State Based Service Description

Barbara Paech, Bernhard Rumpe*
Fakultdt fir Informatik,

Technische Universitat Minchen

80995 Munich, Germany,
http://www.informatik.tu-muenchen.de/

Abstract

In this paper we propose I/O*-state transition diagrams for service descrip-
tion. In contrast to other techniques like for example Statecharts we allow
to model non-atomic services by sequences of transitions. This is especially
important in a distributed system where concurrent service invocation cannot
be prohibited. We give a mathematical model of object behaviour based on
concurrent and sequential messages. Then we give a precise semantics of the
service descriptions in terms of the mathematical model.

Keywords
Semantics, Formal Specification, Service Description, State Transition Dia-
grams, Mathematical System Model

1 INTRODUCTION

The object-oriented paradigm is based on the encapsulation of data within ob-
jects. This data can only be accessed by other objects through service calls.
We use the term service as a synonym for method. Thus, services are the ma-
jor constituent for object behavior. However, looking at the different object-
oriented analysis and design methods, the abstract specification techniques of
services and the interplay between different services within one object still lack
a precise semantics. In most cases (e.g. OMT (Rumbaugh, Blaha, Premerlani,
Eddy & Lorensen 1991), UML (Booch, Rumbaugh & Jacobson 1997), Syn-
tropy (Cook & Daniels 1994)) state transition diagrams (STD) - inspired by

*This paper originated in the SYSLAB project, which is supported by the DFG under the
Leibnizpreis and by Siemens-Nixdorf.

©IFIP 1996. Published by Chapman & Hall

[PR97c] B. Paech, B. Rumpe.

State Based Service Description.

In: FMOODS'97: Formal Methods for Open Object-based Distributed Systems.
ed.: John Derrick, Chapman-Hall.

Year: 1997.

www.se-rwth.de/publications

2 State Based Service Description

Harels’ Statecharts (Harel 1987, Harel & Gery 1996) - are used to specify the
object behavior. The STD determines the sequences of object states resulting
from service executions. However, services are often not atomic, since even
in sequential systems service execution may involve another service execution
on the same object. In distributed systems, regarding complex services which
involve calls to other objects as atomic, is, in general, a too strong restriction.
Objects should react concurrently to as many service calls as possible, while
preserving data consistency.

Therefore, we propose to use a whole state transition diagram for the de-
scription of one service. Transitions correspond to service steps between an
input and an output. Object behavior is derived from the service description
by interleaving of the service steps. The service description can also be marked
to indicate at which execution states interleaving of other services is allowed.

Because the details of the object behavior are quite intricate, we give a
mathematical semantics to object behavior based on the framework of stream
processing functions (Broy, Dederichs, Dendorfer, Fuchs, Gritzner & Weber
1993, Klein, Rumpe & Broy 1996) and I/O*-state machines (Rumpe & Klein
1996). In particular, we distinguish sequential and concurrent services calls.
This allows to define multiple threads as in Java. As we will show, sequential
and purely asynchronous systems are special cases of this model.

Altogether, the paper is structured as follows: First, we introduce the used
formal foundation, in particular state machines for the modeling of object be-
havior. In the following section, we show how to adapt this model to the above
sketched communication paradigm. Then we introduce I/O*-state transition
diagrams as the abstract description technique for services. We show how to
give semantics to object behavior based on the service descriptions.

2 MATHEMATICAL SYSTEM MODEL

In (Klein et al. 1996) we developed a formal model of distributed systems,
based on the theory of streams (Broy et al. 1993). This mathematical sys-
tem model serves as a semantical basis for several description techniques, like
object models, state transition diagrams, or process diagrams, as for exam-
ple given in UML (Booch et al. 1997, Breu, Hinkel, Hofmann, Klein, Paech,
Rumpe & Thurner 1997).

In this section, we extend the mathematical system model to service descrip-
tions. The model emerged from (Grosu & Rumpe 1995, Rumpe & Klein 1996,
Rumpe 1996) where the underlying theory of state machines is developed. In
(Grosu & Rumpe 1995) a composition of object behavior is defined.

Basic assumptions

We make three basic assumptions about the kind of systems we take into
account: First, objects can only read or modify parts of the state of another
object through services, even those from the same class. Second, we do not

Mathematical System Model 3

allow more than one service to be active at the same time (however, they may
be interleaved). And third, communication between objects is asynchronous
such that messages must be accepted, but may be delayed (sequential pro-
gramming languages correspond to the special case where only one object is
active at a time and activity is transferred with service calls).

I/0O*-State machines

In the following, we introduce the mathematical basis for state based ob-
ject behavior description. An I/O*-state machine* (S,I,0,6,5°) consists
of a nonempty set of object states S, a nonempty set of input messages I, a
nonempty set of output messages O, a transition relation § C S x I x S x O*,
and a nonempty set of initial states S° C S.

None of the above given sets need to be finite. The sets of input and out-
put messages I contain service calls and return messages, possibly with ar-
guments. The reaction to any input is attached to the same transition. This
leads to a more compact notation compared to the well-known I /O-automata*
(Lynch & Stark 1989). The transition relation 4 is allowed to be nondeter-
ministic. On one hand, this is adequate for the nondeterminism inherent
in distributed systems. On the other hand, nondeterminism is important to
cope with underspecification allowing refinement of such specifications. In
(Rumpe 1996, Rumpe & Klein 1996), a refinement calculus for state machines
is given which defines a set of development steps to be used for specialization
of object behavior during development as well as for inheritance from super-
class to subclass. Because of the basic assumptions about systems, an object
cannot reject a message. This corresponds to input enabledness of the state
machine: For each source state s and input message ¢ € I, there exists at least
one destination state ¢ and reaction o € O* with d(s,1,t,0).

Messages and States

Object states are composed of several parts that deal with the attribute state
and active or suspended service states. We assume that local variables as well
as arguments are private to the service invocation they belong to.

Let the set of variables VAR and the set of corresponding values VAL be
given. We abstract from the fact that variables are typed, and regard each
partial mapping VAR — VAL as variable assignment. We assume that
each object has a fixed set of attributes and each service a fixed set of local
variables, but do not formalize these constraints here. Given an abstract set
P(C of program counters, suspended service invocations are formalized as
SI= (VAR — VAL)x PCx ID, where the first component contains arguments
and local variables. PC'is used to denote special locations in the service code,
where a message is awaited and therefore computation is suspended. The third
component ID denotes the caller of the service. This is the object, where a

We call them I/O-state machines, because each transition is labeled accordingly.
*In our classification I/O automata would be called I U O automata.

4 State Based Service Description

(possible) response is to be delivered. To handle recursion of service calls, as
usual, a stack of service invocations is used. We assume the mathematical
datatype stack(M) over set M with the services push, pop, top and § for the
empty stack to be given.

If considering multiple threads, one stack is not enough. Indeed, we need
a separate stack for each thread. We abstract from actual threads by the set
TAG, each tag denoting a thread identifier. We incorporate a mapping TAG —
stack(SI) into each object state. Messages are tagged also with elements of
TAG to indicate the thread they belong to. Thus, a message is a tuple

(sen, rec,tt,mn,ar) € ID x ID x TAG x MSG x (VAR — VAL),

where sen is the sender identifier, rec is the receiver identifier, ¢¢ is the (thread)
tag, mn is the message name, and ar is the argument assignment.

The set MSG contains the service names, but also a special message ret that
indicates return messages. The return value (if one exists) is encoded in the ar-
guments of the return message. We use a pool for thread tags for each object,
which is used whenever a new thread is started. Each two pools of different
objects are disjoint. The states of objects are

(at, st,po,pt) € (VAR — VAL) x (TAG — stack(SI)) x P(TAG),

where at is the attribute assignment, st is a mapping, which assigns a stack
to each thread, and pt is the pool for tags. This set of states is usually infi-
nite. Note that one can easily extend this model to object creation with an
additional pool for object identifiers such that object creation is just treated
as a special message.

Transitions
To model data encapsulation, there are a number of restrictions on the state
changes. We shortly repeat the most important restrictions here, without
giving a formal definition. The set of attributes of an object and the value of
attribute self are immutable. The tag pool may only be diminished. No tag
may be used unless removed from the pool. Only one stack is changed in a
transition. Either a service invocation is added, removed or the top invocation
changed. If the top one is changed, the set of arguments and their values are
immutable. Only call messages can add stack elements.

So each transition of the state machine resembles a part of a service execu-
tion. If a service calls other services, awaiting their answers, it is partitioned
into several transitions.

3 MULTI-THREAD COMMUNICATION

In this section, we specialize the behavior model given above to a particular
model of communication allowing for service calls where activity is transferred

Multi-Thread Communication 5

mn; mn, st'(tt;)

sequ =ret = st(tt;)

sequ,conc sequ = push(st(tt;), (ar; + loc, pe, snd;))
conc conc = st(tt;)

= ret =ret = pop(st)

=ret sequ = push(pop(st(tt;)), (ar; + loc, pc, snd;))
= ret conc = st(tt;)

Figure 1 Restrictions on I/O*-state machines

(sequential) as well as for service calls starting a new thread (concurrent).
This model could be specialized to purely sequential calls, as in pure C++, or
purely concurrent calls. The mixed style presented here is supported in Java,
and also is the most flexible for modelling purposes.

Java allows different threads to simultaneously work on the same object
and therefore allows to share data. It supports synchronization concepts, but
the programmer is responsible to use them correctly. We prevent shared data
access by interleaving the service executions. We therefore restrict the Java
programming model at this point. However, this can easily be implemented in
Java using semaphores. Altogether, we distinguish between sequential call
messages where the caller awaits the return message, return messages that
are answers to sequential calls, and concurrent call messages that invoke
a new thread of computation.

We assume, that no service can compute internally for ever, such that each
message is processed. As discussed in (Klein et al. 1996), the communication
medium of the general system model ensures that the order of messages is
preserved and that message contents are not changed.

Assume a transition 0(s,i,t,0). Let s = (at,st,pt) be the source state,
t = (at’,st', pt') the destination state, i = (snd;,rec;, tt;, mn;,ar;) the input
message and o = o;++((snd,, rec,, tt,,mn,,ar,)) the sequence of output
messages, where the last message plays a special role. Only the stack of the
input tag tt; may be changed. Attribute assignments may change arbitrarily.
For each concurrent output message in 0; a new tag identifier is removed from
pt. Sending a concurrent message does not interrupt the active service, but
sending of a sequential one does. So only the last message emitted during a
transition can be sequential. The tag of a possibly emitted sequential message
has to be identical to the tag of the processed message. Is the processed service
a concurrent one, the last message may be sequential, but only a call not a
return message. All other conditions for state changes are shown in figure 1.

With mn = ret we indicate return messages, with sequ sequential and with
conc concurrent messages. The case of empty output is subsumed under the
case of only concurrent output. In the simplest case (sequ-ret) an input call is
immediately handled, the stack is not changed. If the output is sequential, the
current service is suspended. A concurrent output does not change the stack.
The other two cases deal with input return messages, where the stack has

6 State Based Service Description

|Oust0mer D | | Bank A | |Customer C | | Bank B

cheque($22,C) ‘
cashChe($22,C

account
overdrawn

o ret(228)

chargelnterests
account?

ret(-18%)

account?

ret(+42$)

doTransf(A,24$)

D Service part (transition) <—— Concurrent message
1”‘3 Service on stack <——— Sequential Message
- < ---- Return Message

Figure 2 Bank scenario

to contain an according message invocation, which can be popped (ret-ret)
or modified (ret-sequ). In case of modification an according program counter
pc and an assignment loc of local variables denotes the internal state of the
service invocation.

We illustrate this model by the following example (see figure 2). Assume we
have two customers C' and and D as well as two banks A and B. Customer C
has one account per bank. B gives better interests, but A is used for payment
transfers. Customer C' uses a cheque for payment of customer D. In our con-
crete scenario, the account in bank A will be overdrawn, after D cashed the
check and C' gets an according request to balance. Now C is asking for the
actual account at both banks and then placing an order to transfer $24 from
bank B to A. Bank B awaits the acknowledgment of A before completing the
transfer.

4 SERVICE DESCRIPTION

In this section, we introduce a state based description technique for services
and define object behaviour semantics in terms of I/O*-state machines. We
use an abstract version of I/O*-state machines called I/O*-state transi-
tions diagrams. They allow for a finite description of the infinite state ma-
chines. We use state predicates to partition the state space. Similarly, we
allow to abstract from the message parameters by using preconditions re-
ferring to attributes and input parameters and by using patterns for input
messages. Also, we allow postconditions to describe the effect of data changes
and patterns for output messages. The definition given below is a special case
of the STD defined in (Grosu, Klein, Rumpe & Broy 1996), where input is
restricted to a one-element sequence. Altogether, an I/O*-state transition di-
agram (att, I,0,S, A, d,S%) consists of the set att of attributes, the nonempty

Service Description 7

attributes
acc : Set (number : Nat, amount : Int)

init TRUE
create [(no,*) ¢ acc]/

service create no [acc’ = acc + (no,0)]
®

delete(no)[(no,0) € acc]/
service delete [acc’ = acc - (no,0)]

\o/—\‘©
withdraw(no,k) [(no,*) € acc]/

service withdraw [ece’ = acc- (no,m) + (no,m-k)]

deposit(no,k)[(no,*) e acc]/
[acc’ = acc- (no,m) + (no,m+k)]

service deposit \/_\@

service transfer

transfer_order(no,to_b,to_acc,k)
[(no,*) e acc]/
to_b. deposit(to_acc,k)

ret(to_acc,k,ack)[ack=0k]/
[acc’ = acc - (no,m) + (no,m-K)]

ret(to_acc,k,ack)[ack= not_ok]/
[acc’ = acc]

Figure 3 Bank description with I/O*-STD for each service

set I of input messages, the nonempty set O of output messages, a nonempty,
finite set of diagram states S, a mapping A : S — (Pred) associating a predi-
cate over the attributes att with the diagram states, a finite transition relation
0 C S x (Patty x (Pred) x S x (Expr) x (Pred), where each transition is la-
belled with input pattern, precondition, output expression and postcondition,
and a nonempty, finite set of initial diagram states S°.

A(s) must be satisfiable for all diagram states s € S and the predicates of
two different diagram states exclude each other. Also the postcondition of a
transition must be satisfiable, if the precondition is satisfied.

We call a set of diagrams describing one service each together with a pred-
icate init characterizing the initial object states the object behavior de-
scription. As an example, consider a bank object. Figure 3 shows the object
description with attributes defining the state space and with separate service
diagrams for create, delete, withdraw, deposit, transfer.

The semantics of object behavior description is given in terms of I/O*-state
machines. Each diagram transition gives rise to a set of machine transitions
satisfying the input pattern, the output pattern and the pre- and postcondi-
tions. In addition also the tags and stacks handling the interleaving of services
have to be introduced. Thus, let (att,locy, Iy, O, Sk, Ak, 0%, SY), k = 1,...,n,

8 State Based Service Description

be a set of I/O*-STD, where each STD describes a service over the object
attributes att and the local service variables locy, and let init be a predicate
over the attributes. The semantics of this object behavior description is any

AAAAA

e 5= {8 € BEL : B.self = id and (.tag associates with each tag € TAG
a stack of service invocations ST}, where BEL is the set of all variable
assignments giving values to the attributes and some additional variables
like self, tags and for the program counter of the currently active service.
The set of service invocations Sy, is given by (locy, — VAL, Sy,ID) and
SI =J;_, SIi. Note that we use the states of the service STD as program
counter values.

® S0={3eS:p3Einit}*

® [(0) s derived from I (O) by using the appropriate message and parameter
names and introducing the tag in the messages .

® (s, (snd;,rec;, tt;, mn;, ar;), B, out ++ (snd,,rec,, tt,,mn,,ar,)) € 9, if
there exists 1 < k < n, T € 6,8 € BEL such that [satisfies the state
predicates, pre- and postconditions, patterns and expressions of T' (written
as B ET) and Blut = Bs and B|ae = B, where we use the slash notation to
denote the values of the variables in the successor state, and either the stack
of the tag is empty (8.tag; = 0) and S |= T and a new service execution
is started (8.pc = s € Sp), or the stack is nonempty with program counter
s on top (first(B.tag;) = (v,s,id)) and §,v |= T and the stack is handled
according to section 3.

Note that with this semantics the labeling of the diagram states for the ser-
vices carries a special weight: this labeling describes the set of all states the
object may assume while the service is pending at that state. If the state pred-
icate is not satisfied in a state where the pending service is to be continued,
arbitrary behavior is possible (due to input enabledness). From a methodolog-
ical point of view, it sometimes is necessary that services can be guarded from
interleaving with other services. For example, account closure should not be
possible while transfer is active. This could already be expressed using suit-
able preconditions and diagram state predicates such that the precondition
for account closure is incompatible with the predicate labeling the wait-state
of the transfer STD. However, we also allow a more direct way of specification,
where diagram states may be labeled with service sets indicating the services
which are not allowed to be interleaved at that state (called exclusion sets).
With this extension, the semantics has to be adopted such that the transitions
respect all exclusion sets of pending service invocations (74 (m2(T)) & Ex(u)
for all (v, u,id) somewhere on some stack*).

*By B [= init we denote that formula init is satisfied under variable assignment
*By m; we select the i-th component of a tuple.

Conclusions and Related and Future Work 9

5 CONCLUSIONS AND RELATED AND FUTURE WORK

We have discussed a semantic model for service execution in the context of
multiple threads. We also have introduced a special kind of state transition
diagrams for service description and shown how to this object behavior de-
scription can be given a precise semantics in terms of state machines taking
care of different threads of activity through stacks.

Similar to SDL-92 (Braek & Haugen 1993), services are used to structure
object (process) behaviour. In contrast to SDL services, the I/O*-STD de-
scription of services makes explicit the state space of the object. This is nec-
essary for an abstract description of service synchronization.

The major difference to Statechart-based description techniques is that we
allow services to be distributed over several transitions, while usually only one
transition per service is used. The latter kind of modeling is too restrictive,
since not all services can be considered to be atomic (e.g. like the transfer
service). In Syntropy and O-Mate, for a service additional internal events
may be generated. However, a new external event may be treated only when
the Statechart has stabilized, that means it has handled all the internal events
generated in response to the last external event. Thus, internal events still do
not allow e.g. two active transfer services.

Up to now, we have not treated nested states in I/O*-STD. These states
are very important for factoring object behavior over orthogonal sets of at-
tributes. Since in our framework we do not allow internal events for communi-
cation between different substates, we avoid the usual difficulties of Statechart
semantics (von der Beeck 1994). Thus, we do not expect any difficulties with
incorporating nested states.

Another point we want to clarify in the near future is the use of refinement
techniques as discussed in (Rumpe & Klein 1996). In that paper a calculus of
refinement steps on STD is introduced which can be adapted to the framework
here without difficulties. We will also explore this notion of refinement as a
basis for an inheritance notion covering behavioral properties.

Acknowledgements
We thank our colleagues Ursula Hinkel, Peter Scholz and the anonymous
referees for helpful comments.

REFERENCES

Booch, G., Rumbaugh, J. & Jacobson, I. (1997). The Unified Modeling
Language for Object-Oriented Development, Version 1.0, RATIONAL
Software Cooperation.

Braek, R. & Haugen, O. (1993). Engineering Real Time Systems, Prentice
Hall.

Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B. & Thurner,

10 State Based Service Description

V. (1997). Towards a Formalization of the Unified Modeling Language,
To appear at ECOOP’97.

Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T. & Weber, R.
(1993). The design of distributed systems - an introduction to FOCUS,
Technical Report TUM-19202-2, TU Miinchen.

Cook, S. & Daniels, J. (1994). Designing Object Systems, Prentice Hall.

Grosu, R., Klein, C., Rumpe, B. & Broy, M. (1996). State transition diagrams,
Technical Report TUM-19630, Technische Universitit Miinchen.

Grosu, R. & Rumpe, B. (1995). Concurrent Timed Port Automata, Technical
Report TUM-19533, TU Miinchen.
*http://www4.informatik.tu-muenchen.de/reports/ TUM-19533.html

Harel, D. (1987). Statecharts: A visual formalism for complex systems, Sci-
ence of Computer Programming 8: 231-274.

Harel, D. & Gery, E. (1996). Executable Object Modeling with Statecharts,
ICSE-18, IEEE, pp. 246-257.

Klein, C., Rumpe, B. & Broy, M. (1996). A stream-based mathematical Model
for distributed information processing Systems - SysLab system model,
in E. Naijm & J. Stefani (eds), FMOODS’96.

Lynch, N. & Stark, E. (1989). A Proof of the Kahn Principle for Input/Output
Automata, Information and Computation 82: 81-92.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991).
Object-oriented Modeling and Design, Prentice-Hall.

Rumpe, B. (1996). Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme, Ph.D. Thesis, Technische Universitdt Miinchen.
*http:/ /www.forsoft.de/~rumpe/Diss_Rumpe.html

Rumpe, B. & Klein, C. (1996). Automata Describing Object Behavior ,
in H. K. W. Harvey (ed.), Specification of Behavioral Semantics in
Object-Oriented Information Modeling, Kluwer.

von der Beeck, M. (1994). A Comparison of Statecharts Variants, Vol. 863
of LNCS, Springer, pp. 128 — 148.

Bibliography

Dr. Barbara Paech studied Computer Science at the Technical University of
Munich, Edinburgh University, and University of Pennsylvania. She received
her Ph.D. in Computer Science from the Ludwig-Maximilians-University in
Munich. Since 1993 she is a research assistant at the Technical University of
Munich where she leads research projects on the formal foundation of software
engineering as well as requirements and re-engineering.

Dr. Bernhard Rumpe studied Computer Science and Mathematics at the
Technical University of Munich. He received his Ph.D. in Computer Science
from the Technical University of Munich. His research interests include the
formal foundation of state-based behavioral specifications, and functional and
OO0 programming concepts. Since 1997 he leads the SYSLAB research project
on the formal foundation of OO software engineering techniques.

