Refining Business Processes*

Bernhard Rumpe, Veronika Thurner

Department of Computer Science, Technical University of Munich
Arcisstr. 21, 80290 Munich, Germany
email: {rumpe | thurner}Qin.tum.de

Abstract

In this paper, we present a calculus for refinement of business process models, based on a precise
definition of business processes and process nets. Business process models are a vital concept for
communicating with experts of the application domain. Depending on the roles and responsibilities
of the application domain experts involved, process models are discussed on different levels of ab-
straction. These may range from detailed regulations for process execution to the interrelation of
basic core processes on a strategic level. To ensure consistency and to allow for a flexible integration
of process information on different levels of abstraction, we introduce refinement rules that allow the
incremental addition to and refinement of the information in a process model, while maintaining the
validity of more abstract high level processes. In particular, we allow the decomposition of single
processes and logical data channels, as well as the extension of the interface and channel structure to
information that is newly gained or increased in relevance during the modeling process.

1 Motivation

Business process modeling today becomes an increasingly important technique for cap-
turing system behavior on different levels of abstraction. A major strength of business
process models is their suitability for supporting communication between system users
and system developers, as they capture rather intuitively what the user and the system
do to achieve certain goals [Ost95].

In addition to an appropriate notation, techniques are needed which effectively employ
the notation in system modeling. Ideally, these techniques are supported by powerful
tools that not only provide suitable editors for business process models, but also support
sophisticated functionality such as the checking of appropriate context conditions, simu-
lation or execution of business processes, or code generation [Fab98, Sch92]. Just as not
every collection of words builds a meaningful sentence, not every combination of business
processes is a meaningful business process net. Context conditions on business processes
restrict possible combinations in such a way that the valid results are meaningful.

*This work originates from the SyYSLAB project, supported by the DFG under the Leibniz program and by Siemens-
Nixdorf, as well as from the FORSOFT project, supported by the Bayerische Forschungsstiftung.

[RT98] B. Rumpe, V. Thurner.

Refining Business Processes.

In: Seventh OOPSLA Workshop on Precise Behavioral Semantics (with an Emphasis on OO Business Specifications)
Haim Kilov, Bernhard Rumpe, lan Simmonds (eds.)

Technical University Munich, TUM-19820.

www.se-rwth.de/publications

Epssa

Typically in systems modeling, business process models are not developed in isolation,
but in combination with other system aspects and corresponding notations, such as object
models and class diagrams to describe different viewpoints on a system in an integrated
way [KR94, Gro97, RBP"91, Boo94]. Consequently, a smooth relation between the dif-
ferent concepts and their corresponding notations must be provided, to allow separate
views to define an integrated, consistent system description. Today, such integrations are
still under investigation, even for widespread sets of modeling notations such as the UML
(for example, see [EFLR98, BGHT97, KR98, BCMR98]). Thus, it is not surprising that
a combination of business process models with other modeling concepts (e.g. as provided
by UML) which is smoothly integrated on a formal basis and well accepted in practice
does not yet exist.

One possible way of integrating notations for different modeling concepts formalizes these
notations based on some well known formalism. Subsequently, the inter-relations of these
notations are specified on the semantic level in terms of context conditions which ensure
that the separate parts of the model fit together consistently. Furthermore, transforma-
tion rules are provided, which allow the translation of information from one modeling
notation into another. For example, business process models could be transformed into
corresponding interaction diagrams, state machines, or code. Of course, these transfor-
mation rules that are provided must be sound with respects to the given semantics.

When modeling real world systems, even model diagrams that focus on just one sys-
tem aspect, such as data or behavior, tend to get very large, complex and thus difficult
to handle. A common approach to reduce this complexity is the decomposition of the
model into separate parts. Usually, these parts will be interrelated. Therefore, analogous
to the transformation rules mentioned above, which relate different modeling notations,
techniques are needed which relate different models within a single notation.

In this paper, we will discuss transformation rules within a notation for business process
models, focussing on refinement as a special and widely used type of transformation within
a single modeling technique. Refinement denotes the addition of more detailed informa-
tion, possibly on a more detailed level, while preserving the original information. Here,
preservation of some given information means that it is possibly strengthened, but never
violated. A complete formal treatment of business processes, their refinement and a proof
of their semantic correctness is beyond the scope of this paper. Methodical guidelines for
the use of this calculus are currently under development. Our formal notion of refine-
ment is more restrictive than some of the similar concepts used elsewhere. Refinement
preserves and strengthens given properties, but does not violate them. This explicitly
excludes changes at lower levels, where higher level properties are violated.

Usually, a business process model is not a big bang invention, but a step by step devel-
opment. Refinement rules exhibit their power through the possibility of combining them
to support more complex developments.

Section 2 introduces the concept of business process models by a small example. Section
3 presents our notion of refinement and demonstrates the refinement rules with the help

of an example. Finally, Section 4 summarizes our results and presents an outlook.

2 A Notion of Business Processes

In this section, we will introduce briefly the concept of business processes. After informally
introducing the core aspects with an example, we will give a precise definition of business
processes by providing an abstract syntax.

As we focus here on refinement rules rather than on complex process structures, we
restrict ourselves to exemplary system behavior throughout this work, instead of modeling
alternative or cyclic processes. A treatment of complex business process structures is
provided by [Thu98|.

2.1 Introduction to Business Processes

book_id
PO retreve. WL
request_ book desk . notify_ receive
book__ book us.er_o_f__ notificati_on
reservation availability | Mote
user_id

Figure 1: An example process net

We introduce an intuitive understanding of business process models by discussing the
business process net in Figure 1. The example visualizes that part of a business process
which takes place in a library when a library user requests the reservation of a book.
Starting from the identifier of the requested book, the book is retrieved by a library
service and forwarded to the reservation desk. Then, a notification of the availability
of the requested book is issued and forwarded to the library user, who receives this
notification.

The diagram depicted in Figure 1 contains a set of boxes, each of which represents a
business process (or in short process). Each of these processes serves a special duty or
contributes to the performance of a certain task. At an early stage of system modeling
where business process modeling is often employed as a means of requirements elicitation,
we are not interested in who performs a process, as this already includes some design
decisions. As modeling and design procedes, processes are assigned roles according to
pragmatic aspects such as required skill, authority or accountability. Via the concept of
roles, processes are then assigned to people and other actors in the system’s organizational
structure. As business processes only describe one view of a system or organization, we
cannot expect everything to be described with them. For example, pre- and postconditions
and global state changes are not core concepts of business processes, but can be handeled
by appropriate extensions.

In the early stages of process modeling, we focus on the procedural aspects of business
process, i.e. on what has to be done to achieve some system goal, thus modeling business
processes and their causal dependencies that are due to the exchange of information or
material. Causal dependencies are represented by arrows. They may be annotated with
message types, and channel names which are composed of port identifiers. Methodically
it is important to allow causality constraints to be explicitly defined, as this also allows to
compare these with the causalities that may be derived from invariants or code. Message
types refer to business objects as defined in a data dictionary, or to data types specified
in the corresponding data model and primarily denote pieces of information (or even
material) flowing between the business processes. In the following, we use the terms data,
pieces of information, and messages interchangeably.

Within a process net, business processes are uniquely identified by their name. As a
modeling convention, the process name should provide a first intuitive notion of what the
process does and ideally also its most important object.

A process communicates with other processes via its typed interface. From the perspec-
tive of methodology, when developing a business process model, at first it often is both
practical and sufficient to introduce a new business process by providing its name and an
informal textual explanation of its transition relation, without precisely specifiying the
process interface or the processing mechanism.

The processes in a process net have a causal connection to describe which process depends
on which. Such a causal dependency is indicated by an arrow. As circular dependencies
must be avoided, the process net needs to be acyclic. However, each process is allowed
to have several incoming and outgoing dependencies, even several between the same two
processes. To ease the reading of a business process net, we recommend to direct all
arrows from left to right. The interface of a business process is determined by the set of
dependencies it is connected with. We distinguish incoming and outgoing dependencies.
As with processes, dependencies may be attached with a name (type) to indicate the
kind of dependency. To uniquely identify dependencies, additional identifier names may
be used. In Figure 1, dependencies and their connections are depicted by arrows only.
Internally, additional port names are used to define the connection structure, but these are
normally omitted in a graphic representation. It usually suffices to qualify a dependency
by naming source and destination process without any more information. Some of the
arrows are not completely connected to processes, but indicate a dependency with the
environment (either incoming or outgoing).

The business process net in Figure 1 is composed of black-box descriptions of several
business processes. These processes can be described in more detail by regarding their
glass-box definition, which again is a business process net that realizes at least the external
interface given in the black-box description of its parent process. For example, the black-
box description of a process already introduced in Figure 1 is shown in Figure 2. A
corresponding glass-box definition is presented in Figure 3.

out ']b: book_id

in ;bi book_id retrieve_
book

—

out Eb: book

Figure 2: Black-box process description

book_id book_id book_id
book_id| check- notify_reader eturn. |
— book_ of _return_ book_
holder request b4k>
00
reader_id return_request

Figure 3: Glass-box process definition by a process net

This technique provides a very simple composition operation on business processes that
can be used to hierarchically structure business process models into nets of different layers.
It does not only allow to compose business process nets, but also to decompose a given
single business process using a more detailed business process net.

Usually, causal dependencies are due to data exchange, where some data that is produced
by the former process has to be used by the later process. Some rare other cases stem from
some kind of synchronisation constraints, in which the former process releases a resource
and the later process aquires it. This can also be modeled by data flow. Therefore we can
simply interpret all dependencies as dataflow channels where exactly one piece of (perhaps
complex) data is flowing. Then the dependency types may be interpreted as data types
for the channels. In the context of dataflow diagrams, we speak of input and output ports
which are connected by channels. Therefore, the interface of a business process is defined
by a set of input and output ports.

At the beginning of the modeling process, quite often it might not be obvious which type
of data should be associated with a certain dependency (dataflow channel). Consequently,
the modeler is not forced to attach a type of data to each port. This would prohibit the
adding of underspecified process types to the model. Instead, it is allowed to add newly
gained information on the dependency to the model when appropriate. Furthermore,
when modeling on a high level of abstraction, it is usually not sensible to attach data
sorts to ports, as communication on this level tends to be very complex and is therefore
often only vaguely understood.

In contrast to typical dataflow nets, a business process net relies on a more involved
computation idea. Based on two basic assumptions, we get a computation model that
reflects reality in a better way, and furthermore allows for an easy decomposition of
business processes. We assume

1. Although on each channel, conceptually only one piece of data arrives, we assume
that this data can be structured in a complex way and can itself be provided piece-
wise.

2. In general, business processes are greedy, i.e. trying to compute as much as possible
from the partial input data that is already given. Although this is not always ap-
propriate and typically not the case when people are involved, it is a good starting
point for conceptual modeling of business processes. In an implementation, timing
constraints can replace the greedy-runs-assumption. The timing constraints then
not only define the time when a process performs its task, but also the maximum
duration for which data may be buffered between the processes. Therefore such a
channel behaves like a letter-box, as a buffer with a maximum time of delay.

2.2 Precise Definition of Business Processes

In the following, we will give a short introduction to the abstract syntax of business
processes.

For simplicity, we assume that the type definitions for processes are given. Furthermore,
for providing type definitions of ports, we assume a set of data sorts S to be given as well.
By Pt we denote the set of all ports. With each port pt € Pt, we can associate a data
sort Sort(pt) by

Sort: Pt — S.

Above we argued that for reasons of methodical usage, a sort cannot always be assigned
to every new port right away. Therefore, we allow for underspecification of ports, where
sorts can be omitted at first, but may be associated with a port when appropriate.

A process is a tuple (In, Out,b), where
e /n and Out are disjoint sets of input and output ports and

e) is the behavior relation describing the transformation from input to output. b is
defined as

b g ®peln50’rt(p) X ®p60ut SO?"t(p)

where ® is a large cross product collecting values of input and output ports, respec-
tively.

b is a relation describing the possible outputs of a business process, depending on its
inputs. Such a relation may be described using natural language, as well as logic formulae
or an algorithmic implementation. However, it can also be derived from a glass-box
decomposition of the business process as we will show below.

Let in the following BP be the set of business processes. For a specific process bp € BP,
we denote its sets of input and output ports by In®” and Out®, respectively. Furthermore,
we define Pt = I'n®” U Out® to be the set of all ports of process bp. As already noted,

we usually suppress the port names in the diagrammatic representation. In Figure 3 only
the interface ports have port names given explicitly (in7°, out?’, and out}?)

Processes communicate with each other by exchanging messages via input and output
ports. The sets of its input ports and output ports build the interface (In’?, Out’) of a
process bp. For simplicity we assume that the ports are unique for each process:

bpy # bpy = (Inbpl U Outbpl) N (I”bp2 U Outbpz) =)

So far, we have treated each process in an isolated way. To describe complex system
behavior, it is necessary to compose several single processes into a process network. This
interconnection of processes corresponds to data dependencies.

A business process net is a tuple (P,C, I, O) consisting of

e a set of business processes P C BP,

e a set of channels C' C Out x In connecting some output port of a process to an
incoming port of a successor process,

e a set of destinations I C In, for incoming ports, and

e a set of sources O C Out for outgoing ports.

Note that the set of input and output ports in the overall In and Out are derived from
the set of business processes BP according to In = Upyep In® and Out = Ubper Out®.

While C' specifies process connections by internal channels, I describes through which
ports of some internal process of the net, the environment may connect to the process
net by providing input. Correspondingly, O describes which ports are available for the
environment.

In the following, we denote the set of business process nets by BPN.

To ensure that a business process net is well formed, several constraints must hold. By 7
and 7y, respectively, we denote projection of a channel from C' C Qut x In to the sending
or receiving process.

1. An input port is either internal to the process net, or a destination for incoming
channels from the environment.

m(C)N T =0

2. All internal input ports within a process net are connected to exactly one output
port within the net:

Ver, e € Cima(er) = ma(ea) = ¢l = 2

As a consequence of constraints 1 and 2, each input port is either assigned to exactly
one output port, or is an input port for the whole net. Please note that we do not
demand a similar restriction for output ports. Thus we support the modeling of
output ports that feed into several channels, even up to broadcasting (see Figure 4).

. bp21 bp21
n out
ny bp21 -
in bpl
—1 out bpl in bp22 out bp22
bpl L (G—1 bp22
+ bpl
in
- bp23 bp23
In out
1 bp23

Figure 4: Broadcasting among processes

3. Port types of a channel fit together:

(pts,ptg) € C = Sort(pts) = Sort(pty)

4. We employ our process nets for modeling exemplary system behavior. Therefore,
we want to exclude cyclic behavior, as this would add loops to the process model
and thus contradict our intuition. Thus, we require the business process net to be
acyclic, which we model by enforcing a possible serialization (quite like transactions
can be serialized):

3f: PH N : Vbp,, bpa € P2 (Out™ x In"")nC #0 = f(bp,) < f(bpa)

A business process net can be interpreted as a decomposition of a more abstract business
process, providing a more detailed description of how the business process is realized.
Thus, given a business process net n = (P,, Cy, I,, O,), we can easily build an abstraction
of the decomposition description, yielding a black-box business process bp € BP with
interface In®” = I, and Out®” = O,,, disregarding the internal connection structure.

Furthermore, the behavior of the composed business process bp is derived from the behav-
ior relation of the constituent business processes as well. This is done using a composition
operation, quite similar to the functional composition known from mathematics. A more
general composition operator which can also be used in this context is given in [PR97].

Please note that for a concrete representation of a business process net, e.g. when using
an appropriate CASE-tool, we assume that it is possible to not visualize less important
channels. Also, we assume that for several channels from one business process to the same
destination process, a grouping into a single channel should be supported. This allows for
a more compact process representation.

A complete business process model consists of a partial assignment of business process
nets to processes that they refine. Thus, the set of business process models is defined by:

BPM = (BP™ BPN)

If we assume a top level business process called system to be given in the set of business
processes BP, then a business process model consists of a hierarchy of business process
nets. Here, some constraints do hold as well. The most obvious one is that the hierarchy
of process nets has to be a tree, which furthermore needs to be finite in depth and breadth
(not formalized here).

3 Refinement

In this section, we will introduce the notion of refinement. Then, we will give some
transformation rules that are appropriate refinement steps for business process nets.

3.1 Notion of Refinement

A refinement step derives a new, more specific model from an existing one. More specific
means that in all aspects, it provides at least the information that is provided by the
original model. Therefore, all properties that can be deduced from the previous model
are ensured to remain true.

From a technical point of view, we can classify refinement techniques in three different
categories:

Black-box to black-box refinement allows to add information to an existing process
definition, e.g. by extending its interface.

Black-box to glass-box decomposition (also called structural refinement) details a
process definition by providing a corresponding process net, which describes the in-
ternal structure. This is the core of hierarchical decomposition of business processes.
This kind of refinement strongly corresponds to the existence of a composition oper-
ation.

Glass-box to glass-box refinement modifies an already given process net into another
one, e.g. by introducing additional dependencies between sub-processes.

Furthermore, we do not refine single processes or process nets in isolation, but the com-
plete business process model. E.g. whenever a channel is added or changed within a
process net, the sub-nets of the affected processes are also affected. The provided notion
of refinement for business processes is related to behavioral and structural inheritance
in the object-oriented context. For example, the ports of a business process, which is
structurally decomposed, are inherited to sub-processes. Also, refinement through adding
of dependencies (data-flow channels) is quite similar to the interface extension mechanism
of inheritance.

Refinement can be achieved by applying it either independently, or in combination, to
different parts of the business process model:

e the interface of business processes,
e the set of processes composed within a process net,
e the channel structure within a process net, and

e the data sorts.

This provides a large design space for different kinds of rules. The following set of rules
by no means claims to be complete, but focusses on the most interesting ones. Practice
will show that more rules are needed to refine business process models. However, it is
very important to have rules that are semantically sound. A formal semantics for business
processes was provided in [Thu98]. As we did not present a formal semantics for business
process models in this paper, we will not formally prove the correctness of our rules.
However, from the informal explanations of business processes it might become clear that
the refinement rules are semantically sound.

As we have defined a business process model to be a hierarchy of business process nets,
in general, refinement steps are transformations of the following kind

T:BPM — BPM

Usually, the affected set of business processes is relatively small. It is restricted to those
subtrees in the model hierarchy that comprise the glass box views of the modified pro-
cesses. Quite often, only parts of those subtrees have to be actually modified. In the
following, we will concentrate on the affected nets.

3.2 Refinement Rules

We start discussing the different possible refinement rules by regarding the business pro-
cess in Figure 5.

bp
bp out]
. bp
in,

Figure 5: Simple business process

Decomposition of a Business Process

Assuming that process bp is not yet decomposed by a sub-net in our business process
model, then it is an obvious rule to allow the decomposition of bp into a sub-net, as can
be seen in Figure 6. If the result is a valid business process model (i.e. no forbidden loop
occurs) then it is also a refinement of the former model.

This picture also clarifies why greedy components that evaluate partial information are
useful. As sub-process bpl does not rely on m’;” , it may greedily process its input before

bpl; . bp2
(out 3P"in 2P9)

- bp bp
_ Ny bpl bp2 Ut

b

in P

Figure 6: Decomposition of Figure 5 to process net with same interface
in? exists. Similarly, sub-process bp2 may greedily start processing on input in’ without
having to wait for process bpl to produce its result.

Adding of Channels

Adding of new channels is in general a valid refinement, as we assume that a business
process model is typically rather abstract, depicting only the important, interesting de-
pendencies or those that are well-known at a particular stage of modeling, and abstracting
from unimportant dependencies. Strictly speaking, new channels are introduced by adding
new ports to corresponding processes and connecting these ports via channels. Through
refining a model into a more detailed one, these dependencies need to be explicitly added.
Adding a channel always affects several layers of process nets. If the channel is inter-
nal to process bp, then it affects the glass-box description of bp and the interfaces of its
sub-processes (therefore black-box and glass-box on the sub-process level). The addition
of a channel is allowed in either combination, it may even affect the interfaces of several
layers, as long as no circular dependency relation is established, and process types are
not contradicting. In Figure 7, a refinement of the net shown in Figure 6 and therefore a
refinement of the original process is depicted.

bpl
out ,
in bp out bPljn bp2 bp
Iny bpl (1 1) bp2 out]
. bp
In >
1 bp2
In >

Figure 7: Refinement of Figure 6 through adding channels

Decomposition of Dependencies, Data Refinement

Dependencies are interpreted as dataflow channels, in which exactly one piece of data
is transmitted. In general, this data document is quite complex and consists in itself
of several different kinds of pieces of data. This may either be a record of relatively

independent data or a collection (e.g. sequence, set) of data of the same type. As we
originally allowed the data sort of a channel to be unspecified, it is a valid refinement
to define the data sort of a channel. Figure 8 refines the process shown in Figure 5 by
associating a complex data type with the process’ output port.

inb]p
bp.
bp out P: Ax B
- bp
|n2

Figure 8: Refinement of Figure 5 through adding a data type

Besides specifying the data in greater detail, it would be even more useful to decompose
a channel containing complex data into several channels with simpler data. This is e.g.
useful after decomposing a process and realizing that different portions of the data channel
are used in different sub-processes, or are collected from different sub-processes. Figure
9 illustrates a decomposition of process bp2 and output channel outl{p (see Figure 6) into
two new processes and new channels. Note that operator ~» describes the relationship
between the ports of the original process bp to the corresponding ports of the refining
subnet.

outg"3l
- bp out PPLin br2 bp21 .
inJ bpl (1 1) bp21 out ;P A
b
in 2”
- bp2 bp22.
- bp22 Uty e B

b bp21 bp22
where out)’ ~ {out{""", out¥*"}

Figure 9: Decomposition of an output channel from Figure 6

Folding and Unfolding

Sometimes it becomes apparent that a given business process model is not well structured,
as too many or too few dependencies between processes exist. This is frequently the case
when new dependencies are added that the modeler has not been aware of previously.
For restructuring process models, the basic transformation rules folding and unfolding
are used. The unfolding rule basically copies a sub-net into a higher net, thus expanding
it. Correspondingly, the folding rule does the inverse.

The combination of these two rules allows almost free rearrangements of business process
models within a subtree, and therefore allows a rather flexible restructuring.

) book-id book-id book_id
book-id| check_ notify_reader return. move_boo_k_ book_id
book- of_return_ book to_reservatlonI .
request._ holder request desk notify. receive_
book- i return_request book user-of- notification
reservation _‘ reader.id -red ’_, availability | note
user_id

Figure 10: Unfolding of a process net

In Figure 10, such an unfolding is given, which expands the process net introduced in
Figure 1 by the process net presented in Figure 3. In principle, unfolding of a process net
is possible wherever a refining sub-net is defined for at least one of the processes in the
process net.

While unfolding forgets structure, folding adds structural information. Therefore, some
additional information, namely the set of folded processes, has to be provided in such
a way that the result is still a well-formed business process model. Especially circular
dependencies are not allowed.

Although folding and unfolding are in nature related with the composition rule, they deal
with different methodical purposes. While composition is used to introduce new additional
structure into a business process model, unfolding and folding deal with existing structure
by flattening it or introducing more hierarchy, respectively.

Of course, combinations of these refinement rules lead to more powerful rules. However,
it is also useful to provide specializations of the rules that e.g. deal with the addition of
one channel, as this is often the case when tools are involved.

4 Outlook

In this paper, we have defined a formal notion of business processes and a set of rules
that allow to refine them. We have demonstrated that it is possible to establish a precise
notion of transformation, composition and refinement for business processes.

In the area of business process modeling there is a large amount of papers available that
deal with different aspects of business processes [Ber98, Mil98, CKO092, Lew97, War94,
HJ94, SL94]. However, business processes are often treated in an informal or at the most
semi-formal way. Furthermore, a calculus of rules describing how to manipulate business
processes in order to hierarchically refine them has not been defined so far.

The idea of refinement originally stems from algebraic specifications and was adapted to
different forms of diagrams, e.g. to state machines in [Rum96] and to information flow
architectures in [PRI7].

To be more flexible, the notion of business processes in this paper can be enhanced further.

For example, when decomposing a business process, typically there is not a single one, but
rather a set of different refining business process nets, from which a net will be chosen for
execution according to some initial condition. These extensions can be simulated in our
approach by sending simple signals (or null messages) indicating that no other information
will arrive to those branches of the process net that shall not be executed, as well as by
our notion of greedy evaluation for business processes.

However, a more explicit notion of selecting a process net for execution from a larger
set of process variants would also allow for special refinement rules, e.g. the cutting of
a computation path that will never be used. An integration of the refinement calculus
presented here with the choice operators for input and output introduced in [Thu98]
should form the basis for these more sophisticated refinement rules.

When implementing our notion of business processes, the greedy computation model is
at least partly to be replaced by timing constraints. If, furthermore, explicit timing
constraints are involved, then an analysis of critical paths may be of major interest.

Another very important aspect of implementing business process models is their mapping
to components for execution. For executing a certain business process, the associated
component adopts an appropriate role. The mapping of business processes to components
is flexible, as one component can serve several business processes. Furthermore, it is also
possible to assign the same role to several components, even if they belong to different
types. On the other hand, a complex process may require the collaboration of several
business components for its execution.

Consequently, the structure of components of the software system and the structure of
the business process model may be to a large extent orthogonal. In addition to mapping
business processes to components via roles, dataflow channels are to be considered as
component internal or communication paths between components. A simple, yet often
convincing solution is to constructively derive parts of the software architecture according
to the business process model and to implement dataflow via shared database access and
a separate control and scheduling mechanism.

Most important for a refinement calculus like the one given above is the preparation
of appropriate tool support. Through implementation of a refinement calculus for state
transition diagrams, as defined in [Rum96|, we have shown the feasibility of such trans-
formation tools [FR9S].

References

[BCMRO98| Manfred Broy, Derek Coleman, Tom S. E. Maibaum and Bernhard Rumpe.

[Ber98]

[BGH*97]

[Bo094|

[CKO92]

[EFLROS]

[Fab9s]

[FRO8]

[Gro97]

[HJ94]

[KR94]

[KR98]

PSMT — ICSE’98 Workshop on Precise Semantics for Software Modeling Tech-
niques. In Proceedings of International Conference on Software Engineerig
(ICSE’98) Addendum. IEEE Computer Society, 1998.

Birol Berkem. Traceability Management from ‘Business Processes’ to ‘Use
Cases’. In Haim Kilov and Bernhard Rumpe, editors, Second ECOOP Work-
shop on Precise Behavioral Semantics (with an Emphasis on OO Business
Specifications). Technische Universitat Miinchen, TUM-19813, 1998.

R. Breu, R. Grosu, F. Huber, B. Rumpe and W. Schwerin. Towards a Precise
Semantics for Object-Oriented Modeling Techniques. In Haim Kilov and Bern-
hard Rumpe, editors, Proceedings ECOOP’97 Workshop on Precise Semantics
for Object-Oriented Modeling Techniques. TUM-19725, 1997.

G. Booch. Object Oriented Analysis and Design with Applications. Ben-
jamin/Cummings Publishing Company, Inc., 1994.

B. Curtis, M.I. Kellner and J. Over. Process Modeling. Communications of
the ACM, 35(9):75-90, September 1992.

A. Evans, R. France, K. Lano and R. Rumpe. Developing the UML as a Formal
Modelling Language. In Proceedings of the UML’98, LNCS. Springer-Verlag,
Berlin, 1998.

FabaSoft. FabaSoft Components/Wf. www.fabasoft.com, 1998.

M. Fahrmair and B. Rumpe. Frisco STDA - Ein Werkzeug zur methodis-
chen Bearbeitung von Automaten. Technical Report TUM-19815, Technische
Universitat Miinchen, June 1998.

UML Group. Unified Modeling Language. Version 1.1, Rational Software
Corporation, Santa Clara, CA-95051, USA, July 1997.

P. Hartel and R. Jungclaus. Specifying Business Processes over Objects. In
P. Loucopoulos, editor, ER’9}: Business Modeling and Re-Engineering, pages
10-27, Berlin, December 1994. Springer-Verlag.

H. Kilov and J. Ross. Information Modeling: an Object-oriented Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

Haim Kilov and Bernhard Rumpe. Second ECOOP Workshop on Precise Be-
havioral Semantics (with an Emphasis on OO Business Specifications). Tech-
nical Report TUM-19813, Technische Universitat Miinchen, 1998.

[Lew97]

[Mil9g]

[Ost95]
[PRY7]
[RBP+91]
[Rum96]
[Sch92]

[SL94]

[Thu9s]

[War94]

E.G. Lewis. Managing the Risks of Reengineerint to Achieve Enterprise Ex-
cellence for the 21st Century. In N. Callaos, C.M. Khoong and E. Cohen,
editors, World Multiconference on Systemics, Cybernetics and Informatics,
SCI’97, pages 84-90, Orlando, Florida, July 1997. International Institute of
Informatics and Systemics.

Fatma Mili. On the Formalization of Business Rules: Generic Rules for Com-
position and Containment. In Haim Kilov and Bernhard Rumpe, editors,
Second ECOOP Workshop on Precise Behavioral Semantics (with an Empha-
sis on OO Business Specifications). Technische Universitiat Miinchen, TUM-
19813, 1998.

H. Osterle. Business Engineering — Prozef- und Systementwicklung, volume 1.
Springer-Verlag, Berlin, 1995.

J. Philipps and B. Rumpe. Refinement of Information Flow Architectures. In
M. Hinchey, editor, ICFEM’97. IEEE CS Press, 1997.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Ph.D. Thesis, Technische Universitat Miinchen, 1996.

A.-W. Scheer. Architektur integrierter Informationssysteme — Grundlagen der
Unternehmensmodellierung. Springer Verlag, Berlin, 2 edition, 1992.

D. Seo and P. Loucopoulos. Formalisation of Data and Process Model Reuse
Using Hierarchic Data Types. In G. Wijers, S. Brinkkemper and T. Wasser-
man, editors, Advanced Information Systems Engineering CAISE’9), pages
256268, Berlin, June 1994. Springer-Verlag.

V. Thurner. A Formally Founded Description Technique for Business Pro-
cesses. In B. Kramer, N. Uchihira, P. Croll and S. Russo, editors, PDSE’98
Symposium on Parallel and Distributed Systems Engineering, pages 254-261,
Los Alamitos, California, April 1998. IEEE Computer Society.

B. Warboys. Reflections on the Relationship between BPR and Software
Process Modeling. In P. Loucopoulos, editor, ER’9/4: Business Modeling and
Re-Engineering, pages 1-9, Berlin, December 1994. Springer-Verlag.

