
Semantics. First Edition ed. 2002: ISO / IEC

An Experiment in Applying UML2.0 to the
Development of an Industrial Critical Application

1

Sergio Cigoli1, Philippe Leblanc2, Salvatore Malaponti1, Dino Mandrioli3,
Marco Mazzucchelli3 Angelo Morzenti3, Paola Spoletini3

1PARVIS Systems and Services s.r.l.
email: {cigoli, malaponti}@parvis.it

2Telelogic France
email: Philippe.Leblanc@telelogic.com

3Dipartimento di Elettronica e Informazione, Politecnico di Milano,
email: {mandrioli, morzenti, spoleti}@elet.polimi.it

Abstract. We relate on an experiment in applying the novel notation UML2.0
and a toolset centered on it to a case study in an industrial setting. After an
overall description of the case study and of the project, we discuss the support
provided by the notation and the toolset to the various phases of the test case
development, with a special focus on timing features, which allows us to
speculate on possible enhancements to the real-time simulator. Keywords:
UML, UML2.0, critical system, real time, validation and verification, tool and
method evaluation.

Introduction

For over a decade the members of the formal methods community asserted with great
emphasis that the development of critical systems deserves the application of
systematic and rigorous methods supported by effective automated tools, due to the
seriousness of the consequences of their faults, in terms of economic, environmental,
or human losses. In the area of industrial applications, for long time and to a large
extent still now, critical systems are however designed and implemented adopting ad
hoc techniques or at best manual procedures with scarce automated support, so that
their design, albeit correct, may be poorly documented and full of loopholes. This
was, in various circumstances and contexts, explained or justified by a series of
reasons, among which we cite the following:

* Work partially supported by the ITEA EU project “UMsdL: the powerful UML-RT” and by

the MIUR project: “QUACK: Piattaforma per la qualità di sistemi embedded integrati di
nuova generazione”.

a) the absence of true methods: we only have notations and algorithms,
sometimes even tools, but these are not integrated into a unifying approach
able to provide a systematic and manageable development process;

b) the absence of really industrial-strength tools: notations and algorithms are
inadequate, from the point of readability and of computational complexity, so
that a formal approach is not really scalable and it is impossible to apply it in
an industrial setting;

c) the lack of standards universally recognized and adopted, which prevents the
creation of a common base of knowledge and practice and the emergence of a
small set of notations, methods and tools whose acceptance is wide enough to
reach a critical mass and justify adequate investments in software tool
development by the tool constructors and vendors.

In recent years a few positive events actually took place in the field of languages,
methods and tools for design, validation and verification. We mention model-
checking, which, in some application fields, has gained wide acceptance as an
effective verification technique [4].

Another important outcome is the advent of UML2.0 [12], as it is called the
“second version” of the well known Unified Modeling Language [6] which is the
result of a rather long and laborious standardization effort carried out by the OMG.
UML2.0 provides a sound semantic foundation to many notations that in the original
UML were left (sometime intentionally) imprecise and as a consequence tend to be
used in an informal, exploratory fashion, thus making the notation inappropriate for
the development of critical systems. In parallel with the definition of the new UML
standard, some tool constructors have developed and released tool suites for the
development of critical systems that are compliant with UML2.0.

The present work relates on the experience of a research project financed by the
European Union, centered on the application of UML2.0, and of the tool set Telelogic
Tau Generation2 (TauG2) [13] supporting it, in the development of a critical
computer based application in an industrial setting. This experience has therefore
been achieved in a favorable context, where, for instance, the impediments to the
adoption of formal methods outlined in points (a)-(c) above could potentially be
overcome.

The main indication we obtained from our experience are: that formal methods can
be actually exploited in industrial environments; that industrial strength tools are
indeed available but still need important enhancements; that timing issues are one of
the most relevant fields where such enhancements are needed; that an interesting
alternative of the traditional path for building industrial tools and methods by
evolving them from academic prototypes is also the other way around, i.e. starting
from a well established and engineered industrial tool and enriching it by adding
advanced and sophisticated features.

We relate on our experience through a description of the project in a rather
informal way, without entering into the details of how the various notations have been
applied to the case study, but presenting methodological remarks on how the features
of the UML2.0 notations affected, mostly positively and sometimes negatively, the
development of the systems that was the object of the experiment. Section 2 provides
a wide-ranging description of the project; Section 3 deals in greater detail with
matters concerning the UML2.0 notation and the employed tool suite; Section 4

delves more deeply into some semantic features of the notation and tools concerning
the treatment of time (for the sake of shortness many technical details are omitted; the
interested reader can find them in [8]); finally, Section 5 draws conclusions and
outlines directions of future research. We assume a slender acquaintance of the reader
with UML and UML2.0.

The project

Three partners participated to this project. Telelogic France is the French subsidiary
of Telelogic A.B. that is the constructor of the TauG2 tool and the provider of the
original methodology. PARVIS is a small enterprise, based in Italy, whose mission is
to provide systems and services for parallel vision in a variety of industrial settings,
the principal one being the quality control of banknotes printing. These systems are
highly critical due to the economic relevance of the performed activity: they must be
highly available and, due to the massive amounts of banknotes checks to be
performed in a relatively short period of time, they have high throughput requirements
and hence they must satisfy hard real-time constraints. Therefore, PARVIS supplied
the case study used in the project. The third partner, Politecnico di Milano, is
academic and contributed to the experimentation of tools and methodology and to
their critical evaluation.

The project lasted about two years; the total effort spent by Telelogic was 21.5
person*year; that of PARVIS was 4,2 person*year, and that of Politecnico di Milano
was 3.2 person*year. It had a very satisfactory outcome from the technical viewpoint,
(in fact it has been selected as one of the three most successful projects of the current
EU ITEA project round and it will receive a special award at the coming ITEA
workshop, to be held in Leuven, Belgium, on October 10-11, 2003).

The system developed in the project is a so-called tracking unit that is in charge of
tracing the position of banknotes inside the machine that performs the quality check.
Banknotes are fed into the machine and travel, at a considerable speed, along a path
that successively brings them to a set of points where the various checks for quality
are performed (for instance, the front, back and transparency image of banknotes are
collected by sophisticated cameras and analyzed by data- and computation intensive
computer-graphics algorithms). At the end of the process the banknotes are
distributed among a set of containers depending on the outcome of the quality
control. The tracking must be quite precise to allow for a strict synchronization
among data acquisition and processing and mechanical actions necessary to drive the
banknote through its path to the checkpoints and to its final destination. The part of
the overall project related to the application of the tools and methods to the case study
lasted about one year, from February 2002 to March 2003, and was structured in the
following phases:
- detailed definition of the case study and informal requirements analysis and

identification;
- informal modeling of the system architecture in UML2.0 (by means of structure

diagrams) and allocation of roles and activities to the identified parts;

- detailed, formal modeling of the complete system (structure diagrams defined in
full detail and behavior of every component modeled via state-transition
machines) and, simultaneously,

- validation of the model by means of static analysis (basically consisting of static
type checking) and simulation;

- automatic code generation from the model;
- porting and integration of the code with the real-time operating system on the

target machine, and final testing.
The transition among the various phases was rather smooth and easily manageable,

so that the overall development process can be described with good approximation as
having taken a true waterfall shape: no major revision or amendment was ever
necessary, as all design decisions proved correct. This was certainly facilitated by the
so called Model-Driven Development, promoted by UML2.0 and supported by
TauG2, where most of the effort is focused on modeling and analysis activities and
artifact construction is quite systematic or even automated.

UML2.0 and tool support to the development

Requirements elicitation and analysis were performed with the visual aid Use Case
Diagrams, Sequence Diagrams and Activity Diagrams. These diagrams proved to be
useful to represent in a graphical and standard fashion some information that is often
provided in natural language together with generic and mostly informal graphical
schemas or constraints expressed in algebraic form. For instance informal timing
diagram can be translated in sequence diagram with timing information. (Notice that
in this phase Sequence Diagrams are constructed manually, while in the following
phases of the development they can be generated automatically from behavior
descriptions provided in the modeling phase as state-transition diagrams.) Similarly,
informal diagrams with boxes, arrays, and informative identifiers are typically
rendered by structure diagrams.

Unfortunately the nominal data on performance, that are often well known from
the beginning of the system development and constitute the main requirement to be
satisfied by the design, could not be directly translated into UML2.0 due to the lack of
a general enough descriptive notation allowing the designer to express timing
properties independently of any operational model. For instance the following
performance requirements, which are taken verbatim from the “Case Study
Description” document [3], written mostly in English,

Transport speed range: full speed 10 m/sec (40 banknotes/s)
Frequency of tracking encoder: 4 kHz
Encoder tracking precision: 2.5 mm
Rate of decision sending (inspection results): every 25ms (full speed)
Decision point offset (distance from SP to DP): 2.4m

did not find any equivalent corresponding part inside the formal model of the system,
not in the requirements analysis phase, nor in the detailed version produced during the
formal modeling phase. These time-related issues could be at least partially addressed
inside the OMG profile for schedulability, performance and time, which however is

just partially supported by TauG2 suite. In fact the scheduling, performance and time
profile is very large, thus is hard to be fully implemented in an industrial modeling
tool. In addition or alternative inside a formal model one would like to be able to
write simple requirement formulas in a descriptive notation like linear temporal logic
[10] such as the following

signalToBeProcessed ⇒ WithinF(SignalProcessed, 25 msec)
that accounts for the first requirement above (the Inspection System must be able to
process 40 banknotes/sec; since the processing of any signal is done in sequence for
the various banknotes by a single physical device or software process, this
requirement implies that each such processing must be completed within 25
milliseconds), or the following

∀ BnkntId (Enter(BnkntId) ⇒ WithinF(Output(BnkntId, pocket), 240 msec))
encompassing the first and last line above (the full speed of banknotes on the
conveyor is 10m/sec, and that the decision point offset, i.e., the distance from the start
and finish points of the inspection path, is 2.4 meters).

In the definition of the system architecture and of the high-level design, we found
extremely useful the use of structure diagrams (notice that this kind of diagram is a
new feature of UML2.0): Parts (graphically depicted as boxes) were used to represent
either data abstractions, or functional abstractions, or electrical and electronic devices
such as sensors and actuators, and in general any physical component of the system
under design. We used structure diagrams in a rather open and unconstrained fashion,
paying little attention to follow the principles and suggestions of any Object-Oriented
analysis and design methodology. For instance, the set of objects and relations among
them, were defined before the classes to which they belong, but this could be
managed smoothly with the support of the automatic checks provided by the tools,
which proved extremely valuable under this respect.

Structure diagrams lead the designer to decompose the system under development
into a hierarchy of state-transition machines that communicate via one-to-one
connectors, through ports that define precisely the interface and protocols, thus
avoiding the semantic complexities that arise, in some formal notations, from the
notion of broadcasting signals to all the components of a specification.

The TauG2 tool suit supports UML2.0 structure diagrams by partitioning classes
(and their objects) into active and passive ones: active objects have their own thread
of control and can actively interact with other objects through signal exchange;
passive objects, on the other hand, simply encapsulate data. TauG2 permits the direct
mapping of active objects into threads of the real-time operating system of the target.
We took advantage with some concern of this possibility, as we were worried about a
possible overhead in the communication among active classes that would originate in
the target architecture. After the system construction (supported by the tool through
the automatic code generation from the model) and the porting on the target
environment we could verify that in fact such overhead was quite limited and the
synchronization among concurrent threads of execution took place as expected. This
fortunate circumstance occurred, in our opinion, because the amount of resources in
the target platform had been chosen adequately, so that marginal variations of the
resource consumption (time and memory) did not affect the overall system’s ability to
meet its performance requirements.

The Parts at the “leaf level” in the structure diagrams hierarchy contain state-
transition machines, whose input and output tokens consumed and generated by the
transitions correspond to signals entering and exiting through the Ports and
Connectors of the Part. The tool allows for two modes of visualization of the state-
transition machine: a state centered mode that uses a textual representation of the
UML action semantics and a transition centered mode where the action associated
with a single state transition can be described in detail using a visual representation of
the UML action semantics, inspired by SDL [9]; this notation has an abstraction level
similar to that of a programming language: in fact, completing this part of the model
amounts to coding the most minute details of the system being designed. It must be
pointed out, however, that such a coding usually involves a quite limited effort and is
not error prone as traditional coding in a purely textual programming language, both
because of the visual aids (almost all programming constructs are rendered via some
graphic object) and because the code corresponding to a single machine transition is
in fact embedded in the context of the machine itself and of the Part that contains it,
hence these program fragments are usually rather simple, for instance they rarely
include an iteration. Both notations, textual and graphical, conform to the UML
action semantics [11].

As anticipated in Section 2, the project reached its natural termination rather
smoothly, satisfying its budget of resources and time. The overall effort was about
uniformly balanced between the following activities: requirements analysis and
specification, architecture definition and high-level design, detailed design, final
testing. It should be noticed that this is NOT the usual division of effort in a typical
industrial project. Notice also that in the above effort estimation we do not consider
the implementation phase; this is due to essentially two reasons. First, the code is not
produced by hand, but is completely generated automatically by the tool; second, and
more precisely, there is in fact a (limited) coding activity that corresponds, as
remarked above, to the specification of state transitions via transition-centered
diagrams inside the leaf-level Parts.

We consider this a great improvement with respect to normal industrial practice,
where the final testing phase fatally consumes a prevailing part of the total human
resources, because it includes re-design and debugging that are typically necessary
when errors are found and, possibly, some design decisions must be reconsidered.
This scenario matches the usual figures that are reported in the literature on
(successful!) applications of formal methods in an industrial setting, which leads to
the common place belief that a judicious usage of Formal Methods makes the entire
development process simpler and more manageable.

We must observe, however, that the exploitation of Formal Methods in the present
project has been rather “light” [5] because validation and verification were carried out
exclusively through simulation, and therefore they provided results that were only
“partial” (i.e., non exhaustive, being related to a subset of all possible system
executions) and “qualitative”, especially from a timing and performance point of
view. Indeed, a quantitative treatment of time, and therefore the possibility of
specifying/modeling real-time and performance features, was present in the modeling
language, through the Timer construct that is a tool extension inspired by SDL, but
not in the simulation tool, which did not support a notion of real-time measured in a
quantitative fashion. As a consequence, the model validation obtained through

simulation and the test cases derivable from the Sequence Diagrams generated by the
simulation tool could only account for the correctness of the relative ordering among
events, without providing a possibility to verify a priori the actual value of the
performance times under defined hypotheses to be assumed on the target platform,
and therefore the satisfaction of the hard real-time requirements that were in fact
present in the case study. Although this limitation did not affect severely the success
of this project -essentially thanks to the rather abundant sizing of the target
architecture- in general one may need deeper analysis features from the point of view
of time behavior. This is the object of the analysis and proposal described in the next
section. Also, the verification of the desired system properties in a complete and
exhaustive fashion (comparable, e.g., to model-checking or property proof) could not
be performed on the model developed in this project, as the model itself lacks a
notation for expressing properties. Concerning this issue, we mention that several
research lines are actively pursued [7], aiming at the enhancement of OCL (the
Object Constraint Language) of UML and of the UML2.0 notation itself with
constructs for describing formally, directly, and succinctly the desired real-time
properties.

Model simulation and timing features

We stated in the previous section that the tool suite does not provide a complete real-
time simulation, where each event occurrence is labeled by a time stamp that
represents its actual time as computed by the simulator. In the present section we
show how we analyzed the tool’s features from the point of view of real-time
simulation and how we designed its evolution to enhance such features.

In the original version of the simulator that is included in the commercial tool suite
the UML ordinary signals and the signals originating from the expiry of timers were
treated in the very same way: timers’ signals did not have any priority over other
signals, so that timers lose their ability to drive the timing of the execution by
“forcing” the firing of other transitions depending on their expiry.

In strict cooperation with Telelogic as the tool provider, however, we were able to
make slight but crucial modifications of the simulator that allow for a different
treatment of the ordinary signals -which are still managed in a FIFO queue- and of
signals originated by the expiry of a timer -which are managed in a separate queue
with a priority related to the respective expiration time. These modifications permit
the management of real time simulation in a more complete and realistic way.
We designed an evolution path for the tool through several tool versions. In the
following we briefly account of such an evolution by referring to version alpha as the
original, commercially available one. We illustrate our experience through a couple
of examples specifically devised for this presentation

Throughout the discussion, variable “Now” will represent the value of the real time
of the various event occurrences, as computed by the simulation tool.

Example 1
As a first example we consider a simple echo server that receives from the

environment messages associated with a numerical value indicating when the server

has to give a reply, consisting of a formatted echo, to the environment. The echo
server uses a timer (the TauG2 construct to model time-outs) to set the time of its
reply.

More in detail, as shown in Figure 1, the system is composed of an active object of
class Server, that receives signals “Say” and sends signals “Echo”.

Server Say

Echo

<<signal>>

<<signal>>
EnvPort

Say

Echo

Package EchoServer (1/1) Class Diagram

Figure 1. Class diagram for the Echo Server.

The class Server is composed of the active class RequestHandler and its
associated EchoFormatter (Figure 2). Each instance of the class RequestHandler
manages an echo request, sending to the environment the signal echo, of which the
parameters have been created through the operation format of the EchoFormatter
class.

RequestHandler
RHPort

active class server(1/2) Class Diagram

EchoFormatter

+format (msg : Charstring): Charstring

Formatter
==1

Figure 2. Class Diagram for Server

The structure diagram in Figure 3 shows that the server receives the request from
the environment through the signal Say, while the echo signal is sent to the
environment from the RequestHandler.

rh : RequestHandler[*]/0 RHPort

active class server(1/2) Class Diagram

SPort

Say

Echo
RHToEnv

EnvToS

EnvPort

Figure 3. Structure diagram for class Server.

The behavior of EchoServer is described by the state diagrams in Figures 4 and 5,
for classes Server and RequestHandler, respectively. The system behaves as follows.
The environment sends a Say signal including a string and a numerical value. These
are received by the server that passes the control to an instance of the class
RequestHandler and then returns to the idle state. The RequestHandler sets a timer at
the numerical value passed through the signal Say; when the timer expires a new
string composed by doubling the original string through the operation format of the
class EchoFormatter is sent to the environment.

Idle

 Say(msg, pause)

new RequestHandler(msg, pause);

Idle

Charstring msg;
Duration pause;

statemachine initialize () (1/1) Statechart Diagram

Figure 4. State diagram of Echo Sever, page 1.

set (PauseTimer, now + pause);

WaitTimer

statemachine initialize () (1/1) Statechart Diagram

msg = formatter.format(msg);

Idle

WaitTimer

PauseTimer

Echo(msg)

Figure 5. State diagram of Echo Server, page 2.

We first generated simulations of this system by means of version alpha.
By inserting a breakpoint on the timeout or on the reception of the signal

“pauseTimer” it is possible to check that when N signals “Say” are simultaneously
input and the simulator is in a stable state (i.e., with no signal to be processed) all
signals are processed before the first timeout occurs even if (looking at the value of
the variable Now) it seems that the signals are processed t time units after the timer
setting.

For instance, if we supply the tool with the following sequence of input signals
(say(<string, timer value>)):
say(john,10)
say(mary,4)

say(mary,4)
say(mary,4)
say(mary,4)
say(mary,4)
say(mary,4)
say(mary,4).

The Sequence Diagram generated by the simulation with version alpha contains
eight signals “Say“ that are sent by the environment and received by the server when
the variable Now is zero. Then, still with Now equal to zero, an instance of the class
RequestHandler (RH) for each signal Say is activated and each timer is set by the
corresponding instance of RH. When the timers with the least setting value expire,
i.e. the timers set by the seven signals Say(mary,4), the variable Now assumes the
value 4 and then changes again only when the last timer expires. Hence, except for
the incrementing due to the timers, time does not pass, as if each instance of the
classes was evolving in its own timing environment rather than in a global one. In
fact the signals are sent and received by the different instances of RequestHandler in
zero time and every change of states of the instances takes zero time and does not
influence the other ones.

This remark led to a first modification of the tool, i.e., version beta. In the beta
version the timeouts are not treated in the same way as other signals. However the
variable “Now” increases randomly, giving sometimes rise to unexpected results even
if the time consistence is kept. For instance the Sequence Diagram produced by
version beta in correspondence of the above input sequence, exhibits a correct relative
order of the expiry signals of the timers with respect to the values of their settings, but
the timeout signals themselves occur with a delay that is not predictable. Moreover
the expiry signals arrive long time before the state changes caused by the timer
expiry. Thus, version beta produces a behavior that is consistent with the logic
sequencing of the events, but the random increasing of variable Now is not what the
user would expect as a final result.

A further minor modification, however, could easily produce the “right time
semantics”: it would suffice to allow the user to specify explicitly the time duration
of every transition. Such a duration would define explicitly the increment of the Now
variable in the tool. To achieve the maximum generality such an increment could be
any nonnegative value, even depending on other system variables. Such a generality,
however, would have a highest price in terms of executability since an infinite
number of system behaviors would be possible even in a finite time interval. As a
reasonable compromise, instead, version gamma was designed, where the possibility
was given to the user to associate a constant time interval with the transitions. A
large literature, e.g. in the field of time Petri nets [1, 2] shows that such an approach
allows the user to deal with most cases of practical interest. On the other hand
version gamma of the tool supports a structured way of performing simulations,
whereby one can build a finite number of execution traces that represent the totality
of all the traces of the system being modeled, which are potentially infinite in
number.

The possible execution traces of a system are characterized by the transitions
occurred, the relative order of their firing and the absolute firing time of each
transition. One can easily define an equivalence relation over the set of the execution

traces, where traces are equivalent if they contain the same transitions firing in the
same order; hence the traces can be grouped into equivalence classes, and the whole
behavior of a system can be in principle be described by a simulator generating one
trace per class.

Next, we briefly describe the behavior of version gamma by means of a second
example.

Example 2
As second example we consider the following simple system, a simplified version

of the classical “dining philosophers” problem, shown in Figure 6. Three cyclic
processes, P1, P2 and P3, compete for two resources (represented in the diagram with
the variable Res), and switch between two states: running and waiting. When a
process i is in the waiting state and there is an unassigned resource, i.e. Res>0, the
process can take the resource. When process i goes from the running state to waiting
it releases the resource. Note that in the system there are only two available resources,
hence only two processes could be enabled at the same time. The hexagons
(containing the general interval [mi, Mi]) near the transitions in Figure 6 represent an
additional constraint that can be provided by means of the tool; they mean that when a
transition is enabled it can fire only in the interval [mi, Mi] from its enabling time, if it
is not disabled in the meantime.

Figure 6. State diagrams of the three processes.

In our illustration of the simulator in version gamma we will use the following
notation. The transitions of processes P1. P2,. and P3 from waiting state to running
state are called A, B, and C respectively, while the transitions from the running state
to the waiting state are respectively called D, E and F.

Since the three processes have the same behavior but the resources are only two,
the transitions A, B and C need the firing of D, E and F respectively and at most one
process in the running state. If two processes are in the running state and the other one
is in waiting state, the transition of this latter process to running state is not enabled
(Res=0). On this system we now apply the algorithm incorporated in version gamma

of the tool, which is reported in full detail in [8]; in the presented example we build
traces with 4 fired transitions.

First we build the tree of all the possible traces, called relative tree and reported in
Figure 7, whose edges are marked with the name of the fired transitions and whose
nodes contain the relative intervals with respect to the last fired transition of all the
enabled transitions and the ordering constraints among the enabled transitions (these
constraints are omitted in our example since they are redundant). Note that the
relative interval of transitions that remain enabled in more than one node, i.e.
transitions enabled in a node that are not effected by the firing of another transition,
changes from one node to the next in a given trace.

From the relative tree, considering only relative intervals and ignoring the
additional constraints, we can build the absolute tree. The absolute tree is a structure
whose nodes contain absolute firing intervals for the enabled transitions, and whose
edges are marked with the absolute interval in which a transition must fire to reach the
child node. The root of the absolute tree is simply created by copying the relative
firing intervals from the relative tree and the edges coming out from the root contains
the relative intervals of the fired transition in which the maximum is limited by the
least maximum value of the transitions enabled in the root. Then to create the absolute
firing constraints for a generic node at depth w+1 we change the relative intervals in
the following way:
− If a transition is enabled both in the considered node and in its parent node then the

interval is copied changing the minimum if the minimum of the fired transition is
greater than that of the considered transition.

− If a transition is newly enabled in the considered node its absolute interval is
obtained by adding the absolute interval of the fired transition to the relative
interval of the transition.

As an example, the trace CBFE of the relative tree in the absolute tree becomes:
[1≤A≤4,1≤B≤3,1≤C≤2] →1≤C≤2
→[1≤A≤4,1≤B≤3,7≤F≤12]→1≤B≤3
→[4≤E≤10,7≤F≤12]→7≤F≤10
→[8≤A≤14,8≤C≤12,7≤E≤10]→7≤E≤10 (the inequalities in the square parentheses
represent the key of the nodes, while the inequalities between arrows are the labels of
the edges)

Figure 7. The tree of all possible traces (relative tree).

Now starting from the relative and the absolute tree we can build the admissible
domain of each trace, i.e., the domain where the firings can actually take place. We
present a method for creating evolution constraints, so that a user can fix the firing
time of each transition for a considered evolution trace. The described procedure must
be repeated L times where L is the total number of evolution traces, which is equal to
the number of leaves in the tree. The procedure computes the intersection of all the
constraints regarding a fired transition in order to reduce its absolute domain to the
admissible domain. Continuing with the previous example, let us consider again the
trace CBFE. The trace has to be considered starting from the last fired transition in the
trace. So we start with E. We group the absolute interval of E with the constraints
obtained by the relative tree, i.e. starting from the node that generates the edges on
which E fires we visit the tree toward the root until the transition E is present in the
node and we add the constraint in the node that connects E with the just fired
transition. The constraints of E are

+≤≤+
+≤≤

≤≤

73
2

107

BEB
FEF

E

From it we can deduce the constraints B≤F≤B+7, 0≤B≤7 and 4≤F≤10. Now we
consider the constraints of F adding also the constraints deduced by the constraints of
E and so on. If the set of constraints includes two constraints on the same variables
they are replaced by their intersection, computed by taking the greatest minimum and
the least maximum values. As result of this procedure we obtain the following trace

+≤≤+
+≤≤

≤≤

→
+≤≤+
+≤≤+

≤≤
→

+≤≤
≤≤

→≤≤
73

2
107

106
74

107

2
31

21
BEB

FEF
E

CFC
BFB

F

CBC
B

C
.

Hence starting from C the user can fix arbitrarily a point in the interval of C
creating a numerical interval for B, and so on. A possible member of this trace can be
the following: C=1.5 → 1.5≤B≤3: B=2→ 7.5≤F≤9: F=8.5→ 8.5≤E≤9: E=8.5.

Conclusions

We reported on “yet another experience in the application of Formal methods to
industrial projects”. Previous experiences, however, were mostly ignited by a research
institution that tried to promote its own approach within the industrial environment.
This project, instead, was originated in an industrial environment and based on a
commercial tool, whereas the academic partner played the role of critical evaluator
and enhancements proponent.

The overall results of the project are largely positive: the design goals were
reached within schedule and the industrial partner who provided the case study is
satisfied by the fact that the development process was cheaper, smoother, and better
manageable than in previous projects of similar systems. In our opinion, the favorable
result comes from the ability of UML2.0 to provide a semantically coherent view of
the system under development, that covers all phases of the development and allows
one to support it through a nicely integrated set of tools.

UML2.0 and its related toolset thus make an important step towards model-driven
development, that is a development process where the design effort is mainly devoted
to modeling activities while the construction of the actual artifact is greatly facilitated
or even completely automated by tools that translate the model into executable code.

We have also pointed out the main weaknesses of the adopted method and toolset:
− the absence of a descriptive notation for expressing performance and real-time

requirements; this prevents the construction of verification tools that provide more
guarantee than, and complement, traditional simulation and testing,

− the lack, in the current version of the simulator tool, of a feature for real-time
analysis.
The former issue involves the very definition of the UML2.0 notation itself;

therefore, it is addressed in the context of medium/long term research, essentially
centered around the development of the OCL standard; the latter instead can be
addressed adequately by relatively simple modifications of tool’s internals that
manage UML signals and the value of the ”Now” variable. Suitable algorithms to
implement version gamma as described in Section 4 have already been implemented,
though not yet plugged into the tool.

References

1. B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using time
Petri nets. IEEE Transactions on Software Engineering, 17(3), 1991.

2. G.Bucci, E.Vicario: Compositional Validation of Time-Critical Systems Using
Communicating Time Petri Nets. Transactions on Software Engineering, 21 (12): 969-992
(1995)

3. S.Cigoli, S. Malaponti, UMsdL Case Study Description, PARVIS Systems and Services,
Milano, Feb 2003.

4. E. M. Clarke, O.Grumberg, D. Peled, Model Checking, MIT Press, 2000.
5. D.Jackson and J.Wing, Lightweight Formal Methods, 29(4):21, IEEE Computer, April

1996.
6. I.Jacobson, G.Booch, J.Rambaugh, The Unified Software Development Process, Addison-

Wesley, 1999
7. L. Lavazza, S. Morasca, A.Morzenti, A Dual Language Approach Extension to UML for

the Development of Time-Critical Component-Based Systems, TACoS International
Workshop on Test and Analysis of Component Based Systems, Warsaw, April 13th, 2003,
in conjunction with ETAPS 2003.

8. D.Mandrioli, M.Mazzucchelli, A.Morzenti, P.Spoletini, Generating simulation traces for
systems with interval transitions, Technical Report N.2003.29, Dipartimento di
Elettronica, Politecnico di Milano, July 2003,
http://www.elet.polimi.it/upload/morzenti/publications/tr2003.29.pdf

9. A.Mitschele-Thiel, System Engineering with SDL – Developing Peerformance-Critical
Communication Systems, John Wiley, 2001.

10. A. Morzenti, P. San Pietro, “Object-Oriented Logic Specifications of Time Critical
Systems”, ACM TOSEM-Transactions on Software Engineering and Methodology, vol.3,
n.1, January 1994, pp. 56-98.

11. OMG, Action Semantics for the UML, OMG ad/2001-03-01, www.omg.org, 2001.
12. Unified Modeling Language: UML 2.0 Superstructure Final Adopted

specification, ptc/03-08-02, Aug-2003.
13. www.taug2.com .

Creating Security Mechanism Aspect Models from
Abstract Security Aspect Models

Geri Georg, Robert France, and Indrakshi Ray

Department of Computer Science
Colorado State University, Fort Collins, CO 80523

Abstract. Aspect-oriented modeling (AOM) techniques allow system architects
to design the most important decompositions of complex systems to create a
primary system modularization. These techniques can also be used to design
additional system concerns that are not part of the primary system
modularization. Aspect-oriented modeling techniques can be used to compose
different aspect models with the primary decomposition models in order to
analyze the complete system design. The results of analyses can be used to
compare potential design realizations of multiple competing concerns. Aspect
models, composition, and analysis techniques must be available at different
levels of abstraction to enable comprehensive trade-off analysis among
competing concern realizations.

Different levels of abstraction are particularly important when multiple
mechanisms are available to realize a concern, such as in the area of security.
Architects need to experiment with different security mechanisms in order to
choose those that best meet overall system goals while providing minimal
interference with other design considerations. Abstract aspect models can be
used to develop more detailed mechanism models that are still independent of
implementation considerations. These detailed models can be used for
mechanism analysis and trade-off experimentation.

We have created two detailed authentication mechanism models using an
abstract aspect model, and we demonstrate the steps used to create the detailed
model for one of these mechanisms in this paper. Although not discussed in
this paper, we have composed these different mechanism models with primary
decomposition models using the same AOM composition techniques that we
use to compose abstract models. The resulting compositions allow system
architects to analyze different mechanisms available to realize a particular
abstract concern, such as authentication. Architects can use analysis results to
make design trade-off decisions and choose the mechanisms that best meet
overall system requirements. We are continuing to evolve this work to define a
refinement mechanism for our prototype tool.

1. Introduction

Software architects decompose problems and their solutions to manage
complexity during software system development. Decomposition partitions multiple
competing concerns in the problem and solution space. Key design decisions made
early in the design process identify some of these concerns as most crucial to the
system, and realizing these concerns determines the modular structure of the design.
We call the result of these early design decisions the primary decomposition, or
primary modularization of the system. Models of this decomposition are called
primary models. Other concerns that are not used to determine this primary structure
may be equally important to meeting all the system goals. Realizing these additional
concerns often involves adding functionality that cross-cuts the primary
modularization. The way these concerns are realized can impact each other, and
sometimes the primary system functionality.

We can treat an additional system concern realization as an aspect that cross-
cuts functionality of the primary system modularization, then use composition
techniques to integrate it into a primary modularization model for the purpose of
analysis. We model these concern realizations as design aspect models, using the
UML [20] to specify the structures and behaviors that realize the concern. A
structural model identifies required entities and their relationships with each other,
and dynamic models define behavior. We have found that design aspect models assist
in separating concerns, while composing multiple models provides the necessary
integration of different pervasive concern realizations to allow architects to
experiment with different designs that realize a concern. Composition also allows
developers to create a complete system model if i t is needed for continued system
development.

We have developed design aspect models that specify abstract realizations of
security concerns such as authentication, access control, and auditing. These models
are abstract in that they do not specify any particular mechanisms to realize the
security concern. Some confl icts can be identified when abstract models are
composed with primary models. These kinds of confl icts are often the result of
conflicting relations between model classes or multipl icities between models. There
are more subtle conflicts that are not apparent at high levels of abstraction, such as
when a portion of a required behavior is compromised as the result of model
composition. These kinds of conflicts may not be apparent until more detailed aspect
models are available. In addition, system designers must be pragmatic during design,
and they must choose a particular mechanism to realize a security concern. For
example, access control can be realized using mechanisms such as mandatory access
control (MAC), role-based access control (RBAC0, RAC1, etc.), or discretionary
access control (DAC). Each mechanism realizes access control in a different way,
with different effects on the system. Some may cause conflicts with other design
concerns in the system, while others may not. Therefore developers need to be able to
experiment with different mechanisms and analyze their impact on an overall system
design. When different mechanism models are composed with a primary model,
developers are able to analyze various design choices and choose the mechanisms that
cause the fewest composition conflicts, or those that are simplest to resolve.

We can use abstract aspect models to create different detailed mechanism
models for comparison purposes. Each model can be composed with the primary
model, and then be analyzed in order to determine which mechanism best meets the
overall system goals. It is important to note that although mechanism models are
more specific than an abstract model, mechanism models are sti ll abstract in the sense
that they are platform independent. No particular implementations are reflected in the
models.

We demonstrate our method using an abstract authentication aspect model to
create a mechanism model. The abstract authentication model is used to create a
mechanism model that uses a shared-secret mechanism to provide two-way
authentication between two entities in a system. The mechanism is Secure Remote
Password (SRP). (See [21] for details of the SRP mechanism.) Two-way
authentication means that both entities in a communication authenticate each other.
We have successfully composed these models with primary system models. However,
the composition step and results are very similar to our previous composition results
(e.g. [6,7]) and are not repeated in this paper.

The rest of the paper is structured as follows. Section 2 describes design
aspect models in the AOM method and presents the abstract model of two-way
authentication. Section 3 presents the refined model that specifies the Secure Remote
Password (SRP) authentication mechanism. Related research is discussed in Section
4, and conclusions and future work are presented in Section 5.

2. Abstract Design Aspect Models

We define design aspect models in terms of structures of roles called Role
Models. We developed Role Models initially to specify behavioral and structural
properties captured by design patterns [5]. Our treatment of aspect models as patterns
allows us to use a template form of Role Models to represent design aspect model
elements. The template form of Role Models was developed to facil itate tool-
supported composition of design aspect models and primary models.

A Role Model defines a pattern of UML model structures. It is a structure of
roles, where a role defines properties that must be satisfied by conforming UML
model elements. A UML model is said to conform to (or realize) a Role Model if (1)
all of its model elements conform to the roles in the Role Model and (2) the structure
of the UML model is consistent with the structure characterized by the Role Model.

The roles in our aspect models specify the properties that are to be
incorporated into user designated points of a primary model. Each role can be
considered a potential integration point with the primary model. Thus, each design
aspect model specifies its own integration model, which allows considerable
flexibil ity and reuse in aspect model definitions. The specific integration points with
a primary model are not specified as part of a generic aspect model. Instead, before

model composition occurs, the modeler must indicate which primary model elements
are intended to “play” the roles specified in the aspect model by creating a context-
specific aspect model. These model elements become the integration points between
the aspect model and the primary model.

We are able to accomplish two goals by describing aspects as patterns
containing templates. First, we are able to create composed models that correctly
incorporate aspects by construction. This is due to the fact that composition is
essentially a model transformation process in which a non-conforming primary model
is transformed to a conforming model. Second, the use of templates allows us to
make simplifying decisions in our prototype tool. We can simply “stamp out”
portions of an aspect that are missing in the primary model.

Abstract aspect models of two-way authentication are shown in Figure 1 and
Figure 2. Figure 1 presents a static model of this aspect, while Figure 2 presents the
dynamic behavior associated with authenticating an entity.

Figure 1. Static model of an abstract authentication aspect.

Figure 1 shows a static model of an abstract authentication aspect. Unlike the
authentication aspect presented in our previous papers [6,7], this authentication aspect
shows two-way authentication, which is often used in peer-to-peer distributed
systems. Two-way authentication allows both peers to authenticate each other before
a communication link is established. If either party fails the authentication, the
communication link is not established. Authentication is based on some information
that is generated (or perhaps just stored) in an initiator, and is then passed to a target
for verification. The target in turn also generates some information that is passed to
the initiator for verification. The information can be something that each entity
shares, such as a secret password, or it can be an identification certificate, or some
other information.

Figure 1 shows the use of a | preceding a name to indicate the presence of a
role in the aspect model. Roles are played by existing entities in a primary model, or
are created during composition with a primary model if no entity previously exists
that to play the role. OCL constraints are used to place bounds on the acceptable
values of association multipl icities. If no constraints are given for a multipl icity
variable, any value is acceptable. Multiplicity role values are substituted with values
that meet the OCL constraints as part of the composition with the primary model.

Figure 2 shows the associated behavioral diagram for performing two-way
authentication.

Figure 2. Dynamic behavior model of the abstract authentication aspect.

Figure 2 shows one dynamic behavior of the abstract aspect shown in Figure
1. The model shown is a portion of a UML 1.4 collaboration diagram, with numbered
messages indicating the behavior flow. Note that in this diagram, although the
initiator begins the authentication process, the target sends its own authentication
information back before beginning the verification of the initiator. Verification then
proceeds concurrently in the target and initiator. The role |n is substituted with the
message number that needs to begin the authentication process during composition
with a primary model. Composition then involves some re-numbering of other
messages in the primary model to properly position the entire authentication
sequence. (See [7] for a discussion of dynamic model composition in the AOM
method.)

3. Creating Mechanism Models

Abstract aspect models such as those shown in Figures 1 and 2 can be
composed with a primary model for analysis purposes. When multiple aspect models
are composed with a primary model, gross composition conflicts can be identified.
For example, in a previous paper [6], we demonstrated how the composition of an
auditing aspect with a primary model, fol lowed by a one-way authentication aspect
composition led to a conflict. In this case, the authentication methods would not be
audited, unless the auditing aspect was reapplied. Other conflicts that can be detected
from very abstract aspects have to do with association multipl icities. An example of
this kind of conflict is when a single repository in a primary model is replaced with a
set of repositories during composition with a fault tolerant aspect using replicated
repositories. The resulting confl ict is the multipl icity of the one repository in the
primary model versus multiple repositories in the aspect model. Since the entire
reason for using replicated repositories is so that more than one repository can be used
in the event of failure, the conflict must be resolved in favor of the aspect model

multiplicity. These types of conflicts are examples of cases where a property in one
aspect contradicts a property in another aspect or the primary model.

Conflicts can also result from interference between aspect behaviors. Such
compromised behavior occurs when a behavior required by an aspect cannot be
performed as specified because some of its sub-behaviors have been modified (or
deleted) as a result of merging behaviors with other aspects or the primary model. For
example, an aspect may introduce a relationship between two entities that is
prohibited by another aspect, or an operation introduced by an aspect may result in
behavior that violates requirements previously satisfied by the original operation.

In order to identify these latter kinds of composition conflicts, more detailed
mechanism aspects are needed. Abstract aspect models can be used to create these
mechanism models. When a more detailed design is composed with a primary model,
either conflicts that appear at lower levels of abstraction can be identified, or there is
more evidence that conflicts wil l not be present as a result of choosing a particular
mechanism to realize a concern. In addition, abstract aspects that can be realized
using several different mechanisms can be used to create different mechanism
models. When different mechanism models are composed with a primary model,
developers are able to analyze various design choices and choose the mechanisms that
cause the fewest composition conflicts, or those that are simplest to resolve. This
paper describes mechanism models for authentication. Like access control,
authentication can be realized using several different mechanisms. Examples are
mechanisms that use something the entity knows (e.g. a password, or some other
shared secret), mechanisms that use some characteristic of the entity (e.g. fingerprint
or retinal prints of a user), or mechanisms that use something the entity has (e.g. a
security card). Mechanisms that use something the entity knows include password
and certificate mechanisms. Of these, password mechanisms are generally less
complex than certificate mechanisms due to the additional setup needed for
certificates (in particular, a trusted certificate authority that is needed to create
certificates and distribute them to all entities that request a certificate).

We have created detailed aspect models for two authentication mechanisms
to use in composition conflict analysis.1 The mechanisms are Secure Remote
Password (SRP) which is a shared secret based authentication mechanism, and Secure
Sockets Layer (SSL) which is a certificate-based authentication mechanism. (SSL
actually contains multiple security mechanisms, only one of which is authentication;
SSL is not discussed further in this paper.) An example of a portion of the static
structure of the SRP mechanism is shown in Figure 3.

1 Aspect models were created from design descriptions developed with Julio, Garcia, Agilent

Laboratories when one of the authors was at Agilent Laboratories.

Figure 3. Two-way authentication aspect static diagram for the SRP
mechanism.

The diagram in Figure 3 shows a portion of the SRP static structure diagram.
There is a set up portion of the SRP mechanism that is not shown. This setup consists
of a string generator that takes the client’s password and user name, and creates a
verifier string that is used by the server during the authentication process. The
classes and methods involved in this setup are not shown in Figure 3.

A conceptual explanation of the method used to create the SRP mechanism
model is as follows. First, the initiator and target in Figure 1 corresponds to the
client and server in Figure 3, respectively. Similarly, the infoI and infoT classes in
Figure 1 correspond to the SRPCLientInfo and SRPServerInfo classes in Figure 3,
respectively.

Method correspondence is more complex. The TargVerifyInfo method in
Figure 1 corresponds to the beginAuth method of the server class in Figure 3. There
is no direct correspondence between the InitVerifyInfo method of Figure 1 and any
method in Figure 3. This is because the function of the InitVerifyInfo method is
simply to use the equivalent of the InitCheckInfo method directly. However, the
InitCheckInfo method in Figure 1 corresponds to ClientCheckOne and
ClientCheckTwo in Figure 3. This is because in the SRP protocol, there are actually
two checks that occur on data transferred from the server. Similarly, there are two
checks performed in the server for data transferred from the client, so TargCheckInfo
in Figure 1 corresponds to ServerCheckOne and ServerCheckTwo in Figure 3.
(Additional data transfer and calculations occur between these two checks in both the
client and the server in the actual SRP protocol.) The genInitInfo and genTargInfo
methods in Figure 1 correspond to the calcExpC and calcExpS methods in Figure 3,
respectively. The other methods shown in Figure 3 are further refinements of the

methods previously discussed. A refinement has been developed for the SRP
authentication protocol, based on the abstract behavioral diagram shown in Figure 2.
It is not included in this paper due to space considerations.

Once detailed models are created for different aspect mechanisms, the
composition process can identify additional confl icts, or provide more assurance that
conflicts do not exist between composed aspect and primary models. Composing
different mechanism models thus gives developers the data needed to make design
decision tradeoffs. (We do not discuss composition further in this paper since it is
described in our other papers.)

4. Related Research

Model-Based Development (MBD), sometimes referred to as Model-Driven
Development (MDD, see [2]) is concerned with using models as the primary artifacts
of software development, and is supported by techniques for rigorously analyzing
models and for generating production-strength implementations from models. MBD
methods raise the level of abstraction at which developers compose and implement
systems. Examples of MBD approaches are (1) the Model Driven Architecture
(MDA) initiative of the Object Management Group (OMG) that emphasizes the use of
the Unified Modeling Language, model transformations, and code generation (see
http://www.omg.org/mda); and (2) Model-Integrated Computing (MIC) for embedded
systems that emphasizes rigorous analyses of models and code generation (see
http://www.isis.vanderbilt.edu/research/research.html). Our AOM method directly
enables these model-based approaches since it is based on standard modeling
techniques.

Aspect-Oriented Development (AOD) supports the separation of concerns
principle that has proven to be effective at tackling complexity [8]. AOD methods
allow developers to represent pervasive design and implementation concerns as
aspects. In an AOD approach, a design consists of (1) a primary design or
implementation artifact (e.g., a UML model or code) in which the pervasive concerns
are not included, (2) a set of aspects, each representing a pervasive design concern
that impacts the elements of the primary design artifact, and (3) a weaving mechanism
that composes aspects with the primary artifact to obtain a view of the design that
details how the structures and behaviors modeled in the primary artifact are impacted
by the aspects. Examples of AOD approaches are aspect-oriented programming (e.g.,
see [1, 10, 11, 13, 14, 17, 18]) in which the primary design artifacts are code, and
aspects are concerns that cross-cut code modules, and subject-oriented design (e.g.
see [3, 4, 9, 19]) in which aspects are design realizations of requirements, and a
design is created by composing aspects. Our AOM method is related in that it
addresses design realizations of important system concerns. The AOM method
differs in that we concentrate on system concerns other than those involved in the
primary system modularization. We also concentrate our efforts on using aspect
models to support design analysis and trade-off analysis among competing system
concerns. Part of this support includes developing more detailed mechanism models,

such as those described in this paper, to discover potential conflicts at lower levels of
abstraction and to provide a basis for mechanism comparison. This is on-going work
in our research.

Fiadeiro et al. [4] specify secondary system characteristics related to system
coordination using an algebraic approach. Their approach is applicable to detailed
design and code, and utilizes a notation that is not widely known by system
developers. Gray et al. [9] use aspects to represent secondary system characteristics in
domain-specific models. Their research is part of the MIC initiative that targets
embedded software systems specifically. Model-Integrated Computing (MIC) extends
the scope and usage of models such that they form the backbone of a development
process for building embedded software systems. Requirements, architecture, and the
environment of a system are captured in the form of formal high-level models that
allow the representation of concerns. Suzuki et al. [19] extend the UML so that it can
be used to model code level aspects. Their approach is restricted to secondary system
characteristics that can be represented as aspects in an aspect-oriented program. Our
approach differs since we do not require aspect-oriented programming techniques.

The subject-oriented design approach proposed by Clarke et al. is a UML-
based approach that is closest to the AOM method [3]. In the subject-oriented
modeling approach a design is created for each system requirement. The design for a
system requirement is referred to as a subject. A comprehensive design is obtained by
composing subjects. In the subject-oriented approach aspects are subjects expressed
as UML model views, and composition involves merging the views provided by the
subjects. Merging is restricted to adding and overriding named elements in a model.
Merging of constraints is not supported, nor is there support for deleting elements
from models (except the implicit deletion that occurs when an element is overridden).
Conflict resolution mechanisms are limited to defining precedence and override
relationships between conflicting elements. In prior work [6, 7] we have shown how
secondary system characteristics can be modeled as design aspects, expressed as
structural and behavioral patterns specifications, and woven into designs expressed in
the UML. We have also demonstrated some conflicts that can occur during
composition, and directives that can be used to resolve them.

As part of the Early Aspects initiative, Moreira, Araujo, and Rashid have
targeted multi-dimensional separation beginning early in the software cycle [15, 16].
Their work supports modularization of broadly scoped properties at the requirements
level to establish early trade-offs, provide decision support and promote traceabil ity to
artifacts at later development stages. Our AOM method compliments this work by
supporting aspect modeling, composition, and analysis of successively more detailed
levels of abstraction needed during system design. To our knowledge, our work is
unique in this respect.

5. Conclusions and Future Work

Aspect-oriented modeling provides a straightforward way to approach the
design of complex distributed systems that must include multiple competing critical
systems concerns such as security and dependabil ity. AOM allows architects to
address these concerns separately, and then compose them with primary
modularization models and analyze the resulting models. The AOM method allows
architects to experiment with different mechanisms to effect realizations of these
concerns in order to choose the mechanisms that best meet overall system goals. This
is particularly an issue when there are many different mechanisms to realize a
particular concern, for example authentication or access control concerns.

We have demonstrated that it is possible to create more specific mechanism
models for such experimentation from abstract aspect models, such as a shared secret
mechanism like SRP. These mechanism models can be composed with primary
system models using the same AOM methods as are used to compose abstract models
with primary models (see [6, 7]). Composition allows architects to analyze a
complete system model and make tradeoff decisions between various mechanisms.
This capability also increases the practicality of using aspect-oriented modeling
techniques during the design of complex critical systems with multiple competing
additional concerns, since industrial software development is often constrained by the
used of specific security and dependabili ty mechanisms provided by COTS
middleware.

Continued work in this area includes developing a formal model of
refinement in order to automate this critical design step to the extent that automation
is possible and practical. We are also in the process of developing additional
mechanism models for security and dependabil ity concerns (e.g. access control) and
demonstrating their evolution from more abstract aspect models. In addition, we are
working on algorithms to demonstrate refinement of behavioral models. These
algorithms will be included in the prototype tool we are developing (see [12]).

From a notational point of view, the UML has been adequate to model
abstract aspects. However more detailed mechanism models present some modeling
challenges. For example, the calcExpS and calcExpC methods shown in Figure 3 use
a random number generator (random(), exponents (* *), and a mod function (%).
Conventions must be used to model these concepts so that they are not confused with
other OCL concepts (e.g. an exponential function expressed using ̂being confused
with the OCL method call notation expressed using)̂. Another notational issue
involves using UML 2.0 sequence diagrams rather than UML 1.4 collaboration
diagrams to specify dynamic aspect behavior. We are now investigating this issue,
particularly the impact of the new sequence diagrams on our composition algorithms.

6. References

[1] Bergmans, L. and M. Aksit, M., “Composing multiple concerns using composition filters",
Communications of the ACM, vol 44, no 10, Oct 2001

[2] Booch, G., “Growing the UML” , Software and System Modeling Journal, Vol 1, no 2, Feb
2003

[3] Clarke, S., Harrison, W., Ossher, H., and Tarr, P., “Separating concerns throughout the
development lifecycle” , Proceedings of the 3rd ECOOP Aspect-Oriented Programming
Workshop, June, Lisbon, Portugal, 1999

[4] Fiadeiro, J. L. and Lopes, A., “Algebraic semantics of co-ordination or what is it in a
signature?", Proceedings of the 7th International Conference on Algebraic Methodology and
Software Technology (AMAST'98), Amazonia, Brasil, Lecture Notes in Computer Science,
vol 1548, pp 293-307, A. Haeberer , ed, Springer-Verlag, Jan 1999

[5] France, R. B., Kim, D. K., Song, E., and Ghosh, S., “Using Roles to Characterize Model
Families", in Practical Foundations of Business and System Specifications, Haim Kilov, ed.,
Kluwer Academic Publishers, 2002

[6] Georg, Geri, France, Robert, and Ray, Indrakshi, “Designing High Integrity Systems using
Aspects", Proceedings of the Fifth IFIP TC-11 WG 11.5 Working Conference

on Integrity and Internal Control in Information Systems (IICIS 2002), Bonn, Germany, Nov
2002

[7] Georg, G., Ray, I., and France, R., “Using Aspects to Design a Secure System",
Proceedings of the Interational Conference on Engineering Complex Computing Systems
(ICECCS 2002), ACM Press, Greenbelt, MD, Dec 2002

[8] Ghezzi, C., Jazayeri, M., and Mandrioli, D., Fundamentals of Software Engineering,
Prentice Hall, 1991

[9] Gray, J., Bapty, T., Neema, S., and Tuck, J., “Handling crosscutting constraints in domain-
specific modeling” , Communications of the ACM, vol 44, no 10, pp 87-93, Oct 2002

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G., “An
Overview of AspectJ” , Proceedings of the European Conference on Object-Oriented
Programming (ECOOP '01), pp 327-353, Budapest, Hungary, June, 2001

[11] Kieberherr, K., Orleans, D., and Ovlinger J., “Aspect-oriented programming with adaptive
methods” , Communications of the ACM, vol 44, num 10, pp 39-41, Oct 2001

[12] Mekerke, F., Georg, G., France, R., Alexander, R., “Tool Support for Aspect-Oriented
Design", Advances in Object-Oriented Information Systems: OOIS2002 Workshops,

[13] Ossher, H. and Tarr, P., “Using multidimensional separation of concerns to (re)shape
evolving software” , Communications of the ACM, vol 44, num 10, p 43-50, Oct, 2001

[14] Pace, J. A. D. and Campo, M. R., “Analyzing the Role of Aspects in Software Design” ,
Communications of the ACM, vol 44, no 10, pp 66-73, Oct 2001

[15] Rashid, A. and Chitchyan, R., “Persistence as an Aspect” , 2nd International Conference
on Aspect-Oriented Software Development, ACM, pp 120-129, Boston, Mar 2003

[16] Rashid, A., Moreira, A., and Araujo, J., “Modularization and Composition of Aspectual
Requirements” , 2nd International Conference on Aspect-Oriented Software Development,
ACM, pp 11-20, Boston, Mar 2003

[17] Silva, A. R., “Separation and composition of overlapping and interacting concerns” ,
OOPSLA '99 First Workshop on Multi-Dimensional separation of Concerns in Object-
Oriented Systems, Denver, Colorado, Nov 1999

[18] Sullivan, G. T., “Aspect-oriented programming using reflection and metaobject protocols” ,
Communications of the ACM, vol 44, num 10, pp 95-97, Oct 2001

[19] Suzuki, J. and Yamamoto, Y., “Extending UML with Aspects: Aspect Support in the
Design Phase” , Proceedings of the 3rd ECOOP Aspect-Oriented Programming Workshop,
Lisbon, Portugal, June 1999

[20] The Object Management Group, “The Unified Modeling Language", OMG, formal/2001-
09-67, version 1.4, 2001

[21] Wu, T., “The secure remote password protocol” , Proceedings of the 1998 Internet Society
Symposium on Network and Distributed Systems Security, pp 97-111, San Diego, CA, March
1998

��������� 	
� ������ ������� 	���������

����� ������ 	�
 �	��� ������	��

��������� 	
���
���� ��������� �� ����� �
�������� ��� ���� ���
���
��� ���� �����!"����
#��"�$

��������� %�� &
 �� �
"��� �'	 ���� ����
��� ��� �(�)����������
�� #����#
� ������ �� ��)�*��
 ����
� ������ ��)���������� ��� ������
����$ ��� ��� +� �,����� ��*������ ��)���#��� �(����(����	
�����
-�.����� �')�
��
�� �
 #���
�� ������
���� �� �(� �
�� �����
�������� &(�#(�
 �� �
 ��� �� #����
)�#���� /�#()�
��
�� �
 ��
�
�� �� �(� �
�� �'	 ��)��� �� �
"�� ����)�.����� ��)��� ������������
0���&������1� � ���������
���� �� �(� #������) ������
���� ��)�
��
��
��
 ����	
����� 2����#�� �� �(�� ��
 ������ �� 0������
���� #������1
&(�#(���)� �� �� ����
����)� � ���*#
���� �� ��� ���
 ���������
���� ��
#������) ������
����� ��
��� &�������� #��������# ���&��� �(� ��)����
�(� �(��� �� #��������#
�) ���*#
����� ��� ���&����� ���#�*#
���� ��
&���3)�������) ��� ����
� ���(�)�� 2� �����
�� ��#(���*#
���� ���(3
�)�
�� �
�
��������) �
 ������ �� ��*������ ������ (�& �� #���
��
������
���� #������$�
�)
 ������ �� #��������)��#� ����
���� �(� ��3
����
���� ���&��� ���#�*#
�����$� 2� �
���#��
�� �� 4
�� �� �(��� #
� ��
�,������) ���
#��#
���
�)
 �
���� �� ��*������ ���
����� (
�� ����
)�������) �������) �)�.����� ����� �� ���&����� ���#�*#
�����
�(�� �
��� #����)���
 ������ �� ��
�� �'	 ��)���� �(��� ���������
0�������1)�
��
���
�) (�& �(��� &���) ���
�� �� �(� ���*#
����� ��
����
���
����� �� �(� ������
�)�
��
��� 2� �(�� &
�)����
��� ����������
���
 ����
�)���������� ������ �� �'	 �������

� ����������� 	�
������ ��������

��� ��� �� �� ��� �� ���
���������� �� ������	� ����� �� ������� ��	� 	�
�����	�

����� �� ����	���� � ����	��� �������� ��� ��� ��������� 	 	
����� �	� ��� ���� 	���� �� ��� ���������	���� �� ���� ������
����������
��	� ��� 	�������� � �����	�� ����	� ���������	���� ����	� �����
�
!" ��
��� �����
� 	� ������� �� �	�� ��� ��� �	��
 ���������	�����

#� ��� 	����� �� 	 ����	� ���������	����� ����� 	�� 	 ������ �� ��	��	���
$������ ��	� ��� ����� 	� 	���� 	 ��� ����%�	����� ��� ����� 	�� ���
	����	���� &��� $������ 	�� ����
 ����� ���� �������
�������� ��� ����
	�� ��������	��
� #� ������ ���� 	�� � ������ ���	��
 ��	� 	� 	���� �� ��� ��
���� $������ ���� 	�� �� ��� �� �����

����������� #� �� �	�� �	
� ��� �'��� �� ������� 	 ��� ��
��� ������ ������
�� 	���� ������� ��� �����	�� �	� �� 	���	��� ����� ��	� ��� ����%�	���� 	�

��� �����	� �	���(#� ����� ���
� ����� 	 ��� ��
�� � � 	�
 	 �����	�
� �
�� � ������� �� �(��� � ����� ��� 	 ��	
 � �� "�

���	
	����� &�� �	����
�	��	� �� ���
������ ���� ����
�'�����
	����� ��� ���� 	�� ��� �������� ��������	��)� �� �	� 	� �������� ����
�� �	��
�	��	� �� ����� � ��������� ����� ������	���� ����� �����	���
��	� �	���� �� 	��%�
� ��� �
����� ��� ��������� �� ���
���������
��� � � � ��� 	 ��	���� ��� � � � ���"�

������ � ����	
	����� ��� ���� ����� ���	 ��	
����	��� ��	�����	��
��	 �� ���	�� ��

��	���� �����" *��� �� � ��	
 � ���" � ��	
 � ���"

��������� #�	���� �� �	�� ������� 	 %�� ��� ����%�	����� 	�
 ���	���

	�������� ���� 	�� �	���� �������
 ��	� �� ��������� ��+��� 	�� ����� ��$����,
����� ��������	����� ��
�� ��� $����
������ ��� ����- ������� ��

��	�� . �� ����
 ���� �� ��	��� ��� ���
��������� �� ��+��� ��� �/��	

��	��� 0	� ��
�������� ������� ��� ��������
��������� ��	� 	�� ���	,
���� �� ��� ������	� ��$�������� ������� ������
 ������	����(#���� � ���
����
 ����%�	���� �� 	 ������� ��%������ �� ���
�����
 ��
 �����"(

������ � ���������� ��� ���� ����� ���	 ��	
����	��� ���	���	�
��	 �� ���	�� ��

��
 �����" *��� �� � ��	
 � ���"� ��	
 � ���"

������ � ����	
	����� ��� ���� ����� ���	 ���	���	�� ��	�����	��
��	 �� ���	�� ��

��	���� �����" *��� ��� � ��
 �����" � ��
 �����"

���� �� �� �	�� 	 ������ �� 1���������	���� ����%�	����2 �� ���� �����
����%�	���� ����� ��������
 ���,��,��� �� 	���	� ���������	���� �	��
��� ������� � ��""� ���� �������	��� 	�� ������ ���� ��%������3

������ � ������������ ��� ������ ���	 ���	���	� �	� �������	�
�����	 �����������	�� ��	
����	�� ��	 �� ���	�� ��

��	
 � �� " *��� �� � � ��
 � ��� " � ������� � ���"

������
�	 �	��� ��� $������ � ������� �� ��	��	��� ��	� ��� �	����� ����
4��������� � � � �� ����� 	� ��	� ��� 	�����	��� ������ �� 	 ���
�����,
���� � 	��� ��� �
����� ��� �� �� 	�� �� ���� 	 ������ � "�

������ � ���������� ��� ���� ����� ���	 � ����������� ����	�����
���	���	� ��	 �� ���	�� ��

��
 �����" *��� ������ ��" ������� ��"

�� ����� ���� ������������	 �� �������	���� �	�����	� ���� ������ ��" �* ��

������ � ����	
	����� ��� ���� ����� ���	 � ����������� ����	�����
��	�����	�� ��	 �� ���	�� ��

��	���� �����" *��� ������ ��" ������� ��" �* �

5�������� ��	���� � 1��� ����2 ���� �� �	�� �������	��� 	�� �������	��
�����	� 	 ��
��" �� ��%������ ��
�� 	��
�%��
 	 ��� �� �� 	��
������ ��%������"�

&�� ������� �����
� �/������ ���������� ���
�%���� ��� �� ��� ������ ��
���� �� ��� �����6 �� �	������	��
�%���� ���	���	� � 	 ����� �	� ��� 	 ����
��� ����	��	�����

&�� ������ ���������
 ����� ����+� �����
 	� �� 789� � ������
 �� ��� �	�����
���� �� ��������� ��������� 7:� ;9� #� ��	� ����� 	������ ����� ������ � ��	�
�� 	 �	�������	�

��
����
�� <���� ��� ����%�	����� ��� ����� ���	�� 	 ����� ����%�	����
��	� ����	�� �/	����" ��� ������	���� ����	���
 �� ����� &��� �� �	��
 �����! �	�������	� � ��� �
����� ��� ���%�	���� �� �� 	�
 �� 	

�� � ��

��	� ���%�	���� �	� �� ��	�	������
 �� ���� �� �	�� �� ��� �����
���
������3

��	
 � ��� � ��" 	 ��	
 � ���" � ��	
 � ���"
��	���� �����"	 ��	���� �� � ��"
��
 ����� � ��" 	 ��
 �����" � ��
 �����"
������ �� � ��" * ������ ��" ������� ��"

&�� ����
 �$�	���� ���
 ��� 	�� ���%�	����6 ��� %�� 	�
 ����
 ������
������	���� ��� ���%�	���� ����� 	�� ��� 1��	�2� &�� �	� �$�	���� ���

�� �� ��	����
 �� 	� �������� �� ��� ��	�� �� ������ � ��� ����
 ��
��
������������
���%�	���� 	�� ��� ����� �� ���� �	� �� ���������
 ���	����	���6 ��
�,
���
 �� ��� ��������� �� ��� ����%�	���� �	���	�� ������� ��� � �������
#� ��� �	�� �	�
 �	���	�� = ��� � ��
��
 ������ 7>96 �� ����� 	�����	�
�����	��� ��� ����� ���������� � ��� �� ���%�	���� 7?;9�

#� ��� ��/� ������ �� ���� 	���� ��� ��������� 	�
 ���%�	���� 	��� ��
��������� �����	�� ��� ��� ���� 	�

��� ��� �� ��� 	����	��� �	���
�� ��� �����	�����

� ��������� ��� ��������� ��
 ���

&�� ��� ������� �������� ���	���� ���� 	 ����� ��
������ �	���	��� &��
���� ��
����� ��� ����������� �� 	���� 	�������	�� ���	���� ���
�'����� 	,
���� �� ��� ����6 �������� ��� �	���� ��� ���	���� 	�� ��� ��������	�

��
������ �� ����� � 	 ����$������ ��� �	 	 ��	�����	�� ���3
�'�����

�	��	� �	� ��� �����	
������ �����	��� �� ��� ������� �� ���
������

����� &�� � �� 	

����� �� �������	� ��������� ��$�������� �� ������3
����,�����
�� ���
�����" �� ��� ��
��� ����� �	� �� ���������
 	 50�
�����	��� �� ��� ��� ���	,��
�� 7@>9�

��� 	����������	�
��������� �� ��� �� �	������	�� 	 ��"���	�� 7@A9 �����

�	 ���� ������
 7@@9� #� ��� 	 �����/�� ��������� � 	� ���� ���� ����	,
���� ��� 7@;9� B������� ��� ������� ��
���������� ��������� ������� ���
��� 1���������2 ��
�� � ��� ���
	����	���
�'����� ���� ��	� ��
�������,
��� ��������� ������ 	 ����� ��� ��
��� #� ������ �	�� ��� ����� �� 	��
����������� ���� �� 	 ���������� ��
�	��	� �� 50� �����	���� ����" ������
������� ����� ��� ��	��%	��� ���������� �� ��� ������� �� ��� ����� #�
	 1���������2 ���	����� ��� ��������� �����	� ��	� ���� 	��
�	��	� �� ���
	�� ����� ����� �	�� ��	��
�������� ��� 	�� ��	�

��� 	����	��� �� ��������� �������� ��� ��� ���� �� 	 ����	��	���� ��
	�� ���
�	��	� �� 	 ����� ��	���� ��	������� ����� �	� �� 0)C 7A� @?9�
	�����	�� ����%�	���� 7?9� 0)C,5= 7?:9� ���� ��� ��������� � ���� ��
���
 ��
��������� �� ��� ��
������� ��	�������)��� 	����	��� �� ��������� �����,
��� 	�� ���,�����������3 ���� �����
� �� ���
�	�� �� ���� �� #�$ ��
��	����
������� ��������� ���
 �� ���� &�� C�����	 �	�
 	����	�� �� ����� 7?D9�
����� ��
�� �������� � ��
 �� �����	�� 	 �������,�/	���� �� ���������� �
�����	��� ������������ 	 �� �����	�� ��� �$�����
�	��	��

#� 	 ����� ����������� 	����	�� �� ���������� ��� �/	���� ��� ��� ��� = 7>9�
��� ��
������� ��	���� ��
�� ���	�� ��

��� #����������� 	�� ��� �������

�� ���� �� ��� ����%�	���� ��������� ��������� 	�� ��� ����� �� 	 �������
��������� ����� � ���������
 	 	 ����%�	����� ����� � �	���
 ��� �	�������	�
���%�	���� �	� 	�� �� ��
 	 ��� �	� ��� ���������	� ��������� �������� ��
	 � ? ����%�	�����)�� 7:� ;9 ��� 	 ����
������ �� ��������� �������� �	�

�� ���%�	�����

#� ��� �	���� �� �/����� ��� ���������� ��� ����������� ��������� �����,
��� �� ���� &�� ���������� �� 	 �����
 ��� ��� ����
� ��������� ��$����
	 �������� ����	� ��	���� ��� ���� ����� � ��� ��� ������� 	� ��� ������
#���	
� �� ����
�� ��������� �	��� ���� �	���!" ����	��	���� �� ��� ��	�,
���� ���� ��	���� ��� ���,����������	�� 	�
 �/����� ������� ���� ���,
�	��	���� �	� ���	���	��� 	�	��� ��������� 1���%�	����2 �� ���� &��� ���,
%�	���� 	�� �� ��� 	�� ����� 	 ���� ��� 1�������2 �� 0	�	��� 7@D9� �������,
������ �� ���� �� = ��� ��� ����	��	���� �� ���� 	 ��� ����������� �����
 ���
= �	� ��	
 �� ���%�	���� ��	� �	� �	��
����� ��������	�� �� ���� #�
��
�
��� 	�� �� ��� ���� � ��� �� ��� 	
�$�	�� �� = 	 	� ��
������� ��	����
��	������ ��� ��� �� 7@E� @:9 	�
 �����"� ��� ���
����� �� ����� ���
����� �	� �	�� ����������� ���%�	�����

#� ��� ��/� ������ �� ������ ��� �	�� ��� ��
��� 	�
 ����
�� 	� ��,
������� ���%�	���� �� ����� &���� ��)������ > �� ��	��	�� ��� �/	���� ���� =�
	���� ��� = ���%�	���� ������$�� �� ��� ��	��	����� 	�
 ��	��	�� ��� ������
)������ ; ������ ��� ����������

� �������� 	�� �� !��"�� #����

#� ��� �/	����� �� ����
�� ��� ���� �� 	 +���� ������� ����� #� ���� �	��
��� ��� ��
�� ����� �� 	 ��	
�	��	� 	�
 	 �	��
�	��	��

#� ��� %�� ���������� �����	���� �	� �� �	
�� ��� ��� �	������
� ���������
��� +���� ����� � ��� ������ �� �	�����	����� &�� ��	 �������� �� ��� ��
��
 ������ @" ������� ����� ��	�3

� �������)
������ 	 �	�� ������� ����3 ���������� ��� ������� 	 ���
+����� ���� ��� ������ 	 +���� 	�
 ������ ��� �������� 	 �	� �� 	 +����6

� ������ ����	�� 	 �	�� 	�������� �� 	 +����3 ��� ������ �� ���� �	� �	�
������)�	�6

�)�	� �������� ��� 	 �	�� ������� �� � ������
 �� �����

Flight

+freeSeats : int

Seat

+reserved : Bool

BookingS

+openFlight() : Flight

+close(fl:Flight)

+reserve(fl:Flight)

0..*0..* 0..*0..*

�	
� �� ����� ���&������ #�
��)�
��
�

����	���� 	��
�%��
 ������� ��� ��	�3 �������� ���	��� �� ��)�	� 	��
	���	��
 ���� 	� ���	��� �� ������� 	�
 �������� +���� 	�� 	���	��
 ����
��� �������) ��	�

NoReservation Reservation-Open

Closed FullyBooked

reserve() [
freeSeats>1]

openFlight()

reserve()

close()
reserve() [

freeSeats=1]

close()

�	
� �� ����� ���&������ ��
�� #(
��

&�� �	��
�	��	� ������ ?" ����	�� ���� �	��� 	�	�� ���� ��� �����	� 	�

%�	� ���3 4�F����	���� ��������
��� �� ��� ���� �	�� ����
�	���� 	����
��� +���� �	 �����
"� F����	����5��� ��� �	�� ����� ��� +���� �	 �	�
�����
 	�
 ��� ������� ����� � ���� �������"� ����������
 ��� �	�� �����
	�� �	� 	�� �����
" 	�
 0���
 ��� �	� ������� ����� �	 �����
 . ���
�/	���� ��� ���� ������ �	�� �'"� 5����� ��	� 	 +���� �	� �� ����
 ���� ��
��� 	�� �	� 	�� ������
 ��� ��	������ ���� F�����
5��� �� 0���
"�

#� ��� ����
 ���������� +���� 	�
 �����	���� �	� �� �	������
�

Flight

+freeSeats : int

+reservedSeats : int

Seat

+reserved : Bool

BookingS

+openFlight() : Flight

+close(fl:Flight)

+reserve(fl:Flight)

+cancel(fl:Flight)

+cancelFlight(fl:Flight)

0..*0..* 0..*0..*

�	
� � /�#��) ���&������ #�
��)�
��
�

&�� ��	
�	��	� ������ :" �	 	 ���� ����	� �������� �� ��	� �� ��� %��
���������� &�� ���� �����
 �	�� ���� 	

�
 �� ��� ����)� ��	 �����,
���
��� �� �������)"3 �	���� ��� �	�������� 	 �	� �����	���� 	�
 �	����������
��� �	�������� 	 +����� ���� �	���� ��	� �����
��� ��� ��� ������ �� ���� �	��
�� 	�� �����
 ��� ������ �� ������
 �	�� &�� �	��
�	��	� ������ >"� ���,

NoReservation Reservation-Open

Closed

reserve [freeSeats>0]

openFlight()

reserve()

close()

cancel() [reservedSeats>1]

cancel() [reservedSeats=1]

cancel() [reservedSeats>1]

openFlight()

reserve()

cancel() [reservedSeats=1]

Cancelled

cancelFlight()cancelFlight()

reserve [freeSeats>0]

close()

�	
� �� /�#��) ���&������ ��
�� #(
��

�	��
 �� ��� ������� ���� �	 	� �/��	 �	�� ��� �	������
 +����� ���
�� ���

�
������ ����� �����
 +����� #� 	�� 	

 ��	������ ��������
��� �� �	�����	,
���� �� �	� �� ������ +�����

�� ��������� ���%�	���� �� ��� ��� ��������� ����� �� ��� ����
 ��	

�	��	� ������ :� ����� ����	�� ���� ������	���� ��	� ��� %��"� 	�
 	 �	��

�	��	� ������ ;" ����� �������� 	�� ��� �	�� 	�
 ��	������ 	�	��	��� ��
��� ������� ����

NoReservation Reservation-Open

Closed FullyBooked

reserve [freeSeats>1]

openFlight()

reserve()

close()

reserve [freeSeats=1]

close()

cancel() [reservedSeats>1]

cancel()

cancel() [reservedSeats=1]

cancel() [reservedSeats>1]

openFlight()

reserve()

cancel() [reservedSeats=1]

Cancelled

cancelFlight()

cancel()

close()

close()

cancelFlight()

reserve [freeSeats=1]

reserve [freeSeats>1]

�	
� �� ���*�) ��
�� #(
��

$ ���%������ �
�� &

B���� �� %�� ����	��� ��� ���
�	��	� �� =� G� ���� ��������	�� �� ���
���	����� �� 	� ��
���
�	� +����� &�� ��	��	���� � ����	� �� ����� �� ��	� ��
��	��� �� 	�� 7@E9� ����	����� ��� ���	����� �� 	� ��
���
�	� ������ �� =� #� ��
��
�� 	�� ��
�� 	�����	����� 	���	����� ������ ���	����� ����� ��� ����
 ������
���
 �� ���	�� 	 �	��� �� ������ ���	��� �� ��� �� ��� 	 �� 7@E9� �� ���� ��
	� ������,�������
 �	��	�� �� = ��� 	 5�����,= 7?>9� 5���� ����	��	���� ��
= �� ���� ��� 	 �� ��	� �� 	�� 7@:9� ��
�� ��� ������� ��� 	 �������
��	�� ����" 	 = ����	 ���� . ��	� ���
 �� ����	��	���� � �� ����� �����
	 �� 	�� ��� ��������
 �� ��%���� ��� ��	����� ��� ��� ��
���

����� ����	����� ��� ��
��� ��
����� 	 ���%�	���� �� ���� ����	��	�����
�������	����
���	��� ��������� ��� ��� ��%������ ���	���� 	 ���� 	���	��

��� �
�	� �
�� �
��

&�� ��	
�	��	� �� ��� %�� ��������� ������ @" ���� � �� �	 	� 	��������

�������� 3 �	� 6 	����
��� �� ��� �	��
�	��	� ������ ?"� �� �	� 	�� �� �� 	
������ �� �	��� G� 	������	�� ����� �	�� �� ��� = ����%�	�����

������� 33* %���� � ���&��	 � '��� � ������

� ����� 	�� �� ��	������ ��	
��� ���� ��� �����	� �	��� ��� �	�����
 ��	��,
���� ���� ��� %�	� �	��� �� �	� ���� ���� ��� ���� &�� ��	������ ��	
��� ���
�� ��� �����	� �	�� ��������
 �� ��� �����	��	�����

'������
�� 3 �������

�������� 3 �

�	���
�'������

� �

�
* %����

G���
���� ��� ����	��	���� 1�� �	�
2� �� � ���� �������� �� �����
���
�/��	 ������	���� ����� � ��� ������ �� ��� ��� ������ ���
��� ���� ���
1��
���	�
���2 �� ��� ��	�,���� ���	���� ���������
� B������� ��
� ���
�����
� 	�� �����	��� ��
�������� � �� �	�� 	 ���� � ������
 �� ���
�	��	��

5���	���� ��������
 �� ���
��������� �� ��� ��	������ �� ��� �	��

�	��	� ����� �	�� ��� 	�� �	����

�������
�'������

 �� * %���� � � �

�
* ���&��	"

 �� * ���&��	 �
�������� � @ � � �

�
* ���&��	"

 �� * ���&��	 �
�������� * @ � � �

�
* '���"

��	��� �� � �������� �� �����
� 	 ���
��	�� ����
�������� � *
�������� � @� �� ��
	���
�������� � � D ��� ��� �����	� �	��� ��� �� � ��� 	���	��� ������
�

������
�'������

�� * ���&��	
 �� * '���
� �

�
* ������

#� ��� ��	
�	��	�� 	�� 	�������� ����
���	��
 ������� &�� �	
����
�������� ���	�� ���
������ �� ��������� ����
 �� �������
 ����� 	 �	���
�	��� #� ��
�� �� ����� �������� ��� 	�������� ����� ������� �� ����
 ���

�� �����
� = ����	���� ����������� 	����� 	�
 ���	��� �� 	�� 	��������
	 �����

��� �����! �
�� �
��

&���� 	�� ���� �	�� �� ��� ����
 �	�� ��	�� ������ >"� ���� ��� �����	� 	�

%�	� �	�� ������
 ��� ��� 	�� ��	�� 	 	�����

������� 33* %��� � ��&��	 � ���� � ��	���

4��� ��	� �� ��
�'����� 	������	���� ��� ��� �	�� �	��� �� ��
�� ��
����,
���� ������� ��� ��� ����������

'������
�� 3 �������

���� ������� 3 �

�	���
�'������

� �

�
* %���

&�� ����	���� 	�� ���� 	�	��
��������� �� ��	������ ���� ��� 	�� �	����

�������
�'������

 �� * %��� � � �

�
* ��&��	"

 �� * ��&��	 �
��� � D � � �

�
* ��&��	"

��	���
�'������

�� * ��&��	
������� � @� � �

�
* ��&��	

������� * @� � �

�
* %���

��	���'�����
�'������

�� * %��� � � �

�
* ��	���

������
�'������

�� * ��&��	 � � �

�
* ����

��� ��
����
��

��� ��� �	��,	�
,����	���� ���� �� =� ��� ����� �� ���%�	���� �
������

��
��	�� �� 7>9� �	����� �	�� �� ����	� 	��
��	��� �� ������	�� ��� ����� ��
�/	�����

&�� 	���� ���%�	���� 	����/��	�� 	
���������� ���	���� ��� ��� ��
��� ��������� �	�� ���%�	���� �� = �
�%��
 �� ���� �� ���	���	� 3 �� � ���
1��	�2 ,�����������" ������ ��%������ �� ��� ����%�	����� � ����	���� ��
��%������ ���	���� �� = �/��� �� 7H9� ��	
��� �� �����
�'������ �� ��� ����
��� ���%�	����� I������ ��� �� ������3 �� ����
 ����� ��� �	�	����� ��� =
���%�	���� �� ��� ��� ����	��	���� �� ��� 	 �	� ��	� �� ��
 �� ���� 	 =
����	��	���� �� ��� �������
 �	��
�	��	� 	����� #� ��� �	�� �� ��	����

���	��� ��������� ��� ��� ��%������ ���	����� ����� �� ���� ��������� 	
���� 	���	�� &�� �� ����
�� �� �� ��� �	�� ������������ �� ��� �	����

����� "�
����
�� � �� ���� ���� ��� �	���� ��� �����	� ��� �� ��� ���%�	����
� ��� �
����%�	���� �� �� �	�� �	��� #� ��� �	�� �	�� �� ��� ��� ���� 	��
�
�����	�� ��� ��� �	� �� 	���
�
� B������� ��� ����	 '������ 	�
 '������

	��
�'������ #� ���� �� ��� ��$����
 ��%������ ���	����� ��� ������ ��	� ��
���
 ���� ���	���	� � �	���� ��	� ��� ������ ��������	 �� ����������� ��%��,
����� #� ����� ���
� �� ��%������ �� ����
 ��� ��� ������ ��
������%�	����
 ���,
���������" ���� ��� ����	����� ��� 	�� 	���� ��	��� �� ��� ������	�

��	�� �	�� 	�
 ���� �� ����	�� 	��������" �� ��� ��	��

��#"
������ �$ ��� ��%������ ���
 �� �����
� ���� ��%������� ��
	���� ��� ��

�� �	�� ���� 	���	����� ���� ������	�
��	���

#� ��
�� �� �������� ���%�	����� �� ���
 �� ��	���� ��� ���	������� �������
��� �	��	��� �� ��� ��� �	�� ����	� &�� ���� ��
��������
 �� 	 �������

����	� ����� �� �	�� 	 ��������	��	��� G�
�%�� ��� �� 	 ������ �� ����
�	����� ���� ��� ���,����������	� ���	���� ������� ��� �	���

�����
'������
'������

��� *
��������
�� * %���� 	 �� * %���
�� * ������ 	 �� * ����

4�/�� �� 	�� �	��
 ���� ��� ������� ��	� ��� ����
 ��������� �	 	 �	��	���
������� ��	�
�� ��� ����� �� ��� %�� ���������� G� ����� ��	��	��� 	���
��	�
���J������� ���	�� ����	�� �� ��� ����
 ����6 ��� � �	�� ��� ����	��
�������� � � �����	���� � ������ ���� ��� �����	� �	��� �� �	��� ����
 �� 	�
��	� @�

�������� 3 ��

&�� ��/� ��� � ���� ��� �	�� ��&��	� ���� ����� ������� �	� �� �	�
��� �����
�
����
��� �� ��� �	��� ��
���6 ���
�� ��� $���� �	��� ��� �	��
���&��	 ���� ����� ������� � 	��	�
�%��
� &�� � 	

���
 �� �	���� ��	�
��� �	�� ��&��	 � ���������
 �� ������ ���&��	 ���� ����� 	�� ���� �	�"
�� '��� ���� ����� 	�� ����"� &�� �������� ��� ��������
���� ���	�����3

����
�����

��� J ������� * ��������
�� * '��� 	 �� * ��&��	 �
��� � D
�� * ���&��	 	 �� * ��&��	 �
��� � D

4��� ��	� �� ����
 �	�� ����� �	�� ����� ��������
����� ��� ��� �������
��� �������� ��� ��������� 	���� ��� ����%�	����� �����
��� ��� ���������

� 2�#������ ��
 4 �#(��
5� �
�� ��
 ��& �#(��
 ������� ��#������ ��
�� ���)�#�
�
3
�����
�� ���)�#
����

��	� ���� 	�� 	���	��� ��������� ������ �� ��� ����	���	� ����� �� ����	�����
��� ���
�	��	�� �� �� ����	�� �� ����� ������
�� 	���� ��� ��������� ��
��� ����%�	���� 	� ��� �	��� #� �����	�� 	����	���" ���%�	���� �� ���������
�������� ��$���� �/������ ������� �� ������� ������� ����%�	���� ���� ����,
���	��
 ��	� �
����%�	���� �� �	��3 �
��������� ��&��	 	�
 ���&��	 ����

�	�� ��
 �� ���
�������� �� 	� ������������

���%
	��
�� � ��������
���� ���	���� ���� ���� ����� ���� 	 ��� �	�� �	��
��� ��� ���%�	���� 	���	
�� B������� �� ��� �	� �� ���� ��� �� �Æ�����3 �����
� �� ������� �� ��� �	�� ��	��� � ���� �������� 	 ���
 ��
����
��� ���
���
�� ��� ��� �	�� �	��� �� ���	����	�
	�	 �	� ����3 	 1����	,����2� G�	� �
��$����
 ��� ��� �������
 �	�� �	�� �� ��
�� �� ��	�	���� ��%������" � 	�
1����� ����2 ����� ����	�� ��������	���� �� ����� ������ �� ���� ���������
�	�� �	��6 ��� ����� 	�� ���� ��� 	 	 �����������	 �� ��� ��������
����
���	����� #� ��� �	�� ��� ����� ���� ����
 ���� ��	��� �� 	 1����2 �	��� ���
'������6 ���	�� ��� �	��	���
��� 	�
 ������� ��	� �� �K��� �� ��	��� � �� ������
	 ������ �$���	���� ����	 ����� ���� ������� � �/���
�
 ���� 	 ���� �	����

������� 33* %���� � ���&��	 � '��� � ������ � %���

&�� ���� �	�� ����	 ��� ��� ���%�	���� � ���� ���� ��� �	���
�%������ ��
�������"3

(����
����

�� * %��� 	 �� * ��	���

&!� ���
�� 5��� �� �	��
�%��
 	 ������ �	�� ����	� 	�� ��������� ��,
��	���� �	� �� 1	
	���
2 �� ����	�� �� ��� ������ �	��� &������	���� ��� �
	
	�	 ��%������ ����
���������� ��� ��	� ��%������ 7E9 ��� ��� �������� ���	,
���� ����� ������ ��� ��������� �	�� �	�� ���� ��� ������ ����)���	����	����
�� ������� ������ ���� ��	� 	 ��	��� �� ��� �	�� �	��� &�� %�� ���������-
����	���� ������

)��������
�(����

 �� * %���� � � �

�
* ���&��	"

 �� * ���&��	 �
�������� � @ � � �

�
* ���&��	"

 �� * ���&��	 �
�������� * @ � � �

�
* '���"

)�������
�(����

�� * ���&��	
 �� * '���
� �

�
* ������

����� 	

�����	� ��$�������� 	�� ��

�� �� �(���� . �� �	������	�� �	��	���
���� '������ 	�� �����	���
 �� ������� ��� ��������
����� &�� ����	���� ��
��� ����
 ��������� 	�� 	
	���
 	�	��������

' ����
�� "�
����
�� ���
	�	 ��%������ �	� �� �	�����
 ���� 	 1��	�2

	�	 ��%������ 	�
 	� ����	���� ��%������ . ����	���� 	
	��	���� �	�
��

��� ������� � �� �	� ������� ������� �� ����	���� ���%�	���� ���� &�� � 	
����,����� ������$��� %��
������
 ��� = �� �������� �� 	� 7@9� #� 0	�	����
�� � ��
 ��� 1�������2 ���L���,����%�	����� ��� 7@D9
�� ���
�	� ��� ����
���� ��%�������

&�� ����	���� &�� 	�
 &��
�%��
 �� ���� �� �� 	�� ��������� 	�
 �	�
��� �� ��������� ���%�
 7@� >9 ��������

���&�� � ���&�� � ��� &�� �&��"

����� �������� ���� 	�� ���� 	�����	���� 	 ����� �������� ���� ���� �/��� #�
��	� �	�� ����� ���%�	���� �

&�� �&��
��

���&��
 ���&��
���&�� � &��
���&�� � &��

&��
�%������ ����� ��� ���	���� ����� �� 	��� ��	� 	 ������
����� �����,
��� 	 1�����	��23 ������ ��� ����� 	��	� ��� ����	���� ����

������ ��� �����
������ 	�
 ����
� ��� 	��	� ��
� ��� �	��� &�� � ��� ������ 	������� ���
=6 �������� ��� ���	�����	� ���������	���� �� �	� 	�� ���� ��� ������
�����
	 	 1��	�
23 ����
� ��� ������
����� ��� ����	���� ����
 ��
�	���
� #� ���
���������	����� �� 	

�����	��� ��$���� ��	� ���&�� * ���&�� ��� ����������
����� ��	� ��	� ��� ���%�	���� ��
��� �� &���&��� ��� 	
��	���

������
�� 1��	�
2 �� 1�����	��2� �� 7H9�

&�� ������
����� �� ��� ��� 	
	���
 ������ ����	���� ������
�3 ������
����� 	�� �� �����	���� ���� �� �����	���� � ���� 	�
 ����� 	�� ���� ���� �	��
&�� �	���� ���
����� � ����
�
 �� ��� �	�� �� ��� %�� ����� 	�
 �� ��� �	��	���

��� �� ��� ����
 ����� &���� ������� 	�� 	�� ��������� 	�
 ��	
 ��

)�������� �)��������
�(����

 �� * %���� � � �

�
* ���&��	"

 �� * ���&��	 �
�������� � @ � � �

�
* ���&��	"

 �� * ���&��	 �
�������� * @ � � �

�
* '���"

����� 	�� ��� �'��� ��)�������� 	�� 	���	
� ������
 �� ��� ������	���� ��
)�������� 	�
 (���� ��

)������� 	�
)������� 	�� 	�� �$���	���� �� �	�� ������ 	�
 ��� 	�� ��
����� ���%�	�����

&�� %�� ��������� �	 �� ������� ����	����6 ��� ����
 �	 	�� ��	��� 	�

��	���'����� � ����	���� �� �	� ���	� ��� �� ��� ����	���� �����
�%��
 ���� 	
������
����� ��
���� �� ��� %�� ���������6 ��� ���%�	���� ����
 ���� �� ��	���
	�
 ��	���'����� � &�� �	�� ��	� �� ����
 ����� ��� ����	���� ����
�'�����
������
����� ��� ��	� ��
� ���
 �� �	�� ��� 1�����	��2 ���������	���� ��
������
������

��#"
������ �3 ��� ��%������ ����
 	���� ��
����� �� ������
�,
�����

� �� ����
 ��� 	���	���
�������� �� 	 �	��
�	��	� ������� 	� ����	����
��	� � ����� 	�����	��� 	���	���� 	 D 	���� �	�����
 ���� �� �	��"� 	�
 ���
��	�
�� ��� �/��� �� 	�� �	��3

��#"
������ �3 ��� ��%������ ����
 	���� �����
������ �� �/��	
����	�����

��� 	 ���
 �����
��� �� ��� ��$�������� �� 	� 55 �����/�� �� ��� 1�����	���
����2 �� ����� 	�
 G��� 7?@9�

���	���� ������ ��	� ��� ���%�
 = ����%�	���� � ��
��
 �$���	���� �� ���
��������� ����	��	���� �� ��� �	��
�	��	� �� �������
 �	����� ������ ;"�
&���� 	�� %�� �	��� ��������
��� �� ��� ���� �	�� �� ��� %�� ���� ���
��� ��	��� �	�� �� ��� ����
 ����� &�� ��&��	 �	�� �� ��� ����
 ���� �
���� ���� ��� �	���
����
��� �� �������
��� � D� &�� ���� ������	���� ��	�
��� ����	� ���%�	���� 	

� ����	��
 �� ������ ;� � ��	�
�������� * D �� �	��
����������
� #� � ��� �������� ��	� ��� ������	���� � 	���� ���� ���
��������� ��� ���%�	����� 	 �� �	 ����	�	��
 ���� ��� �	�� ���� ��� �����
��	 ��� ��������
���� ���	���� ����� �� ��	�����

����� ���%�	���� ����"�
��� ����
��	���
 ��
�� ���� 50� �����	��� ��������� ��� �'��� �� ���
����	���� �� ��� ����� �	��� ����� ����
 ��� �	�� ���� ����	� 1������2�
��� �� 	��� �� ��� ����� �	� ��
�� ��� ��� ���%�	���� � �������� ���� ���
= ���%�	���� ���� ��� ��������
���� ���	���� �	 ���� 	�������
 ����

' �����(��� �������

&�� �	�� �	� ��
� �	 ���	���	��
 	 ������ �� ��������� 	���� ��� �	����
�� ������ ��%������ ���	���� �� ���� #� ����� �	����� ���� ����
 �� ����	�
�� ��%������ ��� = 	�
 �� 	�
 IM�� �������	"� B������� �� 	����
	��� ����
��� 0	�	��� 	����	��� �� ������� ��	� 	 ���� �������	��
 �	� ��
� ����

�	�� �����
���
 	

�����	� ��$��������� ��	
��� �� 	 ���� �����	� ������ ��
��%�������

����� ��� ����	���� �� ����	���
 �	
 �� ����� �� ������� ��� ��	�����
	���	� �� 	���� ��� ����� 	�
 ������ �� �� ���
�
 ���� ���� 	�� ��� �����	��
. 	 	 ����$������ �� ����
 ���
 �� 	���� �	���
��� ���	���	� 7??9� ����� � 	
���
 �����	��	���� �� ����	� ��%������� �� 7H� 0�	���� @D9�

)����
�
����������� �� �����"	����� ��	� 	� ������	�� �K��� �� ���� &��
����
 �� 	

���
 �� �	���� ���%�	���� �	�
 �� 	 ������ �� �����	 ���	���	� �
����� � 	� ��
����
��� 	�
 ����	����� �����	��	���� 	 ���� 7H9�

0��	���� ��� �� ���������� ���%�	����� 	�
 ��%������ ����
 �	�� ����
	

���
 �� ��� �	� �� 	
�'����� ����	��	���� 	 ����� #� �	������	�� 	 0)C
����	��	���� 7A� @?9 ��� 	� ������ �	�
�
	��� B�������
�%���� ��� �������
��%������ ���	���� �� ��� 0)C �
� � ���,������� ��� �/	���� ���	�� ���
0)C ��%������ ���	����
� ��� 	���� ��
����� �� ��	�
� �� ���	�� ���%�	����
�� ����� 	�����	 	�� ������ �� �� �/������� ��	����	��� ��� ��� ���	����	���
7?;9�

)���
����

6� '� ����&���(� �� 7� ����#"�(
�"� 8� 9� 	� +
�����
�) 	� 9� :������ ;��&�����
���#�*#
����
�) 4� �����
����
�� �����
�� ��	�������� <=�6$�><?@6� �����
�
6AA>�

�� �� ������
��
�) :� B������ ��
������
�
�
����� �(� #��������# �������� ��
�(� �'	 ����
 #�
���#
�
�����
�# ���&������ 2� ��	��� ������ �� ������
�	 ������
������ ��	�������� ����	��� �
���� �� ��� !�� �����
����
� "��#���� "���$%&�
	�#���� ����� �� �������� /#���#�� /�������� �CC<� ��
���
��

<� ���� �����
�) 9� -����#"� 2�����
���� �� ���#�*#
����� �(����()����������
���
������ 2� 7� �(���� �9� ��D
����
�) �� ���
�� �)������ ��� &%%&� /-8/� �CC��
�,���)�) ������� ��
���
� �� 9����
� �� -�����
�) 8��#��� /#���#�� /��������
�CC<�

>� ���� ������ 9� -����#"� 7� �&�
��
�) '� /����� �������#���� #��������# #(�#"3
��� ��� �
���
� ���#�*#
���� �� 4� �	���	� �� '������� �����
������ <@�6$��A?�@�
/�������� 6AAA�

@� 7� �&�
�� '�+��� /����� ���� ������
�) 9� -����#"� � ����
� ��
��&��" ���
���&����� #��������#� (���
�)������ �� ������� ������� �6�666?6==� �CC��

=� 9� -
����
�) �� ���#(���� ���#�����#
�) ��*������ �� �(� ���*�) '�)������
	
���
��� (���
� ����	�� �� '��������� �CC<� /��#�
� ����� �� B��2��5C�� ��

���
��

�� 9� -����#"� -� �"�(�����
�) ���� ������ � ��
��&��" ��� �'	 #��������#� 2�
��E��
�E ��
�� F6AG� �
��� <C?>@�

H� 9� -����#"
�) ���� ������ �
�#��
���� ��&
�)
�))�&�&
�) �����
����� ��
��
��3�
��) ���#�*#
������ �����
����
�� �����
�� ��	�������� >6�A6�?A�<� 9��
6AAA�

A� 9� -����#"
�) ���� ������ ��������� �� *
�� +�,�	��*- (����
�����
��
���
�	�� �����	
������ ���2�� /������� ;���
�� '
 �CC6�

6C� -��� -5/��E

�) ���� +����� +�,�	��� '���������
�� (�
�����#� ���� .)/-
��� '
�
����� �����
	�� �))����3+����� 6AAH�

66� �� ���)
�) �� '�)��)���#�� �,���)���
�#(���#���
� ���������
���� �� �'	
&��(���& ������
����� 2� ��
�#�
�) B���� F6�G� �
��� �?6=�

6�� :� ������� 9�'� �D������ 	� :�����&�����
�) B� 7�#"��� � ���(�)���� ��� ���#��3
���
�)
�
�E��� #��������# �� ��I�#�3�������) ��(
�����
� ��)���� 2� ;� :��(��
�)����� ���	������� �� ��� 0�� 1�����
� �����
�� 1���������� '�������	� 21�1'3

�� 4�� �') �5�+(� ��������� �� ��� (����
����� �� �����
�� 1����������
2(�1�43� �
��� 6H=?6A@� ��' 8����� �CC6�

6<� �� ��
��� B� � ��
�#�� �� 	
���
�) � B����� �(� �'	
�
 ����
� ��)������
���
����� 2� 9�
� J�E����
�) 8�����3��
�� '������ �)������ .)/ 440� ������
6=6H �� /�	���� 6���� �� '������� �	���	�� �
��� <<=?<>H� /�������� 6AAA�

6>� ��/� ��
��
�) /� ����� '��
3��)������ ���
���#� �� �'	� �(� ��'	
����
#(�
2� ��
�#�
�) B���� F6�G� �
��� 6>C?6@@�

6@� ����+� ���"�������� -� :
��
� �� 7������ 9� ��
����
�) � �������(� 2�#�����3
���# (
�)���� �� �����������#���� ���#�*#
������ 111 ��
��
	����� �� �����
��
1����������� �C�H$�@=A?@�H� ������ 6AA>�

6=� ����+� ���"�������� 9� ��
���� � �������(� 	� ���"��������
�) '� :��)�#"��
;��&�������
 ��
��&��" ��� ������
���� �������� ������#����� �� �����)������3
����� �����
����
� 7����
� �� �����
�� 1����������
�� 8�������� 1�����������
���	�
� ����� �� ������
�� ����
�	� ����	����� �� �����
�� 1���������� 1�������
������ ��6$�<6?@H� '
�#(6AA��

6�� B� ��
�#�
�) � B����� �)������ .)/$44� ������ 6��< �� /�	���� 6���� ��
'������� �	���	�� /�������� 6AAA�

6H� B� � ��
�#�� 9�3'� �����
�) '�'� 	
����)�38������ �� ������
��) ��I�#�3
�������)
�) ����
� ��)����� ������������ 7����
� �� +�,�	� +������� �����
��
����� 6C��$��@?<>� 6AA��

6A� 	� ��E��
�E� :� B������ 9�	� /�����������
�) 4� 7�E
�� �)������ .)/$%& "��#����
�� '��������	� �������� �� .)/��
��� �����
�� ������������ B���
�#(B�����
�CC��C=� ��"���� 2�������� �� ��#(������ �CC��

�C� 9� 	�����
�) 2�8� 8
����� ��'	�
 ���� ��� �������� �'	 ��)���� 2� B�9� 7
��
�)
�� ����� �)������ ���	������� �� ��1$44� �
��� �@@?�@H� 2��� �������� /�#����
6AAA�

�6� � 	��"��
�) 9� '� +���� � ��(
�����
� ������ �� ��������� �') ��
��
	�����
�� �����
����� /
���
���
�� �������� 6=�=$�6H66?6H>6� 6AA>�

��� �� '�"(
I���

�) �� /�"�����"�� ��
�� ��*������
�) ������
#� ��*������ ��
��I�#�3�������) �����
��� 2� 9� ���E���
�)� �� � 9�����
�) 8� 	�#
�� �)������
()1$49- �������
� �����	
����
�� ������������ (����
����� �� (���
�)�������
������ 6<6< �� /�	���� 6���� �� '������� �	���	�� �
��� H�?6C6� /�������3;���
��
/�������� 6AA��

�<� 7� B
�#(
�) 7� +�(�(���� ���������# ���&��� �'	 #�
����
�)
���#�
��)
��
�� �
#(����� 2� ��E��
�E ��
�� F6AG� �
��� >=?=C�

�>� :� /���(� ��� +�,�	��* ���	��	
���� /
���
��� ���&�� �#
)���# 8�����(����
�CCC�

�@� '� +� �� /����� 7� �&�
��
�) 9� -����#"� ����������� �� 	%�%/ ���#�*#
3
������ 2� 8� -������"�
�) '� /��)��
&
� �)������ �����	�� ���	��	
����� �������

�� :����	
����� ;:� �
��� �<?HH� +
��
&� 8��
�)� 6AA@� �(
��
� K 7
���

Automated Formal Verification of
Model Tranformations�

Dániel Varró and András Pataricza

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1521 Budapest, Magyar tud´osok körútja 2.
�varro,pataric�@mit.bme.hu

Abstract. When designing safety critical applications in UML, the system mod-
els are frequently projected into various mathematical domains (such as Petri
nets, transition systems, process algebras, etc.) to carry out a formal analysis of
the system under design byautomatic model transformations. Automation surely
increases the quality of such transformations as errors manually implanted into
transformation programs during implementation are eliminated; however, con-
ceptual flaws in transformation design still remain undetected. In this paper,
we present a model-level, modeling language independent and highly automated
technique to formally verify by model checking that a model transformation from
an arbitrary well-formed model instance of the source modeling language into its
target equivalent preserves (language specific) dynamic consistency properties.
We demonstrate the feasibility of our approach on a complex mathematical model
transformation from UML statecharts to Petri nets.
Keywords: model transformation, graph transformation, model checking, formal
verification, UML statecharts, Petri nets.

1 Introduction

For most computer controlled systems, especially dependable, real-time systems for
critical applications, an effective design process requires an early validation of the con-
cepts and architectural choices, without wasting time and resources to assess whether
the system fulfills its requirements or needs some re-design.

The Unified Modeling Language (UML) together with domain specific profiles
(e.g., the UML Profile for Schedulability, Performance and Time [16]) provides a stan-
dard and easy-to-understand visual way to capture both the requirements and the system
model.

However, a standard modeling language does not alone guarantee the correctness of
the design. In order to increase the level of confidence that can be put on a system math-
ematical tools (based on formal methods like Petri nets, dataflow networks, transition
systems, process algebras, etc.) are used to assess the most important system parameters
� This work was partially carried out during the visit of the first author to the University of

Paderborn (Germany), and it was supported by the SegraVis Research Network, the Hungarian
Information and Communication Technologies and Applications Grant (IKTA 065/2000), and
the Hungarian National Scientific Foundation Grant (OTKA 038027)

(such as functional correctness, timeliness, performability or dependability). Unfortu-
nately, sophisticated verification tools (such as the SPIN model [11] checker) require
a thorough knowledge of the underlying mathematics, and therefore special skills are
needed for dependable IT system designers.

In order to bridge the huge abstraction gap, many approaches (e.g., [4, 7, 13, 25])
to automatically transform high-level UML based system models into low-level mathe-
matical models, and then back-annotate the results of the formal analysis into the orig-
inal UML model of the system in order to hide the underlying mathematics.

In the current paper, we investigate the model transformation problem from a gen-
eral perspective, i.e., to specify how to transform a well-formed instance of a source
modeling language (which is typically UML) into its equivalent in the target model-
ing language (which can be UML, a target programming language, or a mathematical
modeling language).

Related work in model transformations Model transformation methodologies have been
under extensive research recently. Existing model transformation approaches can be
grouped into two main categories:

– Relational approaches: these approaches typicallydeclare a relationship between
objects (and links) of the source and target language. Such a specification is typi-
cally based upon a metamodel with OCL constraints [1,15].

– Operational approaches: these techniquesdescribe the process of a model trans-
formation from the source to the target language. Such a specification mainly com-
bines metamodeling with (a) graph transformation [5–8,25], (b) triple graph gram-
mars [20] or (c) term rewriting rules [26].

Many of the previous approaches already tackle the problem of automating model
transformations in order to provide a higher quality of transformation programs com-
pared with manually written ad hoc transformation scripts.

Problem statement However, automation alone cannot protect against conceptual flaws
implanted into the specification of a complicated model transformation. Consequently,
a mathematical analysis carried out on the UML design after an automatic model trans-
formation might yield false results, and these errors will directly appear in the target
application code.

As a summary, it is crucial to realize thatmodel transformations themselves can
also be erroneous and thus may become a quality bottleneck of a transformation based
verification and validation framework (such as [4]). Therefore, prior to analyzing the
UML model of a target application, we have to prove that the model transformation
itself is free of conceptual errors.

Correctness criteria of model transformations Unfortunately, it is hard to establish a
single notion of correctness for model transformations. The most elementary require-
ments of a model transformation are syntactic.

– The minimal requirement is to assuresyntactic correctness, i.e., to guarantee that
the generated model is a syntactically well–formed instance of the target language.

– An additional requirement (calledsyntactic completeness) is to completely cover
the source language by transformation rules, i.e., to prove that there exists a corre-
sponding element in the target model for each construct in the source language.

However, in order to assure a higher quality of model transformations, at least the
following semantic requirements should also be addressed.

– Termination: The first thing we must also guarantee is that a model transformation
will terminate. This is a very general, and modeling language independent semantic
criterion for model transformations.

– Uniqueness (Confluence, functionality): As non-determinism is frequently used
in the specification of model transformations (as in the case of graph transformation
based approaches) we must also guarantee that the transformation yields a unique
result. Again, this is a language independent criterion.

– Semantic correctness (Dynamic consistency): In theory, a straightforward cor-
rectness criterion would require to prove the semantic equivalence of source and tar-
get models. However, as model transformations may also define aprojection from
the source language to the target language (with deliberate loss of information),
semantic equivalence between models cannot always be proved. Instead we define
correctness properties (which are typically transformation specific)that should be
preserved by the transformation.

Unfortunately, related work addressing these correctness criteria of model transfor-
mations is very limited. Syntactic correctness and completeness was attacked in [25]
by planner algorithms, and in [9] by graph transformation. Recently in [14], sufficient
conditions were set up that guarantee the termination and uniqueness of transforma-
tions based upon the static analysis technique of critical pair analysis [10]. However, no
approaches exist to reason about the semantic correctness of arbitrary model transfor-
mations, when transformation specific properties are aimed to be verified.

Our contribution In this paper, we present a model-level, modeling language indepen-
dent and highly automated framework (in Sec. 2) to formally verify by model checking
that a model transformation (specified by metamodeling and graph transformation tech-
niques) from an arbitrary well-formed model instance of the source modeling language
into its target equivalent preserves (language specific) dynamic consistency properties.
We demonstrate the feasibility of our approach (in Sec. 3) on verifying a semantic prop-
erty of a complex model transformation from UML statecharts to Petri nets.

The main benefit of our approach (in contrast to related solutions such as [8]) is that
it can be adapted to arbitrary modeling languages taken from both software engineer-
ing and mathematical domains on a very high level of abstraction. More specifically,
the transformation designers use the same visual notation (based on metamodeling and
graph transformation) to capture the semantics of modeling languages and model trans-
formations between them. Then our tools automatically (i) carry out the transformation
from the source UML model into the target mathematical domain, and generate (ii) a
model checking description to verify the correctness of the model transformation be-
tween the source and target model.

2 Automated Formal Verification of Model Transformations

We present an automated technique to formally verify (based on the model checking
approach of [22]) the correctness of the model transformation of a specific source model
into its target equivalent with respect to semantic properties.

2.1 Conceptual overview

A conceptual overview of our approach is given in Fig. 1 for a model transformation
from an fictitious modeling languageA (which will be UML statecharts for our demon-
strating example later on) toB (Petri nets, in our case).

User
model B

Transition
system A

Transition
system B

model A
User

Metamodel A

Graph Trans A

Metamodel B

Graph Trans B

Model−level

Meta−level

transformation rules

automatic generation

automatic
generation

automatic
generation

well−formed? well−formed?

p <=> q?

validation

p? q?
verification verification

Modeling language A Modeling language B

(no conflict)

Fig. 1. Model level formal verification of transformations

1. Specification of modeling languages. As a prerequisite for the framework, each
modeling language (bothA andB) should be defined precisely using metamodel-
ing and graph transformation techniques. We demonstrated in, for instance, [21,24]
that many (we believe that all) languages in a realization of the MDA may have a
semantics defined in this visual way, which is closely related to the UML philoso-
phy.

2. Specification of model transformations. TheA2B model transformation should
be also specified by a set of (non-conflicting) graph transformation rules. The prac-
tical feasibility of such a solution has been demonstrated in many papers, see,
e.g., [23] for an overview.

3. Automated model generation. For any specific (but arbitrary) well-formed model
instance of the source languageA, we derive the corresponding target model by

automatically generated transformation programs (e.g., generated by VIATRA [5]
as tool support). The correctness of this automated generation step is proved in [23].

4. Generating transition systems. As the underlying semantic domain, a behav-
iorally equivalent transition system is generated automatically for both the source
and the target model on the basis of the provenly correct encoding presented in [22]
(and with a tool support reported in [19]).

5. Select a semantic correctness property. We select one semantic propertyp (at
a time) in the source languageA which is structurally expressible as a graphical
pattern composed of the elements of the source metamodel (and potentially, some
temporal logic operators).
Note that the formalization of these criteria for a specific model transformation is
not at all straightforward. In many cases, we can reduce the question to a reach-
ability problem or a safety property, but even in this case finding the appropriate
temporal logic formulae is non-trivial. More details on using graphical patterns to
capture static well-formedness properties can be found, e.g., in [9].

6. Model check the source model. Transition systemA is model-checked automati-
cally (by existing model checker tools like SPIN [11] or SAL [3]) to prove property
p. This model checking process should succeed, otherwise (i) there are inconsisten-
cies in the source model itself (averification problem occurred), (ii) our informal
requirements are not captured properly by propertyp (a validation problem oc-
curred), or (iii) the formal semantics of the source language is inappropriate as a
counter example is found which should hold according to our informal expectations
(anothervalidation problem).

7. Transform and validate the property. We transform the propertyp into a prop-
ertyq in the target language (manually, or using the same transformation program).
As a potentially erroneous model transformation might transform incorrectly the
propertyp into propertyq, domain experts should validate that propertyq is really
the target equivalent of propertyp or a strengthened variant. Unfortunately, this val-
idation step typically requires human expertise and might not be fully automated.

8. Model check the target model. Finally, transition systemB is model-checked
against propertyq.

– If the verification succeeds, then we conclude that the model transformation is
correct with respect to the pair(p,q) of properties for the specific pairs of source
and target models having semantics defined by a set of graph transformation
rules.

– Otherwise, propertyp is not preserved by the model transformation and de-
bugging can be initiated based upon the error trace(s) retrieved by the model
checker. As before, this debugging phase may fix problems in the model trans-
formation or in the specification of the target language.

Note that at Step 2, we only require to use graph transformation rules to specify
model transformations in order to use the automatic program generation facilities of
VIATRA. Our verification technique is, in fact, independent of the model transforma-
tion approach (only requires to use metamodeling and graph transformation for speci-
fying modeling languages), therefore it is simultaneously applicable to relational model
transformation approaches as well.

Naturally, the correctness of a model transformation can only be deduced if the
transformation preservesevery semantic correctness property used in the analysis. Ob-
viously, it requires several runs of the model checker, which can be time-consuming.
Therefore, in [22], we assessed the expected run-time performance of our model check-
ing based approach on a verification benchmark. In [2], the same technique was applied
on architectural styles to check reachability properties. Both case studies demonstrated
that our technique is applicable to non-trivial examples (of medium-size).

Furthermore, it is worth noting that the time related to the model transformation
step, or to the automated generation of transition systems is still only a few percentage
of the entire verification process in case of non-trivial models.

Prior to presenting the verification case study of a model transformation, we briefly
discuss the pros and contras of meta-level and model-level verification of model trans-
formations.

2.2 Meta-level vs. model level verification of model transformations

In theory, it would be advisable toprove that a model transformation preserves certain
predefined semantic properties for any well-formed model instance, but this typically
requires the use of sophisticated theorem proving techniques and tools with a huge ver-
ification cost. The reason for that lies in the fact that proving properties even in a highly
automated theorem prover require a high-level of user guidance since the invariants de-
rived directly from metamodels should be typically manually strengthened in order to
construct the proof. In this sense, the effort (cost and time) related to the verification
of a transformation would exceed the efforts of design and implementation which is
acceptable only for very specific and critical applications.

However, the overall aim of model transformations is to provide a precise and au-
tomated framework for transforming the models of concrete applications (i.e., UML
models). Therefore, in practice,it is sufficient to prove the correctness of the model
transformation from the source UML model of the system under design against a set
of properties defined by transformation engineers (while it is typically out of scope to
demonstrate that the model transformation is correct for any source model). Thanks to
existing model checker tools and the transformation presented in [22], such a model-
level verification process can be highly automated. In fact, the selection of a pair(p,q)
of corresponding semantic properties is the only part in our framework that requires
user interaction and expertise.

Even if the verification of a specific model transformation is practically infeasible
due to state space explosion caused by the complexity of the target application, model
checkers can act as highly automated debugging aids for model transformations sup-
posing that relatively simply source benchmark models are available as test sets.

3 Case Study: From UML Statecharts to Petri Nets

We present an extract of a complex model transformation case study from UML stat-
echarts to Petri nets (denoted as SC2PN) in order to demonstrate the feasibility of our
verification technique for model transformations.

The entire SC2PN transformation was originally designed and implemented as part
of a Hungarian research project (IKTA 065/2000 – A framework for the modeling and
analysis of dependable and safety critical systems) carried out in cooperation with in-
dustrial partners. Here UML statecharts are projected into Petri nets by this transforma-
tion in order to carry out (various kinds of) formal analysis such as functional correct-
ness based on semi-decision methods of Petri nets [17].

The primary aim of the project was to formally verify UML models, but we also
carried out the verification of the model transformation itself. Due to severe page lim-
itations, we can only provide an overview of the verification case study, the reader is
referred to [23] for a more detailed discussion.

3.1 Defining modeling languages by model transformation systems

Prior to reasoning about this model transformation, both the source and target model-
ing languages (UML statecharts and Petri nets) have to be defined precisely. For that
purpose, in [24] we proposed to use a combination of metamodeling and graph trans-
formation techniques: thestatic structure of a language is described by a corresponding
metamodel clearly separating static and dynamic concepts of the language, while the
dynamic operational semantics is specified bygraph transformation.

Graph transformation (see [18] for theoretical foundations) provides a rule-based
manipulation of graphs, which is conceptually similar to the well-known Chom-
sky grammar rules but using graph patterns instead of textual ones. Formally, a
graph transformation rule (see e.g.addTokenR in Fig. 3) is a triple���� �
�������	�����, where��� is the left-hand side graph,��� is the right-hand side
graph, while��	 is (an optional) negative application condition (grey areas in figures).
Informally,��� and��	 of a rule define theprecondition while��� defines thepost-
condition for a rule application.

Theapplication of a rule to amodel (graph)
 (e.g., a UML model of the user)
alters the model by replacing the pattern defined by��� with the pattern of the���.
This is performed by (i)finding a match of the��� pattern in model
 ; (ii) checking
the negative application conditions ��	 which prohibits the presence of certain model
elements; (iii)removing a part of the model
 that can be mapped to the��� pattern
but not the��� pattern yielding an intermediate model�
 ; (iv) adding new elements
to the intermediate model�
 which exist in the��� but cannot be mapped to the���
yielding the derived model
 �.

In our framework, graph transformation rules serve as elementary operations while
the entire operational semantics of a language or a model transformation is defined by
amodel transformation system [25], where the allowed transformation sequences are
constrained by acontrol flow graph (CFG) applying a transformation rule in a specific
rule application mode at each node. A rule can be executed (i) parallelly for all matches
as in caseforall mode; (ii) on a (non-deterministically selected) single matching as in
case oftry mode; or (iii) as long as applicable (inloop mode).

UML statecharts as the source modeling language As the formalization of UML
statecharts (abbreviated as SC) by using this technique and a model checking case study

were discussed in [21, 22], we only concentrate on the precise handling of the target
language (i.e., Petri nets) in this paper. We only introduce below a simple UML model
as running example and assume the reader’s familiarity with UML and metamodels.

Example 1 (Voting). The simple UML design of Fig. 2) models a voting process which
requires a consensus (i.e., unique decision) from the participants.

Processing Wait for
decision

finished^theVoter.yes

finished^theVoter.no

accept

decline

Statemachine of CalcUnit

c1: CalcUnit

c2: CalcUnit v: Voter

May accept

Decline

Wait for vote
no

yes^theCalcUnit.decline

yes

yes^theCalcUnit.accept

no^theCalcUnit.decline

no^theCalcUnit.decline

Statemachine
of Voter

Object diagram

VoterCalcUnit

theCalcUnit

theVoter

Class diagram

Fig. 2. UML model of a voter system

In the system, a specific task is carried out by multiple calculation unitsCalcUnit,
and they send their local decision to theVoter in the form of ayes or no message. The
voter may only accept the result of the calculation if all processing units voted for yes.
After the final decision of the voter, all calculation units are notified by anaccept or
a decline message. In the concrete system, two calculation units are working on the
desired task (see the object diagram in the upper right corner of Fig. 2), therefore the
statechart of the voter is rather simplified in contrast to a parameterized case.

Petri nets as the target modeling language Petri nets (abbreviated as PN) are widely
used to formally capture the dynamic semantics of concurrent systems due to their easy-
to-understand visual notation and the wide range of available tools. A precise metamod-
eling treatment of Petri nets was discussed in [24]. Now we briefly revisit the metamodel
and the operational semantics of Petri nets in Fig. 3.

According to the metamodel (thePetri Net package in the upper left corner of
Fig. 3), a simple Petri net consists ofPlaces, Transitions, InArcs, andOutArcs as
depicted by the corresponding classes.InArcs are leading from (incoming) places to
transitions, andOutArcs are leading from transitions to (outgoing) places as shown
by the associations. Additionally, each place contains an arbitrary (non-negative) num-
ber of tokens). Dynamic concepts, which can be manipulated by rules (i.e., attributes
token, andfire) are printed in red.

The operational behavior of Petri net models are captured by the notion offiring a
transition which is performed as follows.

LHS RHS

LHS RHS LHS RHS

LHS RHS

fromPl

toTr

fromPl

toTr

fromPl

toTr

toPl

fromTr fromTr

toPl

fire=T fire=T

fire=T fire=T

enableTrR
<try>

<forall>
delFireR addTokenR

<forall>

delTokenR
<forall>

fail succeedTransition
fire:Bool

OutArc

Place
token:int

InArc

Petri Net

toTr
toPl fromPlfromTr

T:Trans
fire=T

T:Trans
fire=F

delFireR

T:Trans

A:InArc P:Place
token=0

T:Trans
fire=T

enableTransR

T:Trans

A:InArc P:Place
token>0

T:Trans

A:InArc P:Place
token−−

delTokenR

T:Trans

A:InArc P:Place

T:Trans

A:InArc P:Place
token++

addTokenR

Fig. 3. Operational semantics of Petri nets by graph transformation

1. First, thefire attribute is set to false for each transition of the net by applying rule
delFireR in forall mode.

2. A single enabled transitionT (i.e., when all the placesP with an incoming arcA to
the transition contain at least one token,token�0) is selected to be fired (by setting
thefire attribute to true) when applying ruleenableTransR in try mode.

3. When firing a transition, a token is removed (i.e., the countertoken is decremented)
from each incoming place by applyingdelTokenR in forall mode.

4. Then a token is added to each outgoing place of the firing transition (by increment-
ing the countertoken) in a forall application of ruleaddTokenR.

5. When no transitions are enabled, the net is dead.

3.2 Defining the SC2PN model transformation

Modeling statecharts by Petri nets Each SC state is modeled with a respective place
in the target PN model. A token in such a place marks the corresponding state as active,
therefore, a single token is allowed on each level of the state hierarchy (forming a token
ring, or more formally, aplace invariant). In addition, places are generated to model
messages stored in event queues of a statemachine. However, the proper handling of
event queues is out of the scope of the current paper, the reader is referred to [23].

Each SC step (i.e., a collection of SC transitions that can be fired in parallel) is
projected into a PN transition. When such a transition is fired, (i) tokens are removed
from source places (i.e., places generated for the source states of the step) and event

queue places, and (ii) new tokens are generated for all the target places and receiver
message queues. Therefore, input and output arcs of the transition should be generated
in correspondence with this rule.

In Fig. 4, we present an extract of the Petri netExample 2.

c2_accept

may_accept

wait_for_vote

decline

v_yes

c1_accept

Fig. 4. The Petri net of the voter

equivalent of the voter’s UML model (see Fig. 2).
For improving legibility, only a single transi-
tion (leading from statemay accept to wait for
vote and triggered by theyes event) is shown.

The places of the voter subsystem are con-
stituted of the states of the voter (such as
wait for vote, may accept, decline) and mes-
sage queues for valid events (likeyes). The initial

state is marked by a token inwait for vote. The depicted transition has two incoming
arcs as well, one from its source statemay accept and one from the message queue of
the triggeringyes event. Meanwhile, this transition has multiple output places: one for
the target statewait for vote, and one for each target event queue of the participants
that receives the generatedaccept message.

Formalizing model transformations In [23], we formalize the SC2PN transformation
(to handle a meaningful subset of UML statecharts) by model transformation systems
consisting of more than 40 graph transformation rules. Feeding these high-level descrip-
tions to VIATRA [5], (an XMI representation of) a transformation program is generated
automatically, which would yield the target Petri net model (Fig. 4) as the output when
supplying (the XMI representation of) the voter’s UML model (Fig. 2) as the input.

Figure 5 gives a brief extract of transforming SC states into PN places. According
to this pair of rules, each initial state (i.e., that is active initially) in the source SC model
is transformed into a corresponding PN place containing a single token, while each
non-initial state (i.e., that is passive initially) is projected into a PN place without a
token.

RHSLHS

active2placeR

RHSLHS

passive2placeR

isAct=T
S:State R:

RefState
P:Place
token=1

src trg
isAct=T
S:State S:State

isAct=F
R:

RefState
P:Place
token=0

src trg

S:State
isAct=F

Fig. 5. Transforming SC states into PN places

It is worth noting that a model transformation rule in VIATRA is composed of ele-
ments of the source language (like StateS in the rule), elements of the target language
(like PlaceP), and reference elements (such as RefStateR). The latter ones are also
defined by a corresponding metamodel. Moreover, they provide bi-directional transfor-

mations for thestatic parts of the models, thus serving as a basis for back-annotating
the results of a Petri net-based analysis into the original UML design.

3.3 Verification of the SC2PN model transformation

For the SC2PN case study, Steps 1–3 in our verification framework have already been
completed. Now, a transition system (TS) is generated automatically (according to [22])
for source and target models as an equivalent (model-level) representation of the oper-
ational semantics defined by graph transformation rules (on the meta-level).

Generating transition systems Transition systems are a common mathematical for-
malism that serves as the input specification of various model checker tools. They have
certain commonalities with structured programming languages (like C or Pascal) as the
system is evolving from a giveninitial state by executing non-deterministic if-then-else
like transitions (or guarded commands) that manipulatestate variables. In all practical
cases, we must restrict the state variables to have finite domains, since model check-
ers typically traverse the entire state space of the system to decide whether a certain
property is satisfied. For the current paper, we use the easy-to-read SAL syntax for the
concrete representation of transition systems.

Our generation technique (described in [22] also including feasibility studies from a
verification point of view) enables model checking for graph transformation systems by
automatically translating them into transitions systems. The main challenge in such a
translation is two fold: (i) we have to “step down” automatically from the meta-level to
the model-level when generating model-level transition systems from meta-level graph
transformation systems, and (ii) a naive encoding of the graph representation of models
would easily explode both the state space and the number of transitions in the tran-
sition system even for simple models. Therefore our technique applies the following
sophisticated optimizations:

– Introducing state variables in the target transition system only for dynamic concepts
of a language.

– Including only dynamic parts of the initial model in the initial state of the transition
system.

– Collecting potential applications of a graph transformation rule by partially apply-
ing them on the static parts of the rule and generating a distinct transition (guarded
command) for each of them that only contains dynamic parts as conditions in
guards and assignments in actions.

Formalizing the correctness property Now, a semantic criterion is defined for the
verification process that should be preserved by the SC2PN model transformation. Note
that the term “safety criterion” below refers to a class of temporal logic properties pro-
hibiting the occurrence of an undesired situation (and not to the safety of the source
UML design).

Definition 1 (Safety criterion for statecharts). For all OR-states (non-concurrent
composite states) in a UML statechart, only a single substate is allowed to be active
at any time during execution.

This informal requirement can be formalized by the following graphical invariant in
the domain of UML statecharts (cf. Fig. 6 together with its equivalent logic formula).
Informally speaking, it prohibits the simultaneous activeness of two distinct substates
S1 andS2 of the same OR-stateC (i.e., non-concurrent composite state) .

Unfortunately, it is difficult to estab-

isAct=T

S1:State O:ORState

isAct=T

S2:State

NEG subvertex subvertex

� � � ������� �� � ������ �� � ����� �
��������������� � ��������������� �

��������� � ��������� � �� �� ��

Fig. 6. A sample graphical safety criterion

lish the same criterion on the meta level
in the target language of Petri nets since
the SC2PN transformation defines an ab-
straction in the sense that message queues
of objects are also transformed into PN
places (in addition to states). However,
in order to model check a certain sys-
tem, this meta-level correctness criterion
can be re-introduced on the model level.
Therefore, we first automatically instan-

tiate (the static parts of) the criterion on the concrete SC model (as done during the
transformation to transitions systems) to obtain the model level criterion of Fig. 7. Note
that the different (model level) patterns denote conjunctions, therefore, none of the de-
picted situations are allowed to occur.

isAct=T

wait_for_vote:
State

top:
ORState

isAct=T

may_accept:
State

NEG :subvertex :subvertex

isAct=T

wait_for_vote:
State

top:
ORState

isAct=T
State

decline:

NEG :subvertex :subvertex

isAct=T
State

decline: top:
ORState

isAct=T

may_accept:
State

NEG :subvertex :subvertex

��������������	
��� ��� ����� � ������������	
��� ����	�� �
�������� ��� ����� � �������� ����	��� � ���

Fig. 7. Model level safety criterion

Note that our approach is not at all limited to verify only safety criteria. Further ver-
ification case studies (e.g., in [2, 22]) also covered reachability and liveness properties
or deadlock freedom.

Equivalent property in the target language This model level criterion is appropri-
ate to be transformed into an equivalent criterion for the Petri net model. As the state
hierarchy of statecharts is not structurally preserved in Petri nets (as Petri nets are flat)
the equivalents of the OR states are not projected into Petri nets. Therefore, the corre-
sponding property (shown in Fig. 8) contain only specific places having a token.

At this point, we need to validate whether the equality (= 1) or inequality checks (�
1) are required in the property to be proved (i.e., what to do if there are multiple tokens

token=1
Place

may_accept:
Place

token=1

wait_for_vote:

NEG

token=1
Place

decline:
Place

token=1

wait_for_vote:

NEG

Place
token=1

decline:

token=1
Place

may_accept:

NEG

����������� ��� ����� � � � ��������� ����	�� � �� � ���

Fig. 8. The Petri net equivalent of the model level safety criterion

in a single place). We may conclude that checking equality is also sufficient, however,
checking the version with inequality definitely strengthens the property, therefore we
can also decide to prove something stronger in the Petri net model.

Obviously, constructing the pair of properties to be proved for property preservation
is non-trivial and requires a certain insight into the source and target languages and their
transformation. Therefore the generation of a target propertyq from a source property
p cannot always be automated.

Model checking the target model Given (i) a system model in the form of a transition
system�� (with semantics defined as a Kripke structure), and (ii) a property�, the
model checking problem can be defined as to decide whether� holds on all execution
paths of the system (i.e., whether�� �� �).

Therefore, as the final step of our framework, the model checker is supplied with the
transition system of the Petri net model and the textual representation of the propertyq.
As the places derived from the states of the same OR-state form a place invariant (with a
single token circulating around), the model checker easily verifies even the strengthened
property.

As a conclusion for our case study, the SC2PN model transformation preserved our
sample correctness property for a specific source statechart model and its target Petri net
equivalent. Additional correctness properties can be handled similarly. Unfortunately,
for space considerations, we omitted the formal verification of property in the source
SC model (Step 6), which could be performed identically to the handling of the target
PN model.

4 Conclusions and Future Work

We presented a model-level, modeling language independent and highly automated
technique to formally verify by model checking that a model transformation from a spe-
cific (but arbitrarily chosen) well-formed model instance of a source modeling language
into its target equivalent preserves (language specific) dynamic consistency properties.
We demonstrated the feasibility of our approach by verifying a semantic correctness
property for a complex model transformation from UML statecharts to Petri nets.

Naturally, as based on model checking our technique has practical limitation im-
posed by the state explosion problem. Therefore, in the future, we aim to improve our
automated encoding into transition systems to better exploit the built-in facilities of

model checkers (like partial order reduction or symmetries) to allow the verification of
larger scale model transformations.

Further research should also aim at automating the transformation of semantic cor-
rectness properties. We think that our model transformation technique can be extended
to handle this case as well. As a result, the same specification technique would be used
for all transformations in our verification framework.

References

1. D. Akehurst and S. Kent. A relational approach to defining transformations in a metamodel.
In J.-M. Jézéquel, H. Hussmann, and S. Cook (eds.),Proc. Fifth International Conference on
the Unified Modeling Language – The Language and its Applications, vol. 2460 ofLNCS,
pp. 243–258. Springer-Verlag, Dresden, Germany, 2002.

2. L. Baresi, R. Heckel, S. Th¨one, and D. Varr´o. Modeling and analysis of architectural styles.
In Proc ESEC 2003: European Software Engineering Conference. Helsinki, Finland. In
press.

3. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß, J. Rushby, V. Rusu,
H. Saı̈di, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In C. M. Holloway
(ed.),LFM 2000: Fifth NASA Langley Formal Methods Workshop, pp. 187–196. 2000.

4. A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, and G. Savoia. Dependability
analysis in the early phases of UML based system design.International Journal of Computer
Systems - Science & Engineering, vol. 16(5):pp. 265–275, 2001.

5. G. Csert´an, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varr´o. VIATRA: Visual
automated transformations for formal verification and validation of UML models. InProc.
ASE 2002: 17th IEEE International Conference on Automated Software Engineering, pp.
267–270. IEEE Press, Edinburgh, UK, 2002.

6. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling. In
R.-D. Kutsche and H. Weber (eds.),5th International Conference, FASE 2002: Fundamental
Approaches to Software Engineering, Grenoble, France, April 8-12, 2002, Proceedings, vol.
2306 ofLNCS, pp. 174–188. Springer, 2002.

7. G. Engels, R. Heckel, and J. M. K¨uster. Rule-based specification of behavioral consistency
based on the UML meta-model. In M. Gogolla and C. Kobryn (eds.),UML 2001: The
Unified Modeling Language. Modeling Languages, Concepts and Tools, vol. 2185 ofLNCS,
pp. 272–286. Springer, 2001.

8. G. Engels, R. Heckel, J.-M. K¨uster, and L. Groenewegen. Consistency-preserving model
evolution through transformations. In J.-M. J´ezéquel, H. Hussmann, and S. Cook (eds.),
Proc. Fifth International Conference on the Unified Modeling Language – The Language
and its Applications, vol. 2460 ofLNCS, pp. 212–227. Springer, Dresden, Germany, 2002.

9. J. H. Hausmann, R. Heckel, and S. Sauer. Extended model relations with graphical consis-
tency conditions. InUML 2002 Workshop on Consistency Problems in UML-based Software
Development, pp. 61–74. Blekinge Institute of Technology, 2002. Research Report 2002:06.

10. R. Heckel, J. M. K¨uster, and G. Taentzer. Confluence of typed attributed graph transfor-
mation systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.),Proc.
ICGT 2002: First International Conference on Graph Transformation, vol. 2505 ofLNCS,
pp. 161–176. Springer, Barcelona, Spain, 2002.

11. G. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,
vol. 23(5):pp. 279–295, 1997.

12. G. Huszerl and I. Majzik. Quantitative analysis of dependability critical systems based on
UML statechart models. InHASE 2000, Fifth IEEE International Symposium on High As-
surance Systems Engineering, pp. 83–92. 2000.

13. J.-M. Jézéquel, W.-M. Ho, A. L. Guennec, and F. Pennaneac’h. UMLAUT: an extendible
UML transformation framework. In R. J. Hall and E. Tyugu (eds.),Proc. of the 14th IEEE
International Conference on Automated Software Engineering, ASE’99. IEEE, 1999.

14. J. M. Küster, R. Heckel, and G. Engels. Defining and validating transformations of UML
models. InProc. VLFM’03: International Conference on Visual Languages and Formal
Methods. Submitted.

15. D. Milicev. Automatic model transformations using extended UML object diagrams in mod-
eling environments.IEEE Transactions on Software Engineering, vol. 28(4):pp. 413–431,
2002.

16. Object Management Group.UML Profile for Schedulability, Performance and Time. http:
//www.omg.org.

17. A. Pataricza. Semi-decisions in the validation of dependable systems. InSuppl. Proc. DSN
2001: The International IEEE Conference on Dependable Systems and Networks, pp. 114–
115. Göteborg, Sweden, 2001.

18. G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph Transforma-
tions: Foundations. World Scientific, 1997.

19. Á. Schmidt and D. Varr´o. CheckVML: A tool for model checking visual modeling languages.
In Proc. UML 2003: 6th International Conference on the Unified Modeling Language. Ac-
cepted paper.

20. A. Schürr. Specification of graph translators with triple graph grammars. In . Tinhofer (ed.),
Proc. WG94: International Workshop on Graph-Theoretic Concepts in Computer Science,
no. 903 in LNCS, pp. 151–163. Springer, 1994.

21. D. Varró. A formal semantics of UML Statecharts by model transition systems. In A. Corra-
dini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.),Proc. ICGT 2002: 1st International
Conference on Graph Transformation, vol. 2505 ofLNCS, pp. 378–392. Springer-Verlag,
Barcelona, Spain, 2002.

22. D. Varró. Automated formal verification of visual modeling languages by model checking.
Journal of Software and Systems Modelling, 2003. Accepted to the Special Issue on Graph
Transformation and Visual Modelling Techniques.

23. D. Varró. Automated Model Transformations for the Verification and Validation of IT Sys-
tems. Ph.D. thesis, Budapest University of Technology and Economics, Department of Mea-
surement and Information Systems, 2003. Submitted.

24. D. Varró and A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML.Journal of Software and Systems Modelling,
2003 (1):pp. 1–24.

25. D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual
languages.Science of Computer Programming, vol. 44(2):pp. 205–227, 2002.

26. J. Whittle. Transformations and software modeling languages: Automating transformations
in UML. In J.-M. Jézéquel, H. Hussmann, and S. Cook (eds.),Proc. Fifth International
Conference on the Unified Modeling Language – The Language and its Applications, vol.
2460 ofLNCS, pp. 227–242. Springer-Verlag, Dresden, Germany, 2002.

Assert, Negate and Refinement in
UML-2 Interactions

Harald Störrle

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 München, GERMANY
stoerrle@informatik.uni-muenchen.de

Abstract. The Unified Modeling Language (UML) is the industry stan-
dard for modeling. With its recent advancement to version 2.0, there have
been large amounts of changes and additions. In this paper I study some
new features with a view to formal specification and verification, in par-
ticular the operators neg and assert, and notions of refinement based
upon them.

1 Introduction

The Unified Modeling Language (UML) is the industry standard for modeling, it
has even been dubbed “the lingua franca of software engineering” (cf. [19, p. v]).
However, over the past few years, a number of rather serious shortcomings have
been identified, for instance with respect to the formal semantics of UML models,
most notably of the dynamic models.

Recently, however, the version 2.0 of UML has been adopted (see [15]), ad-
dressing a number of these shortcomings. In particular, Message Sequence Charts
(MSC) according to the ISO standard (see [7, 6]) have been integrated. In UML,
the concept underlying these notations is called interaction.

In a companion paper and technical report (see [23, 22]), I have defined a
formal semantics for most of the operators in UML interactions (including time),
except those without a straightforward semantics, namely neg and assert. These
are also not present in classical MSCs but have precursors in Life Sequence
Charts (LSCs, see [3]). The latter, however, have been extensively used in the
specification and verification of critical systems, e.g., in the automotive domain.
So, the new features of UML might well be exploited for the same purpose.

The semantics of most of UML 2.0-interactions is more or less straightfor-
ward. So, I focus on the interesting parts. I discuss a number of alternative
interpretations with their advantages and disadvantages with respect to notions
of refinement, which would be a natural starting point both for development and
verification tasks. I also generalize the interpretations to timed interactions.

2 Interactions in UML 2.0

To level the ground, I start with a brief discussion of the concrete and abstract
syntax of interactions in UML 2.0. Here, I shall refer to the UML 2.0 as the
“new standard” or simply “the standard” while I refer to the version 1.4 as the
“old standard”.

2.1 Concrete Syntax

First of all, all diagrams now have a frame around them and a compartment
displaying its type and name (see Figure 1) which makes it easier to refer to it,
e.g. as a subdiagram or companion diagram.

In the old standard, there were two types of interaction diagrams, namely se-
quence and collaboration diagrams which both are based on the same metamodel
concepts (see below). So called “metric sequence diagrams” [16] had been men-
tioned in UML 1.3, but neither defined nor explained, and have been abandoned
in UML 1.4.

In the new standard, collaboration diagrams have been renamed to communi-
cation diagrams. A new kind of interaction diagram, timing diagrams as known
in many engineering disciplines (see Figure 1) have been introduced. Timing di-
agrams may be considered as an elaboration of metric sequence diagrams. While
communication diagrams and sequence diagrams focus on structure and mes-
sage exchange, respectively, timing diagrams focus on state and state change
across time. Sequence diagrams have been extended considerably, and now have
approximately the same expressive power as high-level MSCs.

All these interaction diagrams may be combined ad lib by a given set of
InteractionOperators. The notation is similar to that of interaction diagrams in
general (see Figure 1). If there are two arguments to an InteractionOperator,
they are divided by a dashed line. The notation is strongly reminiscent of MSCs.
Also, in the new standard there are now interaction overview diagrams which
are basically activity diagrams where the interaction diagrams are activities (see
[22]). They correspond to High-Level MSCs (see [7]).

Furthermore, there are also so called overview diagrams which may be used
to combine interaction diagrams into a kind of activity diagram, where the places
of activty states are taken by interactions.

2.2 Basic semantics

In the new standard, “an EventOccurrence is the basic semantic unit of Interac-
tions” (cf. [15, p. 416]), and the “sequences of EventOccurences are the meanings
of Interactions” (ibid.). Given the domain of Event Occurrences (written EO),
the domain of Traces (written SEQ) is SEQ = EO∗.

More precisely, however, “the semantics of an Interaction is given as a pair
of sets of traces” (cf. [15, p. 419, emphasis added]), representing “valid traces and
invalid traces” (ibid.), respectively. Thus, the semantic domain for interactions
is SEQ × SEQ. “The traces that are not included [in the union of the two]

Lifeline 1 Lifeline 2

sd P

alt

opt

a

b

c

d

e

Fig. 1. A sample UML 2.0 interaction diagram, including the high-level operators alt
and opt. The language of messages described by this sequence diagram may also be
represented by the regular expression a(b[c]|d)e.

are not described [. . .] and we cannot know whether they are valid or invalid”
(ibid.). That is, an interaction in UML 2.0 implicitly describes contingency, see
Figure 2. It is not obvious, what valid and invalid really mean, however. For the
time being, I shall interpret them as necessary vs. forbidden or must vs. must
not (see Section 4.2 below).

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

valid traces invalid tracescontingent
traces

all traces

Fig. 2. In UML 2, interactions specify both valid and invalid traces. Unspecified traces
are contingent. Probably, valid and invalid traces should be interpreted as necessary
and forbidden (or must and must not).

This point of view is obviously adopted from Life Sequence Charts (cf. [3]).
With this definition, the mapping from the metamodel to a mathematical domain
is now simply

(interaction) [[sd(P)]] = 〈[[P]], ∅〉

for an interaction P , with [[]] to denote a (denotational) semantic function. In
order to distinguish between alternative interpretations of constructs, semantic
brackets will be subscripted as in [[]]Interpretation.

As a convention, I write the first and second component of a pair X as X+

and X−, respectively. Thus, the valid and invalid traces that are the semantics
of an interaction P may be written as [[P]]+ and [[P]]−, respectively.

Coming back to the interpretation of sd from above, of course, [[]] must also
be defined for the other operators (see [23] for details). For example, the alt
denotes alternatives in interactions, and its semantics can be defined as

(alt) [[alt(P,Q)]] = [[P]] ∪ [[Q]].

Here I also use the canonical extension of set operators to pairs of sets, that is,
I write 〈A,B〉 ∪ 〈X,Y 〉 to mean 〈A ∪X,B ∪ Y 〉, and so on for other operators.

2.3 Characterization of interaction semantics

A great number of semantics and equivalences for concurrency have been defined
(see e.g. [4, chapter 1] for a comparison). I shall now discuss some of the more
popular semantic dimensions.

Interleaving vs. true concurrency This spectrum is usually associated with
CSP and CCS on the interleaving end (see [2] and [13], respectively), and Petri-
nets and related formalisms on the other (see [17]). Both of these semantic
paradigms have been applied to MSCs in the past (cf. [5, 20] for examples and [18]
for an overview). The standard avoids a clear statement in favor of interleaving
semantics, merely saying that: “to explain Interactions we apply an Interleaving
semantics” (cf. [15, p. 403, emphasis added]). This statement implies that the
interleaving semantics provided in the standard is only an explanation, but not
a definition. This would mean that other formalisms might be valid definitions
(or explanations) of the semantics of interactions in UML, too.

Linear vs. branching time The two ends of this spectrum are often associated
with CSP and CCS, respectively. Without the notion of invalid traces, the seman-
tics of UML interactions and the notions of equivalence and refinement would
be identical to traditional trace semantics. Considering also the invalid traces
simply adds another set of traces, but does not change the semantic paradigm
in any way. That is, the UML standard defines a linear time semantics.

Readiness/failure traces In readiness and failure semantics, each trace also
carries a set of actions (read: EventOccurrences) which are (not) possible af-
ter the trace. For a given set X of conventional traces, it is possible to com-
pute largest common prefixes and determine the respective possible next Even-
tOccurrences. For a given interaction P , it is possible to compute the set of
ready traces 〈t, R〉 from [[P]]+. As an example, suppose that Σ = a, b, c, d, e
and X = {a.b.c, a.b.d, a.e}. The common prefixes with their ready EventOccur-
rences are 〈a, {b, e}〉, 〈a.b, {c, d}〉, 〈a.b.c, ∅〉, 〈a.b.d, ∅〉, and 〈a.e, ∅〉. The set of
failure traces of P is {〈t, R〉}, where 〈t, R〉 is computed like the ready traces, but
starting from [[P]]− rather than [[P]]+. It is unclear, however, how the notion of
contingency integrates with this paradigm: in failure and readiness semantics,
an action is either possible or not.

3 The neg-operator

The neg-opeator is probably a kind of negation. The standard does not give
an example, or explain the intuition or pragmatics of this operator, but flatly
declares that “the interaction operator neg designates that the combined fragment
represents traces that are defined to be invalid” (cf. [15, p. 411]). This could be
interpreted as

(N.1: loose negate) [[neg(P)]]N.1 = 〈∅, [[P]]+〉.

This interpretation could be formulated intuitively as “not the traces of P”.
However, under this interpretation, all negative traces specified so far would be
lost. It thus behaves strangely under double negation, for

[[neg(neg(P))]]N.1 = 〈∅, ∅〉.

Also, the standard declares that “All InteractionFragments that are different
from Negative are considered positive, meaning that they describe traces that are
valid [. . .] ” (cf. [15, p. 370]). This suggests the following interpretation,

(N.2: strict negate) [[neg(P)]]N.2 = 〈 [[P]]+N.2, [[P]]+N.2〉

where X = Σ∗ −X, that is, language complement. Observe that [[P]]− ⊆ [[P]]+
and [[P]]+ ⊆ [[P]]− for all P and for all interpretations, and therefore [[P]]+ ⊆
[[neg(P)]]+N.2, that is, interpretation N.2 respects invalid traces of P .

Under interpretation N.2, the traces specified by P are marked as invalid, and
all other traces as valid. This could be expressed intuitively as “anything but P”.
However, this interpretation makes no sense for double negation. Abbreviating
neg(P) as Q, I have [[Q]] = 〈 [[P]]+N.2, [[P]]+N.2〉 and thus [[Q]]+N.2 = [[P]]+N.2 and so

[[neg(neg(P))]]N.2 = [[neg(Q)]]N.2
= 〈 [[Q]]+, [[Q]]+N.2〉

= 〈[[P]]+N.2, [[P]]+N.2〉

= 〈[[P]]+N.2, [[P]]+N.2〉

Using flip(〈x, y〉) = 〈y, x〉, this means that

[[neg(neg(P))]]N.2 = flip([[neg(P)]]N.2)

and also
[[neg(neg(neg(neg(P))))]]N.2 = [[P]]N.2

Clearly, this is odd. It leads us to a simpler, more intuitive interpretation of neg.

(N.3: flip negate) [[neg(P)]]N.3 = flip([[P]])N.3.

This interpretation simply reverses valid and invalid traces of P , but preserves
the contingent traces. Intuitively, it could be formulated as “flip valid and in-
valid”. Note that this interpretation yields an intuitive sense for double negation:

[[neg(neg(P))]]N.3 = [[P]]N.3

as flip ◦ flip obviously is the identity. Obviously, this interpretation is in contra-
diction to some of the citations from the standard as given above. Still, I shall
adopt the interpretation N.3, as it is simply the only consistent approach.

4 The assert-operator

The assert-operator might be a kind of affirmation, implication, or temporal
sequence. The standard unfortunately gives only a single (rather unhelpful) ex-
ample (cf. [15, p. 442]), and does not provide an intuitive explanation of its
meaning or usage. In this section, I discuss several possible interpretations fo
this operator.

4.1 assert as affirmation

Intuitively, one might interpret assert as an affirmation of the traces of its
operand, in the sense of “P , and only P”. The meaning of the assert-operator
is explained by the standard as “the sequences of the operand are the only valid
continuations. All other continuations result in invalid traces.” (cf. [15, p. 412])
This suggests the following interpretation:

(A.1: affirm) [[assert(P)]]A.1 = 〈[[P]]+, [[P]]+〉.

When interpreting assert as an affirmation, one would expect that the meaning
of an interaction remains constant, no matter how often it is asserted, that is, a
kind of idempotency-property. One would expect that assert(P) is equivalent to
assert(assert(P)), e.g., in the sense that

[[assert(P)]] = [[assert(assert(P))]]

This is obviously true for interpretation A.1. Under this interpretation, assert
would completely remove contingency, but preserve valid traces and invalid
traces, i.e. [[assert(P)]]+A.1 = [[P]]+ and [[assert(P)]]−A.1 ⊇ [[P]]−.

In the quotation given above, the standard seems to demand this interpreta-
tion quite imperatively. However, there is also a contradictory statement in the
standard, declaring that “the invalid set of traces are associated only with the use
of a Negative CombinedInteraction.” (cf. [15, p. 419]). Interpretation A.1 clearly
refers to the set of negative traces in a way that cannot be achieved by under-
standing assert as syntactic sugar. So, there is some freedom for interpretations
of assert, and I shall explore some of them now.

4.2 assert as a binary operator

Another problem with interpretation A.1 is the fact that so far it is described
as being unary. It might be understood as a binary operator, too, as the UML
standard declares that “the sequences of the operand (sic!) of the assertion are
the only valid continuations.” (cf. [15, p. 412]). Even though the standard ex-
plicitly mentions only a single operand, it talks about it as being a continuation
of a preceeding trace. But it is unclear, what the scope of the preceeding trace
is (see example in Figure 3).

sd R

assert
c

opt b

a

Fig. 3. Which messages constitute the trace preceeding the assert: only b or both a
and b?

It would be much easier, if the assert were a binary operator where the first
operand declares a condition or trigger (a kind of “precharts” known from LSCs,
[3]), and the second declares the consequence or result. This is also suggested
by the standard when declaring that “Assertions are often combined with ignore
or consider as shown in Figure 345 ” (cf. [15, p. 412]). The Figure mentioned
is reproduced in a simplified form in Figure 4 (left). A stratified variant of the
notation is proposed in Figure 4 (right). The operators ignore and consider are
defined to be dual. To simplify my task, I choose ignore in the remainder, thus
sparing me another auxiliary filter-function (cf. [23]).

consider {a,b}

assert
b

a

sd P

b

sd P´

a
assert considering {a,b}

Fig. 4. Usage of assert/consider as suggested by the standard (left). A simple way to
cleanly embed this usage into the notation (right).

However, there is a fundamental problem here. Recall the intuitive interpre-
tation of valid and invalid traces as must and must not be possible, as laid out in
Section 2.2. Suppose that P is an interaction, Γ a set of messages to be ignored
and µ : EO →MSG a mapping from the event occurrences of P to the messages
they belong to. Then what is the meaning of [[ignore(P, Γ, µ)]]?

A first approach might yield

(I.1) [[ignore(P, Γ, µ)]] = 〈Σ∗ tt [[P]]+, Σ∗ tt [[P]]−〉

such that Σ = {x ∈ EO |µ(x) ∈ Γ}. The shuffle-operator tt is defined for
v, w ∈ Σ∗ and the empty sequence ε as ε tt w = w, v tt ε = v, and

xv tt yw = {x(v tt yw), y(xv tt w)}.

So, for example, shuffling the two sequences a.b and x.y.z yields the follow-
ing traces: a.b.x.y.z, a.x.b.y.z, a.x.y.b.z, a.x.y.z.b, x.a.b.y.z, x.a.y.b.z, x.a.y.z.b,
x.y.a.b.z, x.y.a.z.b, x.y.z.a.b. Observe, that the order of symbols from the origi-
nal traces is respected. The shuffle operator can be extended canonically to sets
of words, of course.

Interpreting assert as binary, one might alternatively define

(I.2) [[assert(P,Q, Γ, µ)]]+ = [[P]]+.Σ∗.[[Q]]+,

with Σ, Γ and µ as before. Recall that Γ denotes messages that are to be ignored,
so that in the semantics, all possible event occurrences corresponding to these
messages must be considered, which is just (µ(Γ))∗ = Σ∗.

These last two interpretations are problematic, of course, since now, many
contingent traces have become valid or invalid, and probably much more than
have been intended. Also, there may now be sequences of event occurrences of
arbitrary length between the trigger and the consequence, which might also not
be intended.

4.3 assert as implication

First of all, it is somewhat reminiscent of implication in classical logic (ignoring
the temporal aspect of assert for a moment). Here, I have for instance (α⇒ β)⇔
(¬α ∨ β). The two sides would correspond to assert(P,Q) and alt(P, neg(Q)),
respectively, and one would expect them to be equivalent in some sense, e.g., as

[[assert(P,Q)]] = [[alt(neg(P), Q)]].

Using [[alt(P,Q)]] = [[P]] ∪ [[Q]] as described above and interpretation N.3 from
above, I would yield

(A.2: imply) [[assert(P,Q)]]A.2 = 〈[[P]]− ∪ [[Q]]+, [[P]]+ ∪ [[Q]]−〉.

Note however, that under interpretation A.2, there is implication and disjunction
(and even negation), but there is no operator corresponding to conjunction. Also,
idempotency is not preserved, since

[[assert(P, P)]]A.2 = 〈[[P]]+ ∪ [[P]]−, [[P]]− ∪ [[P]]+〉,

that is, the specified traces are both valid and invalid, which does not make
much sense in general.

4.4 assert as consequence

In another sense, assert might be interpreted in a more temporal way, as is also
suggested by the standard, when declaring that “we expect a q message to occur
once a v has occurred” (cf. [15, p. 442, with a view to Fig. 345, see Figure 4
(left) in this paper]). Intuitively, this could be expressed as “if P has occurred,
then Q and only Q must follow”, i.e. formally

(A.3a) [[assert(P,Q)]]A.3a = 〈∅, [[P]]+.[[Q]]+〉.

This is unintuitive in the sense that P only may occur, but does not have to
occur. So, nothing at all needs to happen, and all other traces are contingent
(cf. Section 2.2).

One might instead interpret assert(P,Q) as “P must occur, and then Q must
follow”. This would result in

(A.3b) [[assert(P,Q)]]A.3b = 〈[[P]]+.[[Q]]+, [[P]]+.[[Q]]+〉.

Arguably, any traces forbidden by P and Q alone should still be forbidden
for assert(P,Q), so that one might want to refine interpretation A.3b to

(A.3c: next) [[assert(P,Q)]]A.3c = 〈[[P]]+.[[Q]]+, [[P]]− ∪ [[Q]]− ∪ [[P]]+.[[Q]]+〉.

Note that under this interpretation, assert(P,Q) is not syntactic sugar for
alt(seq(P,Q), neg(seq(P, neg(Q)))). Note also, that idempotency makes no sense
under this interpretation.

5 Design steps

In the previous sections I have attempted to provide intuitive and formally satis-
fying interpretations for the operators assert and neg. These attempts have led to
problems with the notions of valid and invalid traces. Therefore, in this section,
I try to explore the pragmatic justification of these notions.

One might presume, that the motivation for having two separate sets of
valid and invalid traces at the same time—and thus implicitly also a third set

of contingent traces—lies in an idea of consecutive refinement steps. Such a
sequence of refinements could carefully carve the desired system behavior out of
the totality of all traces.

As an analogy, consider the notion of loose semantics in abstract data types
(cf. [24]). There, providing more and more “axioms” for a “specification” in a
series of refinement steps allows less and less “implementations” for that “spec-
ification”. In this analogy, possible and impossible implementations would cor-
respond to valid and invalid traces. Adding axioms would correspond to adding
interaction fragments to a design (see Figure 5).

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

valid traces invalid tracescontingent
traces

refinement steps

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

valid traces invalid tracescontingent
traces

Fig. 5. Refinement reduces uncertainty: valid and invalid traces must and must not be
possible, respectively, while contingent only may be possible, but need not be.

5.1 Basic relationships

All relationships between two interactions such that one of them contains more
detail and less uncertainty than the other are called elaborations. Formally, P
elaborates Q (written P ; Q) iff [[P]]+ ⊇ [[Q]]+ ∧ [[P]]− ⊇ [[Q]]−. See Figure 5 for
an illustration.

An enrichment is a relationship where one interaction has more valid traces
than another, while nothing is said about the invalid traces. Formally, P enriches
Q (written P |=+ Q) iff [[P]]+ ⊇ [[Q]]+.

Conversely, a restriction is a relationship where one interaction has more
invalid traces than another, while nothing is said about the valid traces. Formally,
P restricts Q (written P |=− Q) iff [[P]]− ⊇ [[Q]]−.

Then, a refinement is a relationship where one interaction has both more
valid and more invalid traces than another, that is P refines Q (written P |= Q)
iff ([[P]]− ⊇ [[Q]]−) ∧ ([[P]]+ ⊇ [[Q]]+) or P |=+ Q ∧ P |=− Q, see Figure 5 for an
illustration.

Finally, two interactions P and Q are equivalent (written P = Q) iff
[[P]] = [[Q]], or P |= Q ∧ Q |= P . Similar to process algebras, constructions like
[[ignore(Q,Γ, µ)]] = [[P]] can be used as a kind of refinement-relationship. Note

that equivalence is the only relationship among interactions the standard men-
tions (“Two Interactions are equivalent if their pair[s] of trace-sets are equal”
(cf. [15, p. 420])), and that it is captured by equivalence as defined here.

Observe that only N.2 and A.1 constitute elaborations in the sense of
neg(P) ; P and assert(P) ; P . None of the other interpretations constitute
any other of the relationships defined here. However, defining an elaboration as
[[P]]+ ∪ [[P]]− ⊆ [[Q]]+ ∪ [[Q]]− would also cover N.3 (flip negate).

These two interpretations have in common that they completely remove con-
tingency. Thus, there can be no further (useful) elaborations afterwards, so there
is always only exactly one refinement step using assert or neg. So refinement must
really be achieved using other means, and so, refinement is not a justification
for assert and neg under interpretations N.2 and A.1. All other interpretations,
however, are not consistnt with the basic relationships defined above, and those
have been very basic indeed.

So either the notion of valid and invalid traces has to be abandoned in favor
of a simpler “single set of traces”-semantics. This would also imply to remove
the operator neg, and more or less fix interpretation A.3b for assert in the sense
that [[assert(P)]] = [[assert(P)]]+A.3b. Note, that [[assert(P)]]+A.3b = [[assert(P)]]+A.3c.

Or, alternatively, one might abandon the idea of refinement as a justification
for assert and neg and, again, the whole idea of valid and invalid traces. But
then, what justification is there?

In both cases, the standard needs clarification. One possible solution (the one
I find most convincing from a practitioners point of view) is briefly discussed in
Section 6 under the title “metalogical interpretation”.

5.2 Applying and tracking design steps

In this section, I look at the impact of design steps. For simplicity, I assume for
the time being, that a design consists of (versions of) only a single interaction
diagram. This is no real restriction, since a set of interactions can be simu-
lated using the alt-operator. So, the remarks and observations of this section can
equally be applied to sets of interactions.

During development and evolution of a system, I distinguish three classes of
design steps: detailing, adapting and realizing (see Figure 6).

Detailing means adding details so as to remove uncertainty. It subsumes all
activities that leave the set of all traces unchanged, but decreases the
number of contingent traces. This meaning is captured formally by
the elaboration-relationship.

Adapting means changing a design to accommodate new ideas about a sys-
tem. It can result in changed or unchanged sets of valid and invalid
traces, and it can also change the overall set of traces (or leave it
unchanged). There is no formal meaning for this kind of design step,
but it can be

Realizing means that an interaction is taken as the specification of a be-
havioral model or a program. No implementation has contingency -

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

actual traces impossible traces

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

valid traces invalid tracescontingent
traces

refinement steps

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

uncovered
traces refuted tracesverified traces or Test Cases

Realization

Specification

Final Specification

Fig. 6. Design as a sequence of refinement steps. A final step of realization completely
removes all remaining contingencies.

traces are either possible, or impossible, and thus valid or invalid.
Realizing is also a kind of elaboration-relationship.

These design steps and the underlying relationships between interactions may
be used in a number of practical scenarios.

– Suppose that a specification given as an interaction P is realized by a system
S, whose behavior is completely described by an interaction R. It can be
automatically checked whether actually R ; P , e.g. by model-checking the
valid and the invalid traces of P vs. R.

– Seen in a different way, the valid traces of P may be used as test cases for
S. The invalid traces can not be tested of course, as this would require a
complete test coverage. For this usage, thus, only enrichments are necessary.

– Imagine a maintenance project of a large system, where the people in charge
of doing a certain modification do not have adequate knowledge of the sys-
tem, possibly because the system is poorly documented, and the knowledge
is lost. Such systems would typically have quite a large population of inter-
actions, as compared to the modification in question. Here, it is very easy
to accidentally introduce an interaction Q such that [[Q]]+ ∩ [[Q]]− 6= ∅ (like
alt(P, neg(P))) under interpretation N.2). Obviously, this makes no sense,
and thus, Q should be refuted by an automated tool as being inconsistent.

– Suppose, that a series of design steps is being applied to an interaction P0

resulting in P1, . . . , Pn. The impact of the design steps is easily determined
by comparing [[Pi]] with [[Pi+k]]. Now assume that at some point, a valid
trace t is identified that really should be invalid, or the other way round.
When trying to eliminate this trace, one must be careful not to introduce
another error instead. For this task, thus, it would be helpful to be able to
automatically track the origin of the trace by identifying the design step that
introduced t, so as to determin whether it was an accident or not. To this
end, one must find i such that t ∈ [[Pi]]+ but t 6∈ [[Pi+1]]+.

Clearly, these scenarios could be supported by automated tools implementing
the relationships defined above. It is currently unclear, whether it is possible to
have a calculus of refactoring design steps which might be formally justified.

6 Discussion

In this paper I have discussed several possible interpretations for the operators
assert and negate as declared in the new UML 2.0 standard. It turns out that
the explanations given in the standard are by no means adequate. It is thus
currently not clear what the contribution of these operators in UML 2.0 to
verification of and reasoning about software system will be. There are a number
of open questions that remain to be explored.

Metalogical interpretation From a pragmatic perspective, a trace is a prop-
erty, namely, that a given system does (or does not) exhibit a certain behaviour.
The assert and neg are of a different kind in that they make statements about
traces rather than modifying them. So, they are more like the operators in inter-
action overview diagrams. For this purpose however, assert and neg are not very
powerful. So why not remove them from interactions and embed interactions in
a traditional logic, e.g., like in Figure 7.

Trace ::= UML-Interaction

Expr ::= Trace

| ¬ Expr

| Expr ∧ Expr

| Expr ∨ Expr

| Expr =⇒ Expr

| 2 Expr

[[Trace]] = the trace

[[¬Expr]] = [[Expr]]
[[Expr1 ∧ Expr2]] = [[Expr1]] ∩ [[Expr2]]
[[Expr1 ∨ Expr2]] = [[Expr1]] ∪ [[Expr2]]

[[Expr1 =⇒ Expr2]] = [[Expr1]] ∪ [[Expr2]]
[[2Expr]] = Σ∗.[[Expr]]

Fig. 7. A temporal logic built out of traces: syntax (left) and semantics (right).

This is also very appealing when the underlying semantics is defined using
other formalisms than traces, e.g., partial languages or a notation like TTCN,
for the notion of a complement is even less trivial there.

Comparative concurrency semantics Section 2.3 very briefly sketches the
relationships between the traditional notions of concurrency semantics and those
defined by UML. As we have seen, the current definitions as proposed in the stan-
dard are somewhat deficient. So, it might be interesting to further study this
relationship, and try to adopt notions and tools from that area. As a starter,
consider the interaction between complete/partial traces and some interpreta-
tions of assert.

Non-classical logics In section 4.3, I attempted a logic interpretation of assert
which failed for classical logic. But what about other logics like linear and intu-
itionistic logics? In intuitionistic logic, I have

(1) ¬(¬¬α =⇒ α) and (2) α =⇒ ¬¬α.

When translating the first axiom into neg(assert(neg(neg(P)), P)) and using in-
terpretations A.2 and N.2, this makes sense, in a way, since [[assert(P, P)]]A.2 is
contradictory. The other axiom is not true, however.

Another element of classical logics missing in intuitionistic logic is the princi-
ple of “tertium non datur”, which when applied to UML 2.0-interactions would
require the set of contingent traces to be empty always. This certainly removes
a number of problems.

Tools One of the benefits of formal semantics is the possibility of building
automated tools using the semantics for validation, verification and visualization
purposes. I have already implemented a prototype of such a tool, formalizing the
semantics and some equivalence notions. The operators neg and assert, however,
need clarification before they can be added to such a tool. Or rather, in the
meantime, experiments with different interpretations of these operators might
shed light on their meaning and usefulness.

6.1 Related Work

There are many variants of Message Sequence Charts (MSCs), such as the 1996
and 2000 versions of the standard proper, UML 1.4 collaborations [14], Life
Sequence Charts [3] and Extended Event Traces [10]. Of course, there is a body
of work concerning the formal semantics of these, including [1, 5, 8, 9, 11, 12, 20,
21, 25]. See [10] and [18] for exhaustive surveys.

Acknowledgments Thanks go to Stephan Merz and Alexander Knapp for
discussions and proof reading. Also, I’d like to thank the four anonymous referees
for their helpful remarks.

References

1. Rajesh Alur, Gerard J. Holzmann, and Doron Peled. An Analyzer for Message
Sequence Charts. Software–Concepts and Tools, (17):70–77, 1996.

2. S.D. Brookes, Charles A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential programs. Journal of the ACM, 31(3):560–599, 1984.

3. Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. In Proc. 3rd Intl. Conf. Formal Methods for Open Object-based Distributed
Systems. IFIP, 1999.

4. Rob J. H. van Glabbeek. Comparative Concurrency Semantics and Refinement of
Actions. Number 109 in CWI Tracts. CWI, Amsterdam, 1996. 2nd Ed.

5. Peter Graubmann, Ekkart Rudolph, and Jens Grabowski. Towards a Petri-net
based semantics definition for Message Sequence Charts. pages 179–190, 1993.

6. ITU-T. Recommenration Z.120. Message Sequence Charts (MSC). International
Telecommunication Union, 1996.

7. ITU-T. Recommenration Z.120. Message Sequence Charts (MSC). International
Telecommunication Union, 2000.

8. Alexander Knapp. A Formal Semantics for UML Interactions. In Robert France
and Bernhard Rumpe, editors, Proc. 2nd Intl. Conf. on the Unified Modeling Lan-
guage (�UML� 1999)., number 1723 in LNCS, pages 116–130. Springer Verlag,
1999.

9. Piotr Kosiuczenko and Martin Wirsing. Towards an Integration of Message Se-
quence Charts and Timed Maude. In Murat M. Tanik, Jiro Tanaka, Kiyoshi Itoh,
Michael Goedicke, Wilhelm Rossak, Hartmut Ehrig, and Franz Kurfeß, editors,
Proc. 3rd Intl. Conf. Integrated Design and Process Technology (IDPT’98), Berlin,
July 5-9, 1998.

10. Ingolf Krüger. Distributed System Design with Message Sequence Charts. PhD
thesis, TU München, 2000.

11. Stefan Leue. Methods and Semantics forTelecommunications Systems Engineering.
PhD thesis, Universität Bern, 1995.

12. Sjouke Mauw and Michel A. Reniers. An Algebraic Semantics of Basic Message
Sequence Charts. The Computer Journal, 37(4), 1994.

13. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
14. OMG. Unified Modeling Language Specification (draft, version 1.4), February

2001.
15. OMG. Unified Modeling Language: Superstructure version 2.0 (Final adopted

Specification of August, 2nd, 2003), August 2003.
16. OMG Unified Modeling Language Specification (version 1.3), June 1998. Available

at uml.shl.com.
17. Wolfgang Reisig. Petri-Nets: an Introduction. Springer Verlag, 1985.
18. Michel Adriaan Reniers. Message Sequence Charts - Syntax and Semantics. PhD

thesis, TU Eindhoven, 1999.
19. Bran Selic, Stuart Kent, and Andy Evans, editors. Proc. 3rd Intl. Conf. �UML�

2000—Advancing the Standard, number 1939 in LNCS. Springer Verlag, October
2000.

20. Harald Störrle. A Petri-Net Semantics for Sequence Diagrams. In Katharina Spies
and Bernhard Schätz, editors, 9. GI/ITG Fachgespräch Formale Beschreibung-
stechniken für verteilte Systeme (FBT’99), June 1999.

21. Harald Störrle. Models of Software Architecture. Design and Analysis with UML
and Petri-nets. PhD thesis, LMU München, Inst. f. Informatik, December 2000.
ISBN 3-8311-1330-0.

22. Harald Störrle. Interactions in UML 2. Technical Report 0304, LMU München,
Institut für Informatik, August 2003.

23. Harald Störrle. Semantics of Interactions in UML 2.0. In N.N., editor, Proc.
Intl. Symp. Visual Languages and Formal Methods. IEEE CS Press, October 2003.
accepted for publication.

24. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor, Handbook of
theoretical Computer Science, pages 675–788. Elsevier, 1990.

25. Martin Wirsing and Alexander Knapp. A formal approach to object-oriented soft-
ware engineering. J. Theoretical Computer Science, 285:519–560, 2002.

Towards a UML Profile for Security Assessment

Siv Hilde Houmb and Kine Kvernstad Hansen

Norwegian University of Science and Technology, Department of Computer and
Information Science

Sem Slands vei 7-9, NO-7491 Trondheim, Norway
(siv.hilde.houmb, kine.kvernstad.hansen)@idi.ntnu.no

Abstract. Security assessment is a multidisciplinary task involving both
technical and non-technical stakeholders. One major challenge when per-
forming such assessments is to establish a common understanding of
threats, vulnerabilities and security risks among the different groups of
stakeholders participating in the assessment. In order to enhance com-
munication, we need easily understandable representation of the differ-
ent concepts. In this paper we presents SecurityAssessmentUML, a UML
profile for model-based security assessments. The main objective of Se-
curityAssessmentUML is to support documentation of output from risk
identification and risk analysis in a security assessment. In particular,
the profile supports specification of threat scenarios demonstrating how
attacks may occur, as well as fault tree inspired activity diagrams for
analysing the frequency of these attacks.
Keywords: UML Profiles, Security Extension to UML, Security Assess-
ment

1 Introduction

Modern society heavily relies on networked information systems. The risks asso-
ciated with these systems may threaten the economical and physical well-being
of people and organisations. Unavailability of a Telemedicine platform may, for
instance, result in loss of life, while an organisation conducting business elec-
tronically can be subject to major economic loss as a result of a successful
denial-of-service attack.

Risk assessments and management techniques have been widely used within
the safety domain since World War II [13]. This is not the case within the se-
curity domain where there has been more focus on technical solutions rather
than providing the arguments for their necessity. There are therefore no largely
used standard or practise for using risk assessment to identify and assess security
incidents. However, the EU IST-project CORAS [5] has developed a framework
for model-based risk assessment of security critical systems based on the Aus-
tralian/New Zealand Standard for risk management AS/NZS 4360:1999 [2], the
security standards ISO/IEC 17799 [9] and ISO/IEC 13355 [8] and the safety
standard IEC 61508 [7]. Further, CORAS has developed a UML profile for doc-
umenting results from risk assessment as part of their framework [6]. The UML-
profile covers part of the activities in the risk management process, but does not
provide detailed guidelines and support for documenting threat scenarios.

1.1 Related Work

The OCTAVE framework [1], developed by the NSS Program at SEI, provides
guidelines enabling organisations to develop appropriate protection strategies
based on identified risks to critical information assets. Others relevant frame-
works are CRAMM [3], ATAM [4] and RSDS [12]. However, these methods and
frameworks does not provide support for model-based risk assessment (MBRA).
Model-based risk assessment make use of models both to describe the system and
as input to risk assessment. This strategy is supported by the CORAS framework
[16]. CORAS provide a integrated system development and risk management
process based on AS/NZS 4360:1999, RM-ODP and RUP. It emphasises reuse
and communication in a system development and risk management setting.

There exist some UML profiles targeting security. UMLsec [10] [11], a se-
curity extension to UML, provide support for encapsulating security require-
ments as non-functional requirements in system development. Another example
is secureUML [14], which defines a vocabulary to express different aspects of
access control, like roles, role permissions and user-role assignments. Within the
MBRA-domain CORAS [6] has developed a UML profile for model-based risk
assessment based on the integrated process of CORAS. In [15] an extension to
UML use case diagrams for documenting unintended behaviour, Misuse Cases,
is presented.

This work is inspired by the idea from CRAMM by focusing on revealing
possible vulnerabilities in a system, rather than focusing on identifying threats.
Further, we make use of the asset-oriented process of CORAS and reuse the
steretypes for assets and asset values provided by their UML profile. Both the
CORAS UML profile and SecurityAssessmentUML are inspired and reuse nota-
tion and ideas from Misuse Cases.

2 SecurityAssessmentUML

SecurityAssessmentUML is a UML profile designed to document result from
security assessment. The profile is specified as an extension to UML1.4 and
provides support for UML sequence and activity diagrams for risk identification
and UML activity diagrams for risk analysis. The aim of the profile is to support
non-technical stakeholders in a security assessment.

When deciding on which UML diagrams to support, only the five behavioural
diagrams of UML were considered. The reason for this is that security assessment
focuses on the behaviour aspects of a system and not on its static structures.
Collaboration diagrams are not included as they present similar information as
sequence diagrams. Use case diagrams are not suitable in this context as they
solely represent functionality of the system and are mainly used when elaborating
on functional requirements. Statechart diagrams are already supported by the
CORAS UML profile and thus not included in this version of the profile.

2.1 Risk Identification

Figure 1 describes the mapping of concept of risk identification, while Figure
2 illustrated an example of documentation of an attack using the extensions.
Figure 2 documents a fabrication attack where an outsider sends a virus to a
mail-server through a mail-gateway. In this diagram, events representing threats
or unwanted incidents are distinguished from normal events. Further, the misuser
is distinguished from a normal actor.

UML extension Description

Unwanted incident

Misuser

<<unwanted incident>>Message This stereotype is used to

distinguish unwanted incidents
from normal messages.

Actor instance <<misuser>> This stereotype is used to

distinguish misusers from normal
users (actors). The tag type refers

to whether the misuser is insider
or outsider. The tag intention

refers to whether the misuse is
intended or unintended.

*{type}
*{intension}

Threat Message <<threat>> This stereotype is used to
distinguish threats from normal

and abnormal messages.

This stereotype is used to
distinguish objects containing

vulnerabilities from normal
objects. The tag vulnerability is

used to specify the vulnerability. If
more than one vulnerability is

present, several vulnerability tags
should be used (and numbered).

Concept Mapping to existing UML

Vulnerability << vulnerability>>Object

*{vulnerability}

Asset Object <<asset>> Stereotype from CORAS UML
profile.

Fig. 1. Mapping of concepts to UML sequence diagrams for risk identification

Figure 3 depicts the mapping of concepts of risk identification for activity
diagrams, while Figure 4 provides an example of documenting an attack using
these extensions. The examples documents how a threat may exploit a vulnera-
bility in the mail-gateway (no virus-wall) leading to an unwanted incident.

2.2 Risk Analysis

For risk analysis SecurityAssessmentUML support UML activity diagrams. The
activity diagrams from risk identification is extended with logical gates in order
to compute calculations based on the diagrams. For this reason we extend activ-
ity diagrams with notation from the safety analysis method Fault Tree Analysis
(FTA) [13]. FTA are widely used within the safety domain and there exist tools
that perform automatic calculation based on the Boolean logic in the fault trees.

:Mail -gateway

{vulnerability = no_antivirusprogram }

:Mail -server

send(virus)

send(virus)

infect(virus)

:Misuser
{type = outsider})

:Mail -gateway

{vulnerability = no_antivirusprogram }

:Mail -server

send(virus)

send(virus)

infect(virus)

:Misuser
{type = outsider})

Fig. 2. Example attack documented using extensions to sequence diagrams

Vulnerability

Unwanted incident

Threat

Guard << vulnerability>>

<<unwanted incident>>

This stereotype is used to mark
that a guard connected to a
branch is a test for whether or not
a vulnerability exists. The tag
asset is used to represent the
entity containing the vulnerability.
The tag vulnerability can be used
to further specify the vulnerability.

Activity state This stereotype is used to
distinguish activity states involving
unwanted incidents from normal
activity states

Activity state <<threat>> This stereotype is used to
distinguish activity states
introducing threats to the system
from normal activity states.

*{asset}
*{vulnerability}

Concept Mapping to existing UML UML extension Description

Fig. 3. Mapping of concepts to UML activity diagrams for risk identification

FTA is primarily a means for analysing causes of threats, not identifying
threats [13]. An undesired system state is specified and the method works back-
wards to determine its possible causes. The result of an FTA is a hierarchy of
undesired events using Boolean logic to depict the logical interrelationships of
individual faults. Each level in the tree consist of the combination of undesired
events that needs to be present in order to cause the event in the level above.
Figure 1 presents the stereotypes for FTA activity diagrams (activity diagrams
using stereotypes for FTA notation). The remaining concepts in FTA is subject
for inclusion in further work. We will also provide tool-support for direct cal-
culation based on the FTA activity diagram by providing transformation from
FTA activity diagrams to fault tree representation.

The tag frequency/likelihood are attached to all activity states, while conse-
quence value and risk level only relates to the unwanted incident (the top event).
Rules for estimating risk level using either qualitative or quantitative values for

Misuser send
message
containing
virus

Message
containing virus
sent to
mail-server

Message
infect
mail-server

{asset=mail-gateway}
no virus-wall]

[else]

[

Fig. 4. Example attack documented using extension to activity diagrams

Concept Mapping to existing UML UML extension Description

AND-gate

OR-gate

Transfer up

Transfer down

Fork and join

Branch

Activity state

Activity state

This stereotype is used to substitute use of
fork and join with an AND symbol in order to
simplify the notation.

This stereotype is used to substitute use of
branch with an OR symbol in order to simplify
the notation.

This stereotype is used to distinguish the top
event in a decomposed tree from a ”normal”
top event.

This stereotype is used to distinguish an event
that is further decomposed from normal activity
states.

OR

AND

This stereotype is used to distinguish basic
events from normal activity states.

Basic event Activity state

Fig. 5. Mapping of concepts to UML activity diagrams for use of fault tree notation

likelihood/frequency and consequence are not included in this paper. For in-
formation on this issue the reader is referred to litteratur on FTA [13] (which
provides both qualitative and quantitative calculation rules) and CORAS (see
publications at [5]). Figure 6 presents an example of a FTA activity diagram.
The example documents a hierarchy of events leading to the unwanted incident
”Server infected”. The unwanted incident will occur if there are accessible open
ports in the FireWall and no other security mechanism for detecting viruses are
included.

Table 1. Mapping of concepts to UML activity diagrams for frequency, consequence and risk level
specification

Concept Mapping to exist-
ing UML

UML extension Description

Frequency/likelihoodTagged value on ac-
tivity state

{frequency = value}
{likelihood = value}

This tagged value is
used to specify the fre-
quency/likelihood of an
event. Frequency is used
when quantitative values
are available. In other cases
likelihood is used.

Consequence Tagged value on ac-
tivity state

{consequence =
value}

This tagged value is used
to specify the consequence
value of an unwanted inci-
dent.

Risk level Tagged value on ac-
tivity state

{risk level = value} This tagged value is used to
specify the risk level esti-
mate of an unwanted inci-
dent.

3 Conclusion and Further Work

In this paper we have presented SecurityAssessmentUML, a UML profile sup-
porting documentation of results from security assessment. The profile aims at
specifying concrete threat scenarios demonstrating the relationship between un-
desired events, their frequencies, consequences and impacts.

Based on the extensions provided, three types of threat scenario diagrams are
supported. For risk identification the profile provides extensions to sequence and
activity diagrams. For risk analysis the profile supports an FTA extension to ac-
tivity diagrams, including tagged values to document the values of consequence,
frequency and risk level. All stereotypes are defined both by text strings in brack-
ets and by icons. Ideally, diagrams should be understandable for non-technical
stakeholders and at the same time preserve the semantic of the language. How-
ever, this is not the case for the fault-tree inspired activity diagram, which uses
a hybrid between FTA and activity diagram notation.

Due to lack of extensive evaluation SecurityAssessmentUML is in a draft
version. The preliminary evaluation, using a small field study and expert judge-
ment, of the profile has identified some main areas for improvement. The most
significant limitation is the lack of support for specifying the effects of unwanted
incidents on asset values. Another important aspect is to incorporate the support
for asset identification and asset valuing as specified in the CORAS framework.

The preliminary evaluation identified four main areas for further work:

– Support for documenting effect on asset value
SecurityAssessmentUML does not specify how to document the effects of
unwanted incidents on asset values. Since this is essential in security assess-
ments it should be included in the next version of the profile.

– Extension to support documentation of threats categorised as sys-
tem failure

No other
mechanism for
detecting
virus

Hole in
 firewall

Attack is
initiated

Server
infected

{consequence = moderate,
frequency = y1 * y2,

risk level = moderate}

{frequency = x 2}{frequency = x1}

{frequency = y1} {frequency = y2 = x1 * x2}

System contains
security breaches

AND

AND

Fig. 6. Example of FTA notation extensions to activity diagrams

SecurityAssessmentUML does only supports documentation of threats cate-
gorised as attacks. Support for specifying system failures should be subject
for further work.

– Extension to support all sub-processes in the risk management
process
SecurityAssessmentUML supports documentation of output from two of the
sub-processes in the security assessment process. The profile should be ex-
tended to allow documentation of output from all sub-processes. For infor-
mation on the different sub-processes see [6].

– Extensive evaluation
In order to draw valid conclusions about the usefulness of SecurityAssess-

mentUML, whether it further communication and interaction among stake-
holders with no prior knowledge of UML and whether all necessary concepts
are covered, extensive evaluations must be performed. The evaluation should
include trials using more detailed and varied assessment results, as well as
extending the group of experts used in the expert judgment.

Acknowledgments: The profile presented in this paper is based on the CORAS
UML Profile for Model-based risk assessment and other results from the IST-
project CORAS. Furthermore, we would like to thank the participants in the
judgement study along with Kai Hansen, ABB Research, Norway, for valuable
input on the diagrams, Karine Sørby and Ørjan Lillevik for useful discussions
on the profile.

References

1. C. J Alberts, S. G. Behrens, R. D. Pethia, and W. R. Wilson. Operationally critical
threat, asset, and vulnerability evaluation (octave) framework, version 1.0. Techni-
cal report, Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA, June 1999.

2. Australian/New Zealand Standard AS/NZS 4360:1999: Risk Management. Strath-
field: Standards Australia.

3. B. Barber and J. Davey. The use of the ccta risk analysis and management method-
ology CRAMM. In Proc. MEDINFO92, North Holland, pages 1589–1593, 1992.

4. P. Clements, R. Kazman, and M. Klein. Evaluating software architectures: Methods
and case studies. Addison-Wesley, 2002. ISBN: 020170482X.

5. CORAS IST-2000-25031 Web Site. http://www.nr.no/coras. 24 February 2003.

6. S. H. Houmb, F. den Braber, M. S. Lund, and K. Stølen. Towards a UML Profile
for Model-Based Risk Assessment. In Critical systems development with UML -
Proceedings of the UML’02 workshop, pages 79–91, September 2002.

7. IEC 61508: 2000 Functional Safety of Electrical/Electronic/Programmable Elec-
tronic (E/E/PE) Safety-Related Systems.

8. ISO/IEC 13335: Information Technology - Guidelines for the management of IT
Security. http://www.iso.ch.

9. ISO/IEC 17799: 2000 Information technology - Code of practise for information
security management.

10. J. Jurjens. UMLsec: Extending UML for Secure Systems Development. Software
& Systems Engineering, Dep. of Informatics, Munich University of Technology.

11. Jan Jürjens. Towards development of secure systems using UMLsec. In Heinrich
Hussmann, editor, Fundamental Approaches to Software Engineering, 4th Inter-
national Conference, FASE 2001, held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001,
Proceedings, volume 2029 of LNCS, pages 187–200. Springer, 2001.

12. K. Lano, K. Androutsopoulos, and D. Clark. Structuring and design of reactive
systems using RSDS and B. proc. fase 2000. In LNCS, volume 1783, pages 97–111,
2000.

13. N. G. Leveson. Safeware: System safety and computers. Addison-Wesley, 1995.
ISBN: 0-201-11972-2.

14. Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: A UML-
Based Modeling Language for Model-Driven Security. In Jean-Marc Jézéquel, Hein-
rich Hussmann, and Stephen Cook, editors, UML 2002 - The Unified Modeling Lan-
guage. Model Engineering, Languages, Concepts, and Tools. 5th International Con-
ference, Dresden, Germany, September/October 2002, Proceedings, volume 2460 of
LNCS, pages 426–441. Springer, 2002.

15. G. Sindre and A.L. Opdahl. Eliciting security requirements by misuse cases. In
TOOLS-PACIFIC 2000, pages 120–131. IEEE Computer Society Press Sydney,
Australia, 2000. Los Alamitos.

16. K. Stølen, F. den Braber, T. Dimitrakos, R. Fredriksen, B. A. Gran, S. H. Houmb,
Y. C. Stamatiou, and J. Ø. Aagedal. Model-based risk assessment in a component-
based software engineering process: The CORAS approach to identify security
risks. In F. Barbier, editor, Business Component-Based Software Engineering,
pages 189–207. Kluwer, 2003.

Predicting Software Performance Based on UML Models during the
Unified Software Development Process

Zhongfu Xu1, Johannes Lüthi2, and Axel Lehmann1

1 Institute of Technical Informatics

Department of Informatics
University of the Federal Armed Forces Munich

85577 Neubiberg, Germany
Tel: +49(89)6004-2607/2648

Fax: +49(89)6004-2268
Email: xu, lehmann@informatik.unibw-muenchen.de

2 Business Informatics

FHS KufsteinTirol
6330 Kufstein, Austria

Tel: +43 (5372) 71819-172
Fax: +43(5372) 71819-104

Email: Johannes.luethi@fh-kufstein.ac.at

Abstract: In order to develop high-quality software more efficiently, the Unified Software Development
Process (USDP) can be enhanced by predicting software performance concurrently during design. We present
a framework for predicting software performance based on UML (Unified Modeling Language) models
during USDP. By mapping software execution onto physical computer resources, we define a metamodel to
prescribe information required for performance prediction. USDP functional models are extended with
performance-related information before building executable and deployable software products. Based on
these information, performance models can be constructed and analyzed with respect to software performance
properties. Thus, expensive test and tuning costs can be avoided. The proposed approach highlights the
integration of the performance prediction process as part of the software analysis and design process. It also
emphasizes impacts of implementation details on performance prediction, and aims at automated performance
prediction.

Keywords: Unified Software Development Process (USDP), Unified Modeling Language (UML), software
performance prediction, extending functional models, performance prediction metamodel

1 Introduction

1.1 Background and Motivation

Software performance analyses reflect the dynamic behavior of programs during execution by measures of the
the external effectiveness (such as execution time/response time) and of the internal efficiency (such as resource
usage). Performance analysis should be integrated into the software development process in order to develop
high-quality software more efficiently. Before implementation, quantitative methods should be used to evaluate
whether the selected software architecture and design solutions will satisfy performance requirements.
Implementation should be based on validated software design, avoiding expensive post-tuning costs.

 The Unified Software Development Process (USDP) is a use case-driven, architecture-centric, iterative and
incremental process for developing and deploying software systems [3]. USDP was developed with the intention
of being commonly followed by the software development community. Within USDP the Unified Modeling
Language (UML) [1, 6] is used as the language for constructing and documenting software models. Each so-
called USDP development cycle is composed of four phases. Each phase is further broken down into iterations.
An iteration consists of five core workflows. In the requirements workflow, the functional requirements of the
software system are captured as use cases. In the analysis workflow, the use cases are refined in order to improve
understanding of the functional requirements. In the design workflow, the design- and deployment models are
built to provide the input to the subsequent implementation and testing activities. Finally, in the implementation
workflow, the executable system is implemented in terms of components. The primary purpose of the test
workflow is to verify that the software system correctly provides the functionality described by the use cases.
Software builds with defects have to go through earlier workflows such as analysis, design and implementation
again. These core workflows are guided by the software system architecture design that addresses the most
significant static and dynamic aspects of the software system (see the book [3] for more details about USDP).

 The software development project in the Unified Software Development Process is driven by the functional
requirements in that the workflows are initiated from the use cases [3]. Performance requirements specify the
conditions under which the functional requirements should be fulfilled. No proposal, however, is made in USDP
to use quantitative analysis methods to predict and control software performance properties.

1.2 Performance Modeling within the USDP

Most performance problems are caused by fundamental architecture or design problems [5, 11]. When these
problems are detected in the test workflow or observed by the users of the software system, fixing them then
necessitates substantial revision to the software system and causes high costs. In extreme cases, the project must
be canceled since performance objectives can not be met by tuning.

 In order to avoid the expensive post-tuning efforts, the software system architecture and software designs
should be justified before they are used for implementing, testing, and deploying executable software products.
To achieve this goal, the Unified Software Development Process can be enhanced with predicting software
performance. Based on the current software system architecture and software designs, performance prediction
models can be constructed and analyzed to obtain predictions about software performance. If the prediction
results indicate performance bottlenecks, the current software system architecture and software designs are
revised, and the performance prediction process is redone. Otherwise, the software development evolves to the
implementation and testing.

 In USDP, software models are constructed using UML in a functionality-oriented way, and information lacks
that is necessary for deriving and specifying variables of the performance prediction models to be built. The
functional UML models should be extended to include the required performance-related information. In order to
make the design-based performance prediction more applicable and acceptable for software engineers, among
others, we consider the following requirements to be important with reference to making performance extensions
on functional UML models:

- Performance extensions should be made by using the same modeling language (i.e. UML) and tool as used

for constructing functional models. The main advantage is time-saving for the development team (Only
UML models are built, evolved, and maintained in one engineering environment).

- Only built-in UML extensibility mechanisms should be employed for special needs in a standardized way

without violating the understandability of the resulting UML models.

- Corresponding to the level of abstraction needed by performance prediction, a mechanism should be

provided to define: which information in the functional models can be directly used or rewritten, which
information should be supplemented, and how these information should be represented in UML. The
definition of performance extensions should be described in non-performance-specific terminologies. It
should not be mandatory for the software developer to have the knowledge about the performance modeling
formalisms and methods to be used.

- With support of the UML tools in use, performance extensions should provide a basis for automated

generation of performance prediction models to obtain rapid and informative performance feedbacks. This is
also important for achieving consistency between the functional models and the generated performance
prediction models in that the updates made on functional models can be automatically imported into the
performance prediction models.

 In this work, aimed at obtaining estimations about the external effectiveness and internal efficiency of
software before implementation, we present a framework (outlined in Figure 1) for extending the functionality-
oriented UML-based software models in USDP with information required for generating performance prediction
models.

Figure 1: Outline of the framework for extending USDP functional models to predict software performance

 In the following we provide a concise description of the presented framework, and conclude the paper by
comparing the proposed approach to the related work and discussing the possible future work.

2 Extending USDP Functional Models for Predicting Software Performance

2.1 Performance Prediction Metamodel

We define a metamodel (shown in the UML class diagram in Figure 2) to prescribe information required for
software performance prediction. Which computer devices will participate in a use case execution, parameters
and quantitative behavior of the participating computer devices, together with the pattern in which the users
require a use case, constitute the most important performance-related information. Before implementation, this
information is not visible in and should be supplemented to the functional models.

 The users impose requests on the software system when they require a use case. Users of a use case are
categorized so that the intensity and temporal property of the requests generated by each user category can be
described uniquely with a request pattern, which can be open or closed. An open request pattern describes the
requests generated by users arriving at the system from the outside. For an open request pattern the request inter-
arrival time is specified. A closed request pattern means that the requests are generated by a fixed number of
users who continually interact with the software system. The users enter requests, examine responses, and submit
the next request after a certain think time. The time duration, during which the requests are generated, is
specified for each request pattern (open or closed).

Figure 2: Performance prediction metamodel

 In USDP design workflows, the dynamic aspects of a use case realization are represented by a sequence of
operations performed by design objects (i.e. instances of design classes). In USDP implementation workflows
these operations are realized by suitable algorithms and data structures in the file components implementing the
corresponding design classes. The operation functionality will be reified as a set of activities that are performed
at runtime by physical computer devices contained in computational nodes. For the purpose of predicting
software performance before implementation, these activities are abstracted as a set of atomic tasks, each of
which is executed solely by one computer device. An atomic task is not decomposable in that its work is not
interruptible. A computer device is one of the physical hardware resources, such as CPU, I/O device, and
network device.

 The processing of a user request (i.e., execution of a use case) is then represented as a sequence of atomic
tasks. Parameters are defined for each atomic task to specify the execution time needed by the host computer
device, the number of successive repetitions of the task execution, and the priority of the task. It is possible that a
computer device is exclusively used by a user request for a period of time to execute its tasks. The exclusive
usage begins when a task of this user request locks the computer device, and terminates when a task of this user
request set the computer device free for the other user requests. Two parameters, lock and free, are defined for
task related to the exclusive usage of computer devices. They describe which computer device is exclusively

used and the duration of task execution before the computer device is locked or set free by this task. The atomic
tasks are related to each other in a predecessor/successor relationship, meaning that only after the execution of a
predecessor can the execution of the successor(s) start.

 Computer devices are contained in computational nodes. Functionally identical computer devices have a
unique name. If the quantity is greater than one, the policy for deploying atomic tasks among these identical
computer devices is characterized by the parameter taskDeployingPolicy, which may be request-specific or
distributed. A request-specific policy indicates that when these identical computer devices are required by a user
request for the first time, the user request is processed by one of the multiple computer devices according to the
task scheduling discipline, and all the tasks for this user request are routed to the chosen one for executions
(when required). A distributed task deploying policy means that tasks for the same user request can be
distributed among the identical computer devices. The deployment of tasks among the multiple computer devices
is determined by the task scheduling discipline of the computer devices.

 The policy in which atomic tasks are executed by a computer device may be FCFS (First-Come-First-
Served), or PR (Preempt-Resume), or PS (Processor-Sharing), or LCFS (Last-Come-First-Served). These
policies imply that the computer device has a task buffer. An immediate task scheduling discipline indicates that
the tasks are executed immediately upon their arrival without waiting, and a task buffer is unnecessary.

 Time intervals are defined for specifying parameters of several metamodel elements. A time interval may be
specified by a probability distribution function, or be a fixed value whose type may be average, or maximal, or
minimal. It is straightforward to extend the definition of time intervals with more probability distribution
functions.

2.2 Performance Extensions on USDP Functional Models

1. Extension of the Use Case Model

In the USDP requirements workflows, UML use case diagrams are used to represent the use case model as a
whole by showing the use cases, system users, and their relationships. The use case diagram is extended by
attaching user request descriptions (including type, duration, intensity and temporal property) to the associations
between user categories (represented by actors) and the required use cases.

 Figure 3 shows the use case diagram of an ATM system used by bank customers to get account information,
to withdraw from and deposit to accounts, and to transfer money between accounts. These functional
requirements are captured as four use cases. Two categories of users require Get_AccountInfo use case in the
daytime and nighttime respectively. The request patterns for two user categories are open and have a maximal
duration of 12 hours. Request inter-arrival times are specified by an exponential distribution function with 30
seconds and 600 seconds as mean values. As shown in Figure 2, fixed time intervals are specified as (“fixed”,
type, value, timeUnit), and probability distribution functions as (probability distribution function name,
parameter(s) and value(s), timeUnit).

Figure 3: Extended use case diagram for an ATM system

2. Extension of the Design Model

In the design model dynamic realization of a use case is represented by the interactions between design objects
in one or more UML sequence diagrams. We emphasize the use of message labels [6] to specify the
predecessor/successor relationship of operation invocations caused by message dispatches among design objects,
and conditional and iterative operation invocations. The design model is extended by constructing a UML
activity diagram for each use case under consideration, as follows. The constructed activity diagram presents the
collaboration of computer devices that participate in the use case realization.

 First, operations performed by design objects in the sequence diagrams are mapped to decomposable activity
states in the activity diagram to be constructed. The time ordering of operations is retained by properly
connecting the activity states with transitions. Special building blocks in the activity diagram notation are used to
represent concurrent, conditional, and iterative execution of operations: (a) two synchronization bars enclose
parallel operation branches. (b) Two decision icons indicate the starting and end points of conditional operation
branches. Execution conditions are evaluated to quantify probabilities with which the conditional operation
branches are executed. They are specified to the transitions pointing to the first operation in each conditional
branch. (c) Two dummy action states represent a loop within which an operation or a sequence of operations is
executed iteratively. Looping number is specified for the dummy action states. These special building block pairs
are named and numerated to make them uniquely distinguishable.

 Second, the functionality of each operation is decomposed into atomic tasks. The decomposition process
begins with the operations in the deepest nesting level (i.e. operations without nested operations). The
corresponding activity state is substituted by a collection of indecomposable action states (representing atomic
tasks within this operation) interconnected by transitions. Pairs of synchronization bars, decision icons, and
dummy action states are also used to represent concurrent, conditional, and iterative execution of atomic tasks.

 Finally, runtime properties are specified for each atomic task by assigning the parameters of Task in the
metamodel. The atomic tasks are associated with computer devices by specifying the name of the host computer
device for each atomic task. This way, the atomic tasks represent the quantitative behavior of the computer
devices that participate in the execution of the use case, and the constructed activity diagram describes the
collaboration of the participating computer devices.

 Figure 4 shows a fragment of the UML sequence diagram describing the realization of Get_AccountInfo use
case of the ATM system. The ATM system will be implemented in the client/server architecture. Objects user
and client on ATM side communicate through Internet with remote objects accountManagerImpl and
accountImpl on bank server side. Java is used in system implementation. Java RMI (Remote Method Invocation)
is used to achieve transparent object distribution. As shown in the sequence diagram, readInCardID of client is
the first invoked operation followed by enterPSW of user and readInPSW of client. (PSW: password)

Figure 4: A fragment of the sequence diagram for Get_AccountInfo

 Figure 5 shows a fragment of the activity diagram constructed on the basis of the sequence diagram for
Get_AccountInfo use case in Figure 3. Operations enterPSW and readInPSW are mapped to two atomic tasks:
enterPassword and readInPassword. Operation readInCardID is decomposed into two atomic tasks getCardIDs
executed by computer devices cardReader and ATMCPU, respectively. CardReader is locked by getCardID
before its execution since a user interacts with ATM without interruption.

Figure 5: A fragment of the activity diagram constructed for Get_AccountInfo

3. Extension of the Deployment Model

The deployment diagram in the deployment model shows the configuration of runtime computational nodes and
the interconnecting network. It also shows the distribution of design objects among computational node
instances. It is extended to include the computer devices that are identified during decomposing operations of
design objects into atomic tasks. The computer devices instantiate ComputerDevice in the metamodel. They are
contained in the computational node instances and used by design objects. Name and quantity are specified for
each computer device and computational node instance. Properties are specified for each computer device by
assigning parameters of ComputerDevice in the metamodel. Stereotypes [1, 6] based on ComputerDevice can be
defined and instantiated to represent special computer devices, such as CPUs.

 As shown in Figure 6, 400 ATMs communicate with a bank server through Internet. Each ATM instance
contains three computer devices: ATMCPU, cardReader, and printer. Based on ComputerDevice, a stereotype
named processor is defined for representing CPUs in ATMs and bank server. It has two additional parameters:
MIPS (Million machine Instructions Per Second) and ratio high-level to machine instructions.

Figure 6: Extended deployment diagram for Get_AccountInfo

2.3 Extraction and Reformulation of Performance-Related Information

In this work, Together Control Center 6.1 [2] is used to construct and extend the functional UML models. The
Unisys Extension in the Together Control Center automatically exports the resulted UML models into an XML
(eXtensible Markup Language) [12] file (called software-model-XML-file). The structure of this software-
model-XML-file is defined by a DTD (Document Type Definition) file whose name is UMLX13-11.dtd. This
DTD was generated from the UML 1.3 physical metamodel [6] by following the rules described in the XML-
based Metadata Interchange (XMI) specification 1.1 [7].

 The software-model-XML-file contains performance-related information, together with other information
being insignificant for software performance prediction, for example, the graphical model layout. We have
implemented in Java a converter to extract performance-related information from the software-model-XML-file,
primarily including information about system users and their requests (from use case model), about a user
request processing (from activity diagrams in design model), and about physical computer devices participating
in the software execution (from deployment model). The extracted information is described concisely in a
performance-XML-file whose structure is defined by the metamodel-DTD.

 The metamodel-DTD file reformulates the performance prediction metamodel shown in Figure 2. The
metamodel elements are represented by XML elements. Their parameters are represented by attributes of the
corresponding XML elements. Associations between metamodel elements provide the basis for specifying the
nesting and referencing relationship among XML elements.

 The performance-XML-file is used as the input for constructing performance prediction models, such as
queuing network models. The generated performance models are evaluated to produce estimations of
performance properties of software. The performance estimations are used to determine whether the software
development evolves to implement the software system based on the selected software architecture and design. If
architecture and design alternatives are suggested, they are reevaluated before the executable software is
implemented.

3 Conclusion and Future Work

Integrating performance analysis into the software engineering process has been identified already a long time
ago to be of substantial importance. However, the lack of overlap between tools for both, software engineering
and performance analysis, has prevented the full integration of performance modeling techniques into the
software development process. Since the unified modeling language (UML) became a quasi-standard for
software engineering, significant research work has been published on methods and tools to evaluate software
performance and architecture solutions based on UML models. Some work maps functional UML models to
performance modeling mechanisms (e.g. in [9]); UML-based tools and notations are developed for performance
modeling and calculation (e.g. in [4]); the built-in UML extensibility mechanisms are used to extend UML
models with performance information (e.g. in [8]); several commercial UML tools, e.g. Rational Rose Real-Time
[10], support the automatic generation of executable code and direct execution of UML models during the
development of real-time and embedded systems.

 In addition to existing work on integrating software performance engineering within software design, the
work presented in this paper makes the following contributions: (i) A performance prediction process is
integrated into the software development process. Functional models are extended with performance-related
information used as the basis for quantitative performance modeling and calculation. (ii) Performance prediction
is closely related to the emerging software implementation, in particular, the participating computer resources
and their quantitative behavior. This increases the credibility and usefulness of the performance prediction
results. (iii) Performance-related information is defined in a metamodel in the engineering terms that are easily
understandable for software developers. The software developers are sheltered from the knowledge of
performance modeling and calculation. They can concentrate on providing performance-related information in a
software engineering way and leave the construction and solution of performance prediction models to those
having expertise. (iv) UML is used both for constructing the functional models and extending them with
performance-related information. This is supported by standard UML modeling tools. (v) Performance
information is described concisely in XML after it is automatically extracted from the extended functional
models. This provides the flexibility for choosing available performance analysis tools to obtain performance
prediction results quickly.

 Our work will continue to adapt the current project to the upcoming UML 2.0, with the expectation that the
updates, refinements, and expansions to UML infra- and superstructure will be completely supported by the
mainstream UML tools in the near future.

4 References

[1] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison-Wesley

(1999)
[2] Borland Software Corporation: Together Control Center 6.1.

(http://www.borland.com/together/index.html)
[3] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addison-Wesley

(1999)
[4] Kähkipuro, P.: “UML-Based Performance Modeling Framework for Component-Based Distributed

Systems”. In: Dumke, R. et al. (eds.): Performance Engineering - State of the Art and Current Trends.
LNCS 2047. Springer-Verlag, Berlin (2001) 167-184

[5] Kazman, R. et al.: “The Architecture Tradeoff Analysis Method”. Technical Report. CMU/SEI-98-TR-
008. Software Engineering Institute, Carnegie Mellon University. Pittsburgh (1998)

[6] Object Management Group (OMG): Unified Modeling Language Specification, version 1.3.
(http://www.omg.org/cgi-bin/doc?formal/00-03-01.pdf)

[7] Object Management Group (OMG): XML Metadata Interchange (XMI) Specification, version 1.1.
(http://www.omg.org/cgi-bin/doc?formal/00-11-02)

[8] Petriu, D.C., Shen, H.: “Applying the UML Performance Profile: Graph Grammar-Based Derivation of
LQN Models from UML Specifications”. In: Field, T. et al. (eds.): Proceedings Performance TOOLS
2002. London, UK (2002)

[9] Pooley, R., King, P.: “The Unified Modeling Language and Performance Engineering”. In: IEE
Proceedings-Software, Vol. 146, No. 1. (1999) 2-10

[10] Rational Software Corporation. (http://www.rational.com) (2003)
[11] Smith, C.U.: Performance Engineering of Software Systems, Addison-Wesley (1990)
[12] World Wide Web Consortium (W3C) Recommendation: Extensible Markup Language (XML) 1.0

(Second Edition).(http://www.w3.org/TR/2000/REC-xml-20001006)

A Dual Language Approach to the Development of
Time-Critical Systems with UML

Luigi Lavazza1,3, Sandro Morasca2, Angelo Morzenti 1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione,
P.zza Leonardo Da Vinci, 32, 20133 Milano, Italy
{lavazza,morzenti}@elet.polimi.it

2 Università degli Studi dell’Insubria,
Dipartimento di Scienze Chimiche, Fisiche e Matematiche,

Via Valleggio 11, 22100, Como, Italy
sandro.morasca@uninsubria.it

3 CEFRIEL,
Via Fucini 2, 20133, Milano, Italy

Abstract. The development of time-critical systems requires the availability of
notations that are expressive, rigorous, easy to use, and provided with software
tools. In particular it is important that such notations are able to express the
time-related features of the systems, in a way that is formal enough to support
activities like property verification, test case generation, etc. For this purpose
we propose a dual-language approach. In addition to the typical UML (and
UML-RT) diagrams, we also propose a descriptive formalism to specify the
properties of a system and its components. Specifically, this description consists
of a formula of a new logic, called OTL (Object Temporal Logic), which is an
extension of OCL. The proposed approach is applied to a case study derived
from the industrial experiences of the authors.

1 Introduction

The development of time-critical systems requires the availability of notations that are
expressive, rigorous, easy to use, and provided with software tools at the same time.
Time-critical software systems are usually complex ones and need to be modeled and
analyzed from several different perspectives, such as their functional behavior, their
temporal behavior, and their structure. It is unlikely that a single notation may de-
scribe all of these aspects adequately, so several notations have been proposed in the
past. UML [1] is being increasingly used for the development of complex systems
such as real-time software. However, past versions of UML were not able to deal with
time-related aspects. Only recently were timing features added to the UML notation,
but their introduction is still tentative, incomplete, and not well integrated with the
other aspects of UML. In addition, the practical application of UML to the real-time
domain is hindered by UML's lack of a complete set of constructs to express time-
related constraints and properties, as well as by its lack of formal semantics.

As a first attempt to provide a way to deal with time-related aspects with UML,
UML for Real-Time (alias UML-RT) has been defined on the basis of ROOM [6] and
has been adopted by several developers. However, the application of UML-RT to the
real-time domain still suffers from several problems. In particular, UML-RT is not
formally well defined, it is an effective notation for the design and implementation of
systems, but not for representing requirements or specifications, finally, time-related
information (i.e., the representation of time and time constraints) is not treated at a
native level, but often only through ad-hoc components (like timers). These problems
are particularly relevant since it has been proposed to include several concepts of
UML-RT into the forthcoming UML 2.0. Moreover, since the notion of Time has also
been included in the proposal for UML 2.0, it seems quite urgent to enhance OCL
with the possibility to deal with time.

An adequate solution to the problem of dealing with time-related aspects with UML
will need to go one step forward. In particular, high rigor of syntactic and especially
semantic definition is needed, together with high integration and consistency with the
rest of the UML notation.

In this paper, we propose an extension to UML that addresses these problems via a
set of carefully thought and balanced notations which can be used by practitioners in
industrial environments and can support suitable development methods for time-
critical systems. As a matter of fact, our proposal for extending/specializing UML for
time critical systems is not only a notation, unrelated to the development process. This
specialized domain requires systematic and rigorous development, centered on ex-
plicit, possibly formal requirements specification, and requirement validation and
verification are also of crucial importance.

The notation we propose is centered on architectural diagrams that correspond to
UML-RT collaboration diagrams. System components are modeled via a small set of
fundamental constructs: capsules correspond to components; ports and protocols
model abstract interfaces (i.e., they describe only the alphabet, not the behavior); and
connectors correspond to communication relations. The partitioning of a complex
system into a set of components (i.e., parts) that conceptually evolve in parallel and
communicate via connectors can be iterated to an arbitrary level of depth. This results
in a tree-shaped hierarchy of parts and sub-parts, where the root corresponds to the
overall system being modeled, and the leaves to the components that are not further
structured, which are modeled in an operational style with a state-transition machine.

We also propose a descriptive formalism to specify the properties of a system and
its components, whose style is complementary to that of statecharts. Specifically, this
description consists of a formula of a new logic, called OTL (Object Temporal Logic),
which we define in such a way as to make it compatible with OCL (Object Constraint
Language).

Thus, we propose a “dual language” approach: the OTL part is an abstract specifi-
cation of the properties, constraints and temporal relations that must hold among the
states, events, and signals of the statechart machine associated with the same capsule.
OTL formulas and the statechart associated to a given capsule/component are in the
classical specification/implementation relation that is typical of dual language ap-
proaches to the development of reactive systems.

2 The OTL language

The Object Constraint Language (OCL) defined in UML can be used to state behav-
ioral properties of a system and its parts. However, when dealing with time-dependent
systems, OCL needs to be extended to fully specify temporal aspects, e.g., to specify
the time distance between events, that cannot represented with plain OCL.

We propose Object Temporal Logic (OTL) as a temporal logic extension to OCL.
Based on one fundamental temporal operator, OTL provides the typical basic tempo-
ral operators of temporal logics, i.e., Always, Sometimes, Until, etc. In addition, OTL
allows the modeler to reason about time in a quantitative fashion. OTL is a part of a
UML-based formalism, so it is totally integrated with the other UML notations. As far
as the OCL 2.0 standard library is concerned, OTL extends it by adding two new
classes, Time and Duration (see Fig. 1). Class Time models time instants,
which are defined based on the current time taken as the time origin. Class Dura-
tion models duration of time intervals, i.e., the distance between two time instants.
Duration objects may be positive or negative numbers: a Duration d that is
added to a Time object (see below the ‘+’ operator for class Time) is interpreted as
a displacement towards the future if d is positive, towards the past if d is negative.
The notion of a time interval can be suitably defined in terms of the concepts of Time
and Duration. The existence of both classes Time and Duration allows for a con-
ceptually proper treatment of time and the definition of sensible operations involving
objects of the two classes. For instance, class Time provides (1) an operation ‘≤’ that
checks the ordering between its objects, so we can say if a time instant precedes or
follows another time instant; (2) an operation ‘dist’ for finding the time distance
between two instants, which returns an object of class Duration, positive, null, or
negative, depending on the relative position of the considered Time points; (3) an
operation ‘+’ that takes a parameter d of class Duration and returns the Time ob-
ject that lies at a time distance d in the future if d is positive or in the past if d is nega-
tive; and (4) an operation called futrInterval (and a symmetric one for the past,
called pastInterval) that takes a parameter of class Duration and returns a
Collection all of Time points within a distance d in the future (respectively, the
operator pastInterval returns the Collection of all Time points within a
distance d in the past). Class Duration has sum and subtraction operations between
its objects: for instance, the sum of two time distances is a new time distance, whose
extension is the sum of the extensions of the original time distances. These operations
allow modelers to use quantitative time.
Time and Duration may be discrete or dense, depending on the application at

hand, or on the (sub)system that is described by the given UML model. From a meth-
odological viewpoint, one can note that a continuous time is useful when modeling the
evolution over time of intrinsically continuous physical entities (e.g., a temperature or
a voltage) that are external to the device or system under development and that must
be monitored or controlled. In this case the use of continuous entities is indispensable
even for just expressing the user requirements, and a fortiori for analyzing and prov-
ing their satisfaction on the System Requirements analysis [7]. On the other hand
discrete time will suffice to model parts corresponding to digital, synchronous devices

and in general in the UML artifacts related with detailed specification, design and
implementation of the device under development.

To allow for the evaluation of a predicate p at a time different than the current one,
OTL introduces a new semantic primitive as a method of class Time, in a way that is
consistent with the OCL notation. Thus, given a time instant t, represented as an ob-
ject t of class Time, the evaluation of e at time t is denoted as follows:

t.eval(e)

Method eval receives an OclExpression as the parameter (e) and returns a
value of the type of e. Its meaning is that expression e is evaluated at time t.

 OclAny

String

OclType RealOclModelElement

Boolean

Integer

Time Duration

OclState

OclVoid

Fig. 1. The OCL standard library extended with types Time, Duration and Interval

Our extensions do not require any change in the metamodel of OCL: types Time and
Duration are simply added to the OCL standard library as specializations of
OclAny. The full definition of these classes is not reported here for space reasons.

To provide modelers with expressive tools to describe time-critical systems, it is
useful and convenient to define a set of temporal operators. For instance,

 context C
 inv: Lasts(p, d)

specifies that predicate p holds in the interval from the current time and lasting d
time units. This statement can be defined as a shorthand for the following expression,
where the term now denotes the time with reference to which the (sub)formula is in-
terpreted, and, being T a set of objects of class Time, formula T->forall(t:
Time|t.eval(P)) is true if and only if p is true at all time instants in T.

context C
 inv: let I: Set(Time) = now.futrInterval(d) in
 I->forall(t: Time| t.eval(p))

As additional notational conventions, we use inf to denote the infinite Duration
value, and we abbreviate the basic temporal operator t.eval(p) into the more

convenient and intuitive syntax p@t. With these conventions in mind, other operators
can be easily defined in a similar manner, as reported in the following table.

name of
operator

intuitive
meaning

formal definition

Futr(p,d) d time units in
the future

p@(now + d)

SomF(p) sometimes let I: Set(Time) = now.futrInterval(inf)
 in I->exists(t: Time| p@t)

AlwF(p) always let I: Set(Time) = now.futrInterval(inf)
 in I->forall(t: Time| p@t)

WithinF(p,d) within d time
units

let I: Set(Time) = now.futrInterval(d)
 in I->exists(t: Time| p@t)

Until(p,q) p holds until q
occurs

let I: Set(Time) = now.futrInterval(inf)
 in I->exists(t:Time| q@t and
 Lasts(p,t-now))

Similar operators concerning the past can be defined using the pastInterval
operator of Time: for instance, the past counterparts of the operators defined above
would be called: Lasted(p,d), Past(p,d), SomP(p), AlwP(p),
WithinP(p,d), and Since(p,q). For operators that refer to time intervals we
also adopt the convention of adding a suffix to indicate explicitly whether the ex-
tremes of the interval are included or not; we use the letter ‘i’ to denote inclusion, and
letter ‘e’ to denote exclusion; for instance the formula Lasts_ie(p,d) states that
property p holds starting from now (included) to now+d (excluded).

As a useful shorthand we will use the constructs futr(v,d) and past(v,d)
(where v is a any term, and d is a term of class Duration) as terms to denote the
value of any given term v at a distance of d time units in the future or in the past with
respect to now. For instance, futr(v,d) is defined as v@(now+d).

3 A Case Study

We illustrate our dual language approach by providing a small fragment of the specifi-
cation of a digital energy and power meter. The meter is composed of a magnetic
transducer (a device called “G. Ferraris” after the name of its inventor) that converts
the electric energy flow through the line into the rotation of a disc. In the peripheral
part of the disc transparent and opaque portions are evenly alternated, with the pur-
pose of permitting the detection of the disc position and its velocity (which are respec-
tively proportional to energy and power consumption) by means of a photocell. The
energy meter includes, besides the G. Ferraris, and the disk, a device, called Reader,
that provides the sampling signal for the photocells and detects the full/empty position
of the disk from the reading of the photocell signal. A further device, called CostAs-
sign, determines the cost for the client of each consumed quantum of energy, based on
the current time and date and on the applicable tariff, and a final one, called Totalizer
computes the total amount of the invoice to be sent periodically to the client. The
UML model of the system, not reported here for space reasons, can be found else-
where [10].

By means of OTL a few global properties of the system can be specified precisely
and clearly.
• The amount of used energy reported by the device (represented by attribute

EnergyUsedReported of class CostAssign) is monotonic.
context CostAssign
 inv: EnergyUsedReported() >= past(EnergyUsedReported(), d)

In the statement above d is a (implicitly) universally quantified variable, therefore
the statement above is equivalent to the following:
context CostAssign
 inv: let D: Set(Duration) = All_possible_durations in

 D->forall(d: Duration| EnergyUsedReported() >=
 past(EnergyUsedReported(), d))

• The cost of the energy consumed at constant tariff increases linearly, proportion-
ally to the consumed energy and the tariff:
context Totalizer
inv: Lasted(Tariff.CurrentTariff()=tc,d) implies
 (TotalCost - past(TotalCost,d) = tc*
 (CostAssign.EnergyUsedReported()-
 past(CostAssign.EnergyUsedReported(),d))

In the statement above CurrentTariff is a method of class Tariff , which re-
turns the tariff currently applied. TotalCost is an attribute of class Totalizer
which represents the total cost of the energy consumed up to the current time.

• The difference (absolute value) between the energy reported used and the energy
actually used is always less than a given (small) amount:
context CostAssign
inv: abs(EnergyUsedReported()-past(EnergyUsedReported(),d)-
(Environment.EnergyUsed-past(Environment.EnergyUsed,d)))<0.01

In the statement above EnergyUsed is an attribute of Environment, which repre-
sents the amount of energy actually consumed.

Note that the above property guarantees that the consumer does not have to pay more
than the due, while the energy company does not get paid less than due.

4 Conclusions

The development of real-time critical applications calls for a specific process and
rigorous notation. We propose a “dual language” approach, where UML provides the
constructs for modeling the structure of the system and the behavior of the system’s
components. A new descriptive language based on temporal logic, called OTL, allows
the developer to assert properties of the system at an abstract specification level.

The notation we propose should be used in the context of an organized develop-
ment process to fully take advantage of its characteristics. This process requires that
the description of the software system, the environment in which it operates, and the
user requirements is complete and precise. In particular, the system model will typi-
cally include: the capsules of the collaboration diagrams representing the “domains”

of the problem and the elements of the solution; the statecharts, describing the behav-
ior of each capsule; the OTL specifications representing user requirements at the most
abstract level.

Such a system description –once supported by suitable tools–allows developers to:
validate and verify the specification through simulation and model checking, to ensure
that a model satisfies the properties specified with OTL (i.e., the provided statecharts
are a valid “implementation” of the system behavior); support verification by generat-
ing functional test cases that can guarantee (to a reasonable extent) that the implemen-
tation of the system is consistent with its specifications.

The literature already contains a few proposals for augmenting OCL to deal with
time-dependent systems (see [5]). Some of them (e.g., [2,9]) deal with time only from
a qualitative viewpoint, i.e., no notion of temporal distance between events is pro-
vided. Another proposal allows modelers to deal with time in a quantitative fashion,
by extending the set of operators of OCL [3]. However, in the latter approach a dis-
crete time is associated with the system states and events, while in our approach real
values can be used to represent time.

References

1. OMG Unified Modeling Language Specification Version 1.5, March 2003, for-
mal/03-03-01. http://www.omg.org.

2. Cengarle, M.V., Knapp, A.: Towards OCL/RT. In Lars-Henrik Eriksson and Peter
Alexander Lindsay, editors, Proc. 11th Int. Symp. Formal Methods Europe, Berlin
2002, Springer LNCS 2391.

3. Flake, S., Müller, W.: An OCL Extension for Real-Time Constraints. In T. Clark
and J. Warmer (Eds.), Advances in Object Modelling with OCL, Springer Verlag,
October 2001

4. A. Morzenti, P. San Pietro, “Object-Oriented Logic Specifications of Time Critical
Systems”, ACM TOSEM - Transactions on Software Engineering and Methodol-
ogy, vol.3, n.1, January 1994, pp. 56-98.

5. Rammig, F.J.: OCL Goes Real-Time. Proc. of the Fifth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing, IEEE 2002.

6. Selic B.,Gullekson G.,Ward P.: Real-Time Object-Oriented Modeling. Wiley 1994
7. A. Gargantini, A. Morzenti, "Automated Deductive Requirements Analysis of

Critical Systems", ACM TOSEM - Transactions On Software Engineering and
Methodologies, Vol. 10, no. 3, July 2001, pp. 225-307.

8. D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the Temporal Analysis of Fairness,
7th ASM Symposium on Principles of Programming Languages, January 1980.

9. Ziemann, P. and Gogolla, M. An Extension of OCL with Temporal Logic. Critical
Systems Development with UML – Proceedings of the UML'02 workshop, pages
53–62. TUM, Institut fur Informatik, Septeber 2002, TUM-I0208.

10. Lavazza, L., Morasca, S., Morzenti, A.: “A Dual Language Approach to the De-
velopment of Time-Critical Systems with UML”, Politecnico di Milano, Diparti-
mento di Elettronica e Informazione, Technical report 2003.32, September 2003.

An Approach to Evaluate Real-Time Software
Architectures for Safety-Critical Systems

Jan van Katwijk1, Bo Sandén2, and Janusz Zalewski3

1 Faculty of ITS, Delft University of Technology

2628 CD Delft, The Netherlands
J.vanKatwijk@twi.tudelft.nl

2 Computer Science, Colorado Technical University
Colorado Springs, CO 80907, USA

bsanden@acm.org
3 Computer Science, Florida Gulf Coast University

Fort Myers, FL 33928, USA
zalewski@fgcu.edu

Abstract. The authors discuss two new measures and a semi-automated process to
evaluate real-time software architectures. First, concurrency level is introduced to
evaluate the structure of software architecture and assess its optimality. Next,
software sensitivity is presented as a measure of dynamic properties of an architecture,
based on the percentage of missed deadlines. Finally, an approach to evaluate
software safety is discussed in relation to software architectures. The paper concludes
with recommendations for incorporating the processes into a UML-based toolset.

1 Introduction

The objective of this paper is to outline an approach to evaluate real-time software
architectures and make recommendations for using them to enhance methods for the
development of real-time safety-critical software as well as to improve the effectiveness of
corresponding development tools. We can safely say that in recent years UML has become
the dominating notation and a standard for expressing software designs. Its design tools,
however, while able to produce sophisticated designs, are lacking any significant ability to
assess design quality. One definite advantage of enhancing such tools would be the
capability of automatic evaluation of architectural properties of software at the design
level.

In this study, we address the architecture evaluation aspect, with regard to real-time
safety-critical systems. The crucial point is to be able to evaluate the architectural design’s
structure and the behavior of the design model to help designers in selecting an optimal
solution. In this view, we need metrics to evaluate: static aspects of the software
architecture, including its structure; dynamic aspects, assessing primarily its behavior; and
external aspects to assess the effects that poorly designed architecture may have on
dependability.

The rest of the paper is structured as follows. In Section 2, we introduce a new
parameter, named concurrency level, to evaluate the structure of real-time software
architecture. Section 3 outlines the principles of a new metric called software sensitivity,
to evaluate behavior of real-time software. Section 4 discusses the evaluation of
dependability properties for software architecture, and Section 5 ends the paper with
conclusions.

2 Software Architecture: Concurrency Level and Optimality

Choosing the right overall software architecture is often crucial because one architecture
may require a much greater design and programming effort than another, may incur much
more run-time overhead, or be susceptible to specific design flaws. Since the very nature
of real-time systems is concurrency, the architecture of real-time software must involve
concurrency as well. One specific approach, entity-life modeling (ELM) [1] lets you
identify the possible architectures without a lengthy and overly detailed process.

In ELM, the tasks in the software are modeled on event threads in the problem domain.
These threads are identified by means of the following partitioning process:

1. Create an imaginary trace by putting all the event occurrences a software
system must handle along a time line. Include events that originate in the
problem domain and that the software has to react to, as well as events that
the software itself must initiate.
2. Partition the events in the trace into event threads such that:
(a) Each event occurrence belongs to exactly one thread
(b) Event occurrences in threads are separated by sufficient time for handling.

The events that are the subject of this partitioning occur in the domain, that is, they are
independent of a particular software design. They model any sort of input events, which are
always independent, and output events, which must be generated by software at specific
times to meet functional requirements. One must include time events [1].

The result of the partitioning is called a thread model of a problem, defined as a set of
event threads accounting for all relevant event occurrences in the problem. Each event
thread in the model generally becomes a software task. That way, the thread model of the
problem domain defines the software architecture.

As an example, consider the Real-Time Data Acquisition System. Such a system will
have a number of inputs from various sources, for example:

- T1, a sensor providing data periodically
- T2, another sensor delivering data on a non-periodic basis, in bursts
- T3, irregular commands of certain types (display, compute, etc.) from an operator.

Additional requirements placed on a typical real-time data acquisition system also include:
- T4, data recording by writing to a disk file every so often, and
- T5, computation of results based on data acquired from sensors.

The last two requirements contribute to system’s timeliness, since data (results of
computations and recording) must be delivered by strict deadlines. At first glance, one
may consider doing a computational action in the background, but that is not feasible, since
its results must be delivered on time.

Following the partitioning process outlined above, we may produce the sequencing of
events as shown in Fig. 2. Since events T1, T2 and T3 are completely independent, they
can occur at the same time. Event T4, data recording, is scheduled at some absolute times
and can also coincide with the three input events. Moreover, computations T5 are normally
scheduled after N sensor readout events and as such may also coincide with the
forthcoming events, in the worst case – with all four events previously mentioned.

The partitioning process does not limit the number of threads so in the extreme, each
event could have its own thread and task. Such a task would often depend on some other
task and could not run until the second task had completed processing. If two tasks always
run one at a time, one of them is usually unnecessary. To avoid unnecessary tasks, we need
to identify event threads that can be busy at the same time. The intuitive notion of
coincidental simultaneity captures this idea: event threads are independent if once in a
while they all happen to have an event occurring at the same time.

Fig. 1. Illustration of event simultaneity.

Strictly speaking, the likelihood that instantaneous events occur at the same time is zero.
To formally capture the notion of coincidental simultaneity, we shall say that threads co-
occur if an arbitrarily short time interval can be found where each of them has an event
occurring. An optimal thread model is one where all threads co-occur. There are times –
at least theoretically – when every thread in an optimal model has an event occurring.
Thus, the optimality criterion to describe the quality of a software architecture can be
judged based upon the number of threads constituting such architecture.

In most realistic problems, the number of events that can ever occur at the same time is
limited. The concurrency level of a problem is defined as the maximum number of events
ever occurring in an arbitrarily short interval. The number of threads in an optimal model
of a problem is equal to the problem’s concurrency level. In a real-time data acquisition
example, five events can occur simultaneously, as outlined in Fig. 2, therefore the
minimum and optimal number of threads (and tasks) is 5. This means that a correct design
with smaller number of tasks is not possible.

Overall, knowing the concurrency level of the problem, it should be possible for the tool
to automatically generate the optimal architecture. In the next section, we apply the
concept of concurrency level to develop generic real-time software architecture and
introduce a new measure called sensitivity, to evaluate real-time software behavior.

3 Evaluating Design Behavior: Software Sensitivity

Concurrency level and optimality deal exclusively with static aspects of software
architecture, its structure and composition. Once we have applied the concepts of
concurrency level and optimality of architecture to some real-time problem, can we go a bit
further and make some conclusions about the behavioral properties of such an architecture?

In [2] we discussed a template for a high-level architecture of real-time software. The
approach taken there, combined with the concept of concurrency level, is an excellent
starting point for a more systematic development of real-time safety-critical systems. Our
architecture of real-time software involves 7 types of events that ultimately map to
corresponding tasks, cooperating together towards a common goal. The components in this
architecture are derived with respect to the following generic classes of events (Fig. 2):

• measurements (sensors) and control (actuators)
• user interface (often in a form of Graphical User Interface – GUI)
• database storage and retrieval
• processing of the acquired data with some kind of computational algorithms
• communications with other processors over a bus or a network, and
• timing.

For every real-time application and functional requirements, the optimality of this
architecture can be easily proved in terms of a minimum number of concurrent events, that
is, the problem’s concurrency level.

Proc

Meas

Ctrl DBase

Timer GUI

Comm

Fig. 2. Architectural template for real-time software.

For this kind of architectural template, we can outline a benchmark to analyze its

behavior. Here we include only threads relevant to the data acquisition system, which
performs functions mentioned in the previous section: sensor readouts, computations,
database access, and user interface. Each of the corresponding tasks may run on the same
processor or on separate nodes communicating with other selected nodes as in Fig. 3 [3]:

Fig. 3. Five-task benchmark architecture.

• Task T1 is simulating a sensor. It generates a random integer once every 20
milliseconds and sends the data to Task T3.

• Task T2 is simulating another sensor. It generates periodically a random integer in
an interval of time, and sends the data to Task T3 for processing. The length of the
interval is randomly selected between 10 to 1000 milliseconds.

• Task T3 is a computational task, which accepts all incoming data and makes some
calculation. After computation, the task sends its results to Task T4 for storage.

• Task T4 accepts the data from Task T3 and stores it in a local file.
• Task T5 provides an interface for the user. The only commands are: to get the most

recent result from Task T3 and display it on the screen, to cause task T5 to
terminate all the tasks, including itself.

Under the assumption that a real-time system demonstrates satisfiable performance if it
meets its timing constraints (deadlines), we propose the following evaluation measures:

• the number of times the deadlines are missed (percentage of missed deadlines),
• the overall accumulated time by which the deadlines are missed;

which can be evaluated for a particular software module on a particular node.

Fig. 4. Percentage of deadlines missed by 2% in VxWorks experiments.

Sample measurements of the former parameter, taken for various configurations of

VxWorks and Java sockets and for various CORBA implementations, are presented in Fig.
4 and 5 [3]. Measurements were taken at task T3 for communication with task T2.

Fig. 5. Percentage of deadlines missed by 2% in CORBA experiments.

Some curves on the graphs descend smoothly, while some others descend sharply. For

example, Fig. 4 shows that the performance of VxWorks sockets implementation begins to
worsen rapidly when the deadline is shortened below 1 s. Therefore, we may want to study
what happens when the deadline is around 1 s. On the other hand, Fig. 5 shows that

CORBA TAO [4] is relatively indifferent to the predefined deadlines, the entire curve
remains fairly flat and none of the points exhibits anything special. This means that the
system is not very sensitive to changes of deadlines within the range studied.

Based on these observations, we define a new parameter as a metric for software
performance, called sensitivity:

Software sensitivity is a measure of how fast the software responses
change when deadlines are increased or decreased.

The interpretation of sensitivity is that the faster the curve descends the more sensitive
the respective system: a small change of a deadline length causes relatively larger changes
in the number of deadlines missed. Sensitivity shows whether performance degradation
occurs sharply or gracefully. Quantitatively, however, it is not just the slope of the curve.
It can be represented by the ratio of the change of response over the range of deadline
lengths for the changed interval. Sensitivity is a parameter that takes into account the slope
of each curve, in relative terms, to make curves and respective systems comparable.

The first step in calculating the sensitivity is to linearize the curve in the interesting
region. Then, to account for relative differences in absolute values of deadlines for
different systems, the actual value of sensitivity is calculated from the straight line fits,
according to the formula [4], where (x2,y2) and (x1,y1) are coordinates of respective points
on the straight line reflecting the range considered:

[(y2-y1)/ (y2+y1)/2] / [(x2-x1)/(x2+x1)/2]
That way we allow comparison of different systems, for which deadline lengths are in

different ranges, but the system’s speed of response, that is, sensitivity, may be equivalent.
Using this method, we can assess sensitivity of various implementations. For example,

the five-task model implementation with VxWorks sockets looks as the most sensitive one.
In a rather sophisticated air-traffic control simulator [3], sensitivity measurements showed
that the least sensitive part of the system. Discovering this relationship had a positive
impact on software redesign. Overall, the sensitivity parameter tells us, how fast the
system degrades, if the deadlines are shortened, that is, how fast it gets saturated.

4 Software Dependability Perspective

With both metrics introduced in previous sections, we can make evaluations of the
architecture for specific functional requirements placed on software. In safety-critical
systems, however, there is a number of requirements that are non-functional, such as
dependability requirements that include reliability, safety and security. They are relevant
to software architecture with respect to external conditions that may lead to software or
system malfunctions. Their assessment depends on something more than existing software
architecture, so making respective judgments is not possible by evaluating the architecture
only. The software’s impact on external systems and environment must be involved.

Essentially, there are two ways of dealing with the problem of meeting non-functional
requirements by software architecture. First, one can build software architecture
specifically designing it for safety. Second, one can verify properties of the architecture as
a part of the software development process. The former can be done by introducing a
redundancy mechanism into an architecture, so that it will not be optimal in a sense
outlined in Section 2, but will meet the additional requirements. One particular approach to
do this is to provide a safety guard or safety shell [5] that monitors signals exchanged
between the controller and the environment (Fig. 6).

To accomplish its mission, the safety shell must perform two functions: (1) detect
conditions that, if unchecked, will lead to a failure, and (2) respond to these conditions in a
manner that the system will return to safe operation. Both of these functions may be
implemented directly by building and analyzing a fault tree of the entire system.

Timing
Guard

 Primary
 Control

 Exception
 Handler

Other
Safety
Violations

Response CommandTiming
Violation

 State Guard

Safety ShellResponse Output
 Changes

 Protected I/O

 Physical Environment

Fig. 6. Illustration of a safety shell concept.

Detection of failures consists of three parts. The shell must detect when a command

issued by the controller will force the system into an unsafe state. It must check and
‘approve’ all commands issued by the controller before they reach the environment.
Secondly, the shell must detect when the physical environment has independently entered a
failure mode and must issue its own commands to restore the system to a safe state. Lastly,
the shell must keep track of all timing constraints that may cause the system to enter failure
modes and it must issue its own commands to prevent violation of these constraints. The
shell must detect both system state and time variant failure modes.

The second way of treating the problem focuses on means of verifying the software
architecture. In case of a safety shell, the safety related functions are separated from the
control functions, so verifying the shell independently is sufficient [6]. To accomplish this
goal for systems designed with UML, one has to have means of expressing safety
properties, usually time related, in a more formal way than current UML notation allows.

In [6] the authors proposed to verify UML models expressed in statecharts with
amendments on timing, by converting them to a formal description using extended timed
graphs (XTGs). The conversion process is based on mutual correspondence of the
notational elements. XTGs are then transformed to code with an automatic tool
XTGconverter, and the code is subject to verification by a PMC model checker [7]. The
entire design process of a real-time safety-critical software architecture looks as follows:

(a) producing separate designs for safety-critical and non-safety-critical parts
(b) expressing the designs in UML with statecharts
(c) converting the statecharts into XTGs
(d) generating XTG code for the model checker
(e) verifying properties with model checker.

The approach has been tested with safety shell for a number of case studies, including a
traffic light controller [5], a railroad crossing system, and various aspects of the Air-Traffic
Notification System (ANS) for the Future Air Navigation System (FANS) [6].

5 Conclusion

Real-time safety-critical systems are becoming a pervasive element of contemporary
society. Software development methodologies for these systems have made a significant
progress in recent years, but this trend has not been sufficiently backed by the development
of respective automatic tools. This paper presented a systematic view of designing
software architectures for such systems. It is based on two new metrics for evaluating real-
time software architectures and results in a procedure separating part of the architecture
responsible for safety aspects from the functional controller’s part.

The first metric, concurrency level, allows building and evaluation of the optimal
architecture, according to the criterion of a minimal number of threads in the problem
domain. A generic real-time software architecture can be built, for which a new parameter,
called software sensitivity, can be evaluated to estimate dynamic properties based on the
percentage of missed deadlines. This technique results in a software design pattern for
real-time architecture and can be used in constructing real-time software with UML [8].

Having assessed the software architecture in terms of its concurrency level and
sensitivity, we are able to see how it meets functional and performance requirements. For
evaluation of the degree of conformance with non-functional requirements, such as safety,
we propose amending the architecture by a component called safety shell. This allows for
separation of concerns and an independent verification of the safety related part. Design of
a safety shell can be normally done in UML using statecharts, that are subsequently
converted to Extended Timed Graphs and formally verified using model checking.

Future work should involve a more thorough study of real-time architectural
components and their properties, such as coupling, execution dependencies, operational
profiles, consequences of requirement changes, fault propagation, and hazard analysis at
the architectural level. Studies in real-time software architectures should be complemented
by evaluation of automatic software tools used for developing safety-critical software.

References

1. Sandén, B., Entity-Life Modeling: Modeling a Thread Architecture on the Problem Environment,

IEEE Software, Vol. 20, No. 4, pp. 70-78, July/August 2003
2. Zalewski, J., Real-Time Software Architectures and Design Patters: Fundamental Concepts and

Their Consequences, Annual Reviews in Control, Vol. 25, pp. 133-146, 2001
3. Guo, G., J. van Katwijk, J. Zalewski, A New Benchmark for Distributed Real-Time Systems:

Some Experimental Results, Proc. WRTP’03, 27th IFAC/IFIP/IEEE Workshop on Real-Time
Programming, Łagów, Poland, May 14-17, 2003, pp. 141-146

4. Schmidt, D.C., A.S. Gokhale, T.H. Harrison, A High-Performance End System Architecture for
Real-Time CORBA, IEEE Communications Magazine, Vol. 35, No. 2, pp. 72-77, February 1997

5. Anderson, E., J. van Katwijk, J. Zalewski, New Method of Improving Software Safety in Mission-
Critical Real-Time Systems, Proc. ISSC’99, 17th Int'l System Safety Conference, Orlando, Fla.,
August 16-21, 1999, pp. 587-596

6. van Katwijk, J., H. Toetenel, A.E.K. Sahraoui, E. Anderson, J. Zalewski, Specification and
Verification of a Safety Shell with Statecharts and Extended Timed Graphs, Proc. SAFECOMP
2000 - 19th Int'l Conf. on Safety, Reliability and Security, Rotterdam, The Netherlands, October
25-27, 2000, Springer-Verlag, Berlin, pp. 37-52

7. Al-Daraiseh, A., J. Zalewski, H. Toetenel, Expressing and Verifying Timing Requirements with
UML, Proc. SCI2001, 5th World Multi-Conference on Systemics, Cybernetics and Informatics,
Orlando, Fla., July 22-25, 2001, pp. 461-466

8. Sanz, R., J. Zalewski, Pattern-Based Control Systems Engineering, IEEE Control Systems, Vol.
23, No. 3, pp. 43-60, July 2003

Actions as Activities and Activities as Petri nets

João Paulo Barros1,2 ‡ and Lúıs Gomes1

1 Universidade Nova de Lisboa,
Faculdade de Ciências e Tecnologia, Dep. de Engenharia Electrotécnica,

Campus da FCT, 2825 Monte de Caparica - Portugal
2 Instituto Politécnico de Beja,

Escola Superior de Tecnologia e Gestão, Área Departamental de Engenharia,
Rua Afonso III, n. 1, 7800-050 Beja - Portugal

{jpb, lugo}@uninova.pt

Abstract. This paper proposes ways to view the rich semantics of ac-
tions as activities. This is achieved by unfolding the invoked activities
and the implicit joins and forks. The unfolding offers an explanation for
the semantics of actions by activities and also allows a simple translation
from an activities subset to a well-known Petri net class. One example
of an activity diagram and the respective Petri net is included.

1 Introduction

Contrary to UML 1.x, the UML 2.0 Activities packages are autonomous to stat-
echarts [1] and explicitly relate the respective flow model with Petri nets: ”Ac-
tivities are redesigned to use a Petri-like semantics instead of state machines.”
[1, page 292]. Although one author has advised that this statement is ”only
a metaphor for flow modeling without implying a complete mapping to Petri
nets” [2] we believe this metaphor can be made concrete to the point of being
useful. This paper, takes the analogy further by presenting ways to view the
semantics of actions as activities amenable to be translatable to the well-known
Place/Transition nets semantics.

Activities present significant similarities to Petri nets, namely the use of a
token-based semantics and the support for forks and joins. This makes Petri
nets a natural choice for the formalisation of well-identified activities subsets.
This formalisation has two distinct but related applications and associated ad-
vantages: (1) to improve the activity specification by explicitly relating activity
classes to well-known Petri nets concepts; (2) to allow a simple translation from
a subset of activity diagrams to Petri nets and also a reverse translation, from
Petri nets to the same activity diagrams subset.

We strongly believe that the new proposal for activities can significantly
widen the use of activity diagrams. Included in their extremely rich seman-
tics, the support for all common Petri nets concepts is especially noteworthy

‡ Work partially supported by a PRODEP III grant (Concurso 2/5.3/
PRODEP/2001, ref. 188.011/01).

as it makes activity diagrams amenable to several important areas where Petri
nets have been traditionally applied. These include critical systems develop-
ment, namely, embedded systems, hardware design, telecommunications, and
manufacturing systems. Moreover, activity diagrams benefit from the additional
advantage of being included in a UML environment. The comparison with Petri
nets also forces a classification in local and non-local behaviours. This separation
is especially important when implementation concerns are at stake. Namely, the
exclusive use of local behaviours can be of extreme importance for some parts
of the system, due to the known difficulties in implementing the synchronous
models in distributed and heterogeneous software/hardware systems.

As already stated, the paper uses Place/Transition nets and it is a known
fact that Place/Transition nets are easily extendable to high-level Petri nets,
namely to Coloured Petri nets [3]. Yet, due to space limitations and also to
avoid cluttering the paper with additional notations, we restrict ourselves to
low-level nets. It should be clear, though, that high-level tokens, and related
notational extensions, could be readily added to the used Petri nets. This makes
the model more suitable for embedded system applications, which, besides the
reactive part, also include data processing capabilities and real-time constraints.

2 Actions as activities, and activities as Petri nets

In this paper, we restrict to intermediate activities but without activity creation
and destruction, signals, and token termination across the activity or part of it.
Activity termination includes termination of all the token flows inside the activ-
ity. This ”termination of tokens” across the activity, or part of it, is sometimes
called abortion, and can not be specified by a Petri net due to its implicit non-
local effect. Yet, it is important to note that activity destruction, per se, is only
important if system resources have to be freed. If not, the resources for activity
implementation can remain available waiting for new tokens. For some critical
systems, for example if implemented in some hardware programmable devices
such as FPGAs, that static allocation of resources is probably preferred, as one
cannot afford the requirements (or the associated risk) of a dynamic invocation
implying dynamic memory allocation, the use of a call stack, or both. If there is
no real activity termination, tokens can always flow in and out of any activity.
This can be implemented by relying on the exclusive use of stream parameters.
Yet, there is no real need for that restriction: we allow the use of non-stream
object nodes and control nodes. As the activities do not really start or end,
but always exist, we will see the activity start pre-conditions as one possible
token reception semantics, and the activity end pre-conditions as one possible
token emission semantics. The other possible token reception and token emission
semantics are offered by stream input and stream output pins, respectively.

Next we present the paper’s main contribution: how actions can be seen as
static activities, making them amenable to a translation to Petri nets. Note
that due to major significant space restrictions, we do not present with the
desirable detail the mapping, from activity diagram nodes and edges, to Petri

e5

start

e1

e2

e3

e4

e5

a)

e1

e2

e3

e4

e5

c)b)

e1

e2

e3

e4finish

e1

e2

e3

e4

e5

d)

Fig. 1. a) One action; b) and c) two possibly equivalent activity diagrams; d) Hierar-
chical Petri net for activity diagram in c).

nets constructs. As a minimal, but hopefully sufficient, information we only state
the following simple but important mappings: object nodes are made places;
forks, joins, initial nodes, activity final, and flow final nodes are transitions;
edges are made transitions with one input and one output arc; and, for the sake
of simplicity, hyperedges are not considered.

Actions Actions are ”(...)not further decomposed within the activity.” but
”(...)may be complex in its effect and not be atomic” [1, p. 283]. We also know
that the action execution implies, with a few exceptions, an ”implicit join” and
an ”implicit fork” [1, page 281]. These are applied to the input and output pins,
respectively. Fig. 1a illustrates the definition of an action connected, exclusively,
to control edges. The simplest activity diagram for an atomic and instantaneous
action is given by simply joining the implicit join with the implicit fork as illus-
trated in Fig. 1b. Yet, the semantics of actions clearly points to the possibility
of a non-instantaneous execution: ”An action continues executing until it has
completed.” [1, page 281]. This suggests that an action is better defined by a
start join and a finish fork with an arbitrary activity diagram in between (see
Fig. 1c). As we also know that an action can be a call behaviour action, which
may reference an activity definition, we propose to see an action as a higher level
representation for an implicit join, an implicit fork, and an implicit activity.

In the Petri net domain, the call behaviour action corresponds to a macro
place. A macroplace gets its name from being a subnet connected to transitions
in the supernet, just like a Petri net place (see Fig. 1d). The Petri net has a
begin and a finish join/fork pair (in Petri net terms, transitions with input and
output arcs). The start transition models the possibility of multiple InitialNodes
inside the called activity, the same is to say, the possibility of multiple initial
token flows.

Parameters If the action has non-stream input (output) pins, all must have
tokens for the action to start (finish). This is defined by including the pins
in the input (output) of the implicit join (fork). Note that pins must match
activity parameters. Action input pins are needed for an action to start, and
action output pins are needed for an action to finish (see Fig. 2). Note also that
the join and fork are now join/fork pairs, or transitions in Petri nets terms.
The equivalent Petri net is similar enough to be readily obtainable from the
equivalent activity diagram in Fig. 2b.

p2

b)a)

e7 e7

e8

e2

e3

e4

e6e1

e5 e9

e2

e3

e4

e1

e5 e9

e8

e6

p1

p2

p3

p4

p1 p3

p4

start finish

Fig. 2. a) Action with input and output pins and b) the respective activity diagram.

e9

e1

e2

choiceS

e3

e4

e5

e6

e2

e4
e5

e1

e6

e8
e9

e10

e7

e11

e3

e12

e7

e8

e10

e11

e12

a) b)

choiceF

Fig. 3. a) An action with two input parameter sets, two output parameter sets (the
action in [1, page 354] but with additional input and output control edges; b) the
corresponding activity diagram.

Parameter set An action calling an activity can group its Pins in Parame-
terSets: ”A behaviour with input parameter sets can only accept inputs from
parameters in one of the sets per execution. A behaviour with output parameter
sets can only post outputs to the parameters in one of the sets per execution.”[1,
page 320]. Parameter sets can be defined by a generalisation of the idiom in Fig.
2b: each input (and output) parameter set has one associated implicit join (see
Fig. 3b).

The mutual exclusion between parameter sets is explicitly expressed by a test
on an object node with one token (choiceS and choiceF in Fig. 3b). The choiceS
gets its token back from any of the finish fork/join pairs. The Petri net is readily
obtained. The only significant transformation results from the duplication of
edges to remove the decision and merge nodes.

Reentrant behaviours Fig. 4a shows how to implement a re-entrant behaviour
for the implicit activity in Fig. 2a. To allow for orthogonal execution of token
flows, from each invocation, one has to implement some way to distinguishing
the tokens. This can be achieved by making the object node re-entrance level
be a deposit of different key values: one for each possible parallel execution.
The values are used to stamp all nodes of a given execution: when tokens pass
the start join/fork pair one key value is passed to it and attached to all exiting

e6

e7

e2

e3

e4

e1

e5 e8

a)

p1

p2 p3

start finish

re-entrance level e6

e7

e1

e5

e8

no re-entrance

no re-entrance

choice

e2

e3

e4

b)

Fig. 4. a) Action calling a re-entrant behaviour with non-stream input and output
parameters and b) Activity diagram for an action calling a behaviour with a re-entrance
level of two.

tokens; the finish join/fork pair removes the value from the received data values
and returns the values to the re-entrance level object node. This token stamping
allows the called activity to distinguish the tokens of distinct invocations. In
the Petri net this implies to the use of high-level tokens, that is, tokens with
associated data.

Yet, the token stamp forces the called activity to be defined taking it into
account. This can reduce the activity reusability. Also, token stamping is not
”natural” for control tokens. In practice all control tokens must be made object
tokens so that they are able to include the identifying stamp, and this means
additional modification in the called activity. The alternative is the low-level
version: to explicitly model the several possible behaviour executions (see Fig.
4b). This flattening of the activity invocations corresponds to the replacement
of some textual specification by graphical notation.

Parameter streaming Complete activities support parameter streaming. This
is specified by the characters ”{stream}” near an action pin (see Fig. 5a). A
stream input parameter does not have to be filled (by a stream input) for the
action to start (for the implicit activity to be invoked). Symmetrically, a stream
output parameter does not have to be filled for an action to finish. Again, this
can be made more clear by an activity diagram for the action. Compared to the
diagram in Fig. 2b, the stream input (e5), and output (e9) parameters are not
required to pass-through the respective start join and finish fork (see Fig. 5b).
They maintain the same connection with the action environment.

The activity diagram in Fig. 5b is not complete because it does not enforce
the additional constraint that ”All inputs must arrive for the behaviour to finish
(...)” [1, page 353]. To explicitly model this constraint, we must know, for each
stream input, if it has arrived as their arrival is a necessary condition to finish
the behaviour. This is expressed by an additional fork for each stream input

e7

{stream}

e7

e8

b)

e2

e3

e4

e6

a)

e1

e5 e9

e2

e3

e4

e1

e5
e9{stream}

e8

e6

e7

e8

e2

e3

e4

e1

e5 e9

e6

{weight= null}arrived

c)

p1

p2

p3

p4

p1
p1

p2

p2

p3
p3

p4
p4

Fig. 5. Action with stream input and output pins and b) the respective, but not com-
plete, activity diagram.

(see Fig. 5c). This fork puts in an additional object node a token signalling the
arrival of the respective stream input. The finish join/fork pair has to retrieve at
least one token from all arrived places. Notice that we had to use an edge with
null weight. According to the UML specification ”A null weight means that all
tokens at the source are offered to the target.” [1, page 294]. In Petri net terms,
the edge with null weight is a maximal step arc.

Finally, as Petri nets are not able to model abortion they cannot support
exception parameters, which ”abort all flows in the activity”.

3 An example of a locally behaved activity

All the classical concurrency problems are potentially good examples of the
effectiveness of Petri nets for concurrent systems modelling and analysis. Yet,
due to space restrictions, we choose to present an abstract activity diagram (see
Fig. 6) illustrating the discussed concepts. The equivalent Petri net is shown
in Fig. 7. Notice that three pairs of transitions are enclosed in a rectangle.
Each rectangle is mapped to one transition: this means that the transitions
inside the rectangle are merged into a single transition. Also notice the edge
duplications resulting from the elimination of the decision and merge nodes. Each
activity a is translated to a start transition sa (if it has non-stream parameters
or input control edges); an implicit activity iaa; and a finish transition fa (if it
has stream output parameters or output control edges). The implicit activity is
a macroplace; nameless transitions correspond to activity edges in the activity
diagram; and nameless places are macroplaces’ interface nodes.

4 Conclusions and Future Work

The paper contributes to clarify the relations between the semantics of actions in
terms of activities, and between activities and Petri nets. This allows a centralise
view, in a succinct and graphical way, of semantic data spread across several dif-
ferent pages in the UML specification. Additionally, the clear distinction between
local and non-local behaviours, can also be seen as a guide for a disciplined use
of the extremely rich concepts embedded in the activities specification.

{stream}

{stream}b d

e

f

g

o p

r

h

s

t

n

v

l

u

m

a

c

i
j

k

q
{stream}

Fig. 6. An activity diagram.

r

fm

s

c

e

g

o

h

u

ff

iam

a

d

iap

q

i

iaj

k

iab l

sb sj

sm

sm

arrivedo

fb
fj
choiceSm

v

n

fp s t

Fig. 7. Petri net equivalent to the activity diagram in Fig. 6, showing the correspondent
elements.

Future work will include the validation of the presented Petri nets based
equivalences by larger examples where a Petri net tool can be applied. Those
examples, and the respective translations to Petri net models, should bring ad-
ditional insights into the relations between both semantics. Especially important
is the formalisation of the now informally presented mapping, as it will allow the
construction of a translation tool. The use of a Petri net extension amenable to
the specification of non-local behaviours is another interesting aspect deserving
further research.

References

1. OMG: Uml 2.0 superstructure specification. http://www.omg.org/cgi-bin/doc?

ptc/03-08-02 (2003) version 2.0. Final Adopted Specification. OMG Adopted Spec-
ification ptc/03-08-02.

2. Bock, C.: Post to the u2p-issues mailing list. Available at http://groups.yahoo.

com/group/u2p-issues/message/125 (2003)
3. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use - Volume 1–3. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, Berlin, Germany (1992–1997)

	pg:
	P4:
	stampTemplate:
	pg: 1

	P5:
	stampTemplate:
	pg: 2

	P6:
	stampTemplate:
	pg: 3

	P7:
	stampTemplate:
	pg: 4

	P8:
	stampTemplate:
	pg: 5

	P9:
	stampTemplate:
	pg: 6

	P10:
	stampTemplate:
	pg: 7

	P11:
	stampTemplate:
	pg: 8

	P12:
	stampTemplate:
	pg: 9

	P13:
	stampTemplate:
	pg: 10

	P14:
	stampTemplate:
	pg: 11

	P15:
	stampTemplate:
	pg: 12

	P16:
	stampTemplate:
	pg: 13

	P17:
	stampTemplate:
	pg: 14

	P18:
	stampTemplate:
	pg: 15

	P19:
	stampTemplate:
	pg: 16

	P20:
	stampTemplate:
	pg: 17

	P21:
	stampTemplate:
	pg: 18

	P22:
	stampTemplate:
	pg: 19

	P23:
	stampTemplate:
	pg: 20

	P24:
	stampTemplate:
	pg: 21

	P25:
	stampTemplate:
	pg: 22

	P26:
	stampTemplate:
	pg: 23

	P27:
	stampTemplate:
	pg: 24

	P28:
	stampTemplate:
	pg: 25

	P29:
	stampTemplate:
	pg: 26

	P30:
	stampTemplate:
	pg: 27

	P31:
	stampTemplate:
	pg: 28

	P32:
	stampTemplate:
	pg: 29

	P33:
	stampTemplate:
	pg: 30

	P34:
	stampTemplate:
	pg: 31

	P35:
	stampTemplate:
	pg: 32

	P36:
	stampTemplate:
	pg: 33

	P37:
	stampTemplate:
	pg: 34

	P38:
	stampTemplate:
	pg: 35

	P39:
	stampTemplate:
	pg: 36

	P40:
	stampTemplate:
	pg: 37

	P41:
	stampTemplate:
	pg: 38

	P42:
	stampTemplate:
	pg: 39

	P43:
	stampTemplate:
	pg: 40

	P44:
	stampTemplate:
	pg: 41

	P45:
	stampTemplate:
	pg: 42

	P46:
	stampTemplate:
	pg: 43

	P47:
	stampTemplate:
	pg: 44

	P48:
	stampTemplate:
	pg: 45

	P49:
	stampTemplate:
	pg: 46

	P50:
	stampTemplate:
	pg: 47

	P51:
	stampTemplate:
	pg: 48

	P52:
	stampTemplate:
	pg: 49

	P53:
	stampTemplate:
	pg: 50

	P54:
	stampTemplate:
	pg: 51

	P55:
	stampTemplate:
	pg: 52

	P56:
	stampTemplate:
	pg: 53

	P57:
	stampTemplate:
	pg: 54

	P58:
	stampTemplate:
	pg: 55

	P59:
	stampTemplate:
	pg: 56

	P60:
	stampTemplate:
	pg: 57

	P61:
	stampTemplate:
	pg: 58

	P62:
	stampTemplate:
	pg: 59

	P63:
	stampTemplate:
	pg: 60

	P64:
	stampTemplate:
	pg: 61

	P65:
	stampTemplate:
	pg: 62

	P66:
	stampTemplate:
	pg: 63

	P67:
	stampTemplate:
	pg: 64

	P68:
	stampTemplate:
	pg: 65

	P69:
	stampTemplate:
	pg: 66

	P70:
	stampTemplate:
	pg: 67

	P71:
	stampTemplate:
	pg: 68

	P72:
	stampTemplate:
	pg: 69

	P73:
	stampTemplate:
	pg: 70

	P74:
	stampTemplate:
	pg: 71

	P75:
	stampTemplate:
	pg: 72

	P76:
	stampTemplate:
	pg: 73

	P77:
	stampTemplate:
	pg: 74

	P78:
	stampTemplate:
	pg: 75

	P79:
	stampTemplate:
	pg: 76

	P80:
	stampTemplate:
	pg: 77

	P81:
	stampTemplate:
	pg: 78

	P82:
	stampTemplate:
	pg: 79

	P83:
	stampTemplate:
	pg: 80

	P84:
	stampTemplate:
	pg: 81

	P85:
	stampTemplate:
	pg: 82

	P86:
	stampTemplate:
	pg: 83

	P87:
	stampTemplate:
	pg: 84

	P88:
	stampTemplate:
	pg: 85

	P89:
	stampTemplate:
	pg: 86

	P90:
	stampTemplate:
	pg: 87

	P91:
	stampTemplate:
	pg: 88

	P92:
	stampTemplate:
	pg: 89

	P93:
	stampTemplate:
	pg: 90

	P94:
	stampTemplate:
	pg: 91

	P95:
	stampTemplate:
	pg: 92

	P96:
	stampTemplate:
	pg: 93

	P97:
	stampTemplate:
	pg: 94

	P98:
	stampTemplate:
	pg: 95

	P99:
	stampTemplate:
	pg: 96

	P100:
	stampTemplate:
	pg: 97

	P101:
	stampTemplate:
	pg: 98

	P102:
	stampTemplate:
	pg: 99

	P103:
	stampTemplate:
	pg: 100

	P104:
	stampTemplate:
	pg: 101

	P105:
	stampTemplate:
	pg: 102

	P106:
	stampTemplate:
	pg: 103

	P107:
	stampTemplate:
	pg: 104

	P108:
	stampTemplate:
	pg: 105

	P109:
	stampTemplate:
	pg: 106

	P110:
	stampTemplate:
	pg: 107

	P111:
	stampTemplate:
	pg: 108

	P112:
	stampTemplate:
	pg: 109

	P113:
	stampTemplate:
	pg: 110

	P114:
	stampTemplate:
	pg: 111

	P115:
	stampTemplate:
	pg: 112

	P116:
	stampTemplate:
	pg: 113

	P117:
	stampTemplate:
	pg: 114

	P118:
	stampTemplate:
	pg: 115

	P119:
	stampTemplate:
	pg: 116

	P120:
	stampTemplate:
	pg: 117

	P121:
	stampTemplate:
	pg: 118

	P122:
	stampTemplate:
	pg: 119

	P123:
	stampTemplate:
	pg: 120

	P124:
	stampTemplate:
	pg: 121

	P125:
	stampTemplate:
	pg: 122

	P126:
	stampTemplate:
	pg: 123

	P127:
	stampTemplate:
	pg: 124

	P128:
	stampTemplate:
	pg: 125

	P129:
	stampTemplate:
	pg: 126

	P130:
	stampTemplate:
	pg: 127

	P131:
	stampTemplate:
	pg: 128

	P132:
	stampTemplate:
	pg: 129

	P133:
	stampTemplate:
	pg: 130

	P134:
	stampTemplate:
	pg: 131

	P135:
	stampTemplate:
	pg: 132

	P136:
	stampTemplate:
	pg: 133

	P137:
	stampTemplate:
	pg: 134

	P138:
	stampTemplate:
	pg: 135

	tipex:

