
Quantitative Survey on

Extreme Programming Projects

Bernhard Rumpe Astrid Schröder
Software & Systems Engineering Software & Systems Engineering
Munich University of Technology Munich University of Technology

Arcisstr. 21 Arcisstr. 21
D-80333 Munich, Germany D-80333 Munich, Germany

+49 89 289 28129 +49 89 289 28129
Bernhard.Rumpe@in.tum.de Astrid.Schroeder@in.tum.de

ABSTRACT
In recent years the Extreme Programming (XP) community
has grown substantially. Many XP projects have started and
a substantial amount are already finished. As the interest in
the XP approach is constantly increasing worldwide
throughout all software intensive application domains, it
was time to start a first survey on XP. This paper presents
the results of 45 evaluated questionnaires that have been
received during the Summer 2001 survey.

Keywords: Extreme programming, XP, survey.

1 INTRODUCTION
Based on a series of books and a large body of conference,
magazine, and journal papers, the Extreme Programming
approach to software development is widely known and has
become rather prominent. A number of pilot projects using
the XP approach has been started. However, many
companies are still facing the question, whether, in which
projects and in which form they should move from their
traditional or object-oriented approaches to software
development to Extreme Programming. Supporters of XP
claim a larger number of benefits, but today statistical
quantitative support for these claims has not been given. As
XP exists for a number of years, it is time to start gathering
data.

This article describes a survey based on 45 questionnaires,
which was conducted during Summer 2001. In Section 2,
we describe the content of the survey, and how people have
been addressed. In Section 3, we present a condensed
version of the survey results and give a final outlook in
Section 4.

For those interested in an introduction to or further reading
on XP, we recommend [1,2,3,4] or more scientific articles
in the proceedings [5] that contain e.g. [6]. The full study is
available as [7].

2 STRUCTURE OF THE SURVEY
The questionnaire
The purpose of this survey was to get a general
understanding of the current situation in XP projects, the

problems, the kind of projects using the XP approach, the
results, the background of the team members etc. As XP
people are typically busy, we decided not to ask all
interesting questions, but to concentrate on three blocks of
total 33 questions. The questions are:

Block 1. On the Company
1,2: Name of project, person, company are not disclosed,
but were collected for possible additional questions and to
prevent several questionnaires on the same project.
3. Role of person who filled in this questionnaire
4. City and country where company is located
5. Some information about the company (how big,

founded when, what line of business is it in, how many
other XP projects were carried out before?, ...)

Block 2. On the XP-Project
6. Duration of project (from when till when)
7. Team size
8. Total manpower e.g. in person-months
9. How good was the general software engineering

training/knowledge of the team members initially?
10. How many team members had made experiences in XP

previously?
11. How many development companies/independent

consultants were involved?
12. Why did you decide to develop this project with XP?
13. Programming languages used
14. Technologies used
15. What kind of software was developed?
16. Has it been a development from scratch (new system),

legacy maintenance, or adding new functionality on an
existing system?

17. What was the project structure (how many people were
there for each role)?
• Programmers (writing production code and code for

component tests)
• Customers
• Testers (helps customer developing functional tests)
• Coach
• Further roles (consultant, big boss, tracker...)

[RS02b] B. Rumpe, A. Schröder.
Quantitative Survey on Extreme Programming Projects.
In: Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.
www.se-rwth.de/publications

18. How many customers with different stakes
(requirements, forms of usage for the system) were
involved?

19. Did the project terminate successfully? (9=very
successful, 0=not at all successful)

20. What were the major reasons for its success / failure?
Can you priorize them

21. If it was a success what were the main obstacles? How
dangerous have they been?

22. XP was invented to make software development more
successful. Some of its main goals are listed below. In
your XP-project, could these goals be reached? If not,
explain the obstacles? (5=fully achieved, 0=as always, -
5=much worse)
• Deliver software in time
• Let developers have fun with their work
• Develop software with a high quality (less bugs)
• Late changes don't cause high costs, because one can

react fast to changes
23. Which XP-Elements did you use in the Project?

(9=fully used, 0=not at all) Please say for every element
how strong you used it (9-0) and if you consider it
helpful(h), improvable(i), or even making-difficult(m)
for success of development.
Planning Game
Short Release Cycles
Metapher
Simple Design
Testing
Refactoring

Pair Programming
Common Code Ownership
Continuous Integration
40-Hour-Week
On-Site Customer
Coding Standards

24. Please give reasons for the three least used concepts,
why you didn't use them? Did you explicitly decide not
to, or had there been other obstacles?

25. Do you have improvement suggestions for any of the
XP elements (perhaps in your project you already used
this elements in the way you improved it for yourself)?

26. Have you used additional concepts, tools or modeling
languages that go beyond the pure XP approach? How
did they integrate to XP?

27. Some comments about the project and the project
progress

28. Further comments

Block 3. Future plans and personal background
29. Will you use XP again?
30. Are you actively advocating XP in the future?
31. Are you trained in UML or a similar modeling

language?
32. If you know UML, did you miss it?
33. Would you like to use UML combined with an XP

approach, e.g. for generation of code or tests?

How the data was gathered
To achieve credible results, the questionnaire was
distributed among several channels worldwide. Mailing
lists, direct contact and addresses of contact persons found

in the internet were used. Interestingly mailing lists were
relatively inefficient (only 7 of 45 answers from there).
From the directly approached persons, 22% responded
with a filled in questionnaire. Others responded, that they
aren’t allowed to officially acknowledge that they are doing
XP (“Guerilla XP”).

The questionnaire contains questions to be answered with
free text as well as with a numeric rating. The latter are
grouped and usually represented in charts. The free text
questions were evaluated and (if possible) classified
according to the context of the question. Some of these
answers are cited below.

3 RESULTS OF THE SURVEY
Some core results
• Almost all of the projects were rated successful.
• 100% of the asked developers would reuse XP in the next

project, when appropriate.
• The frequent absence of the customer was identified as

high project risk.
• Problems with XP often come from “barriers in the

mind”: management was skeptic, company philosophy
didn’t allow on-site customer, developers refused pair
programming.

• Most useful XP elements were common code ownership,
testing and continuous integration. Most critical metaphor
and on-site customer.

• As most important success factors have been mentioned:
testing, pair programming and the focus of XP on the
right goals.

Potential problems with the survey
The filled questionnaires showed a clear trend to rate the
project outcome as success. Only one of 45 was rated
partial success, none as failure. This may have three
reasons: (1) XP is a real silver bullet, (2) developers tend to
evaluate their work more positive than customers would
(and we didn’t have access to customers), and (3)
developers from unsuccessful XP projects don’t bother
about XP anymore and either haven’t been reached or
didn’t want to answer. But the high success rate clearly
demonstrates that XP enables successful projects.

The second problem is that, whenever a new technology is
used, the early adopters are usually higher motivated. This
alone may make XP projects more successful than
traditional projects, without XP itself being superior.
Reasons for XP projects were among others: “personal
interest” with 17,8%, “good experience in other projects”
and “customer/management wanted it” with 20%.
Therefore, “personal interest” was a partial motivator and
thus had some influence on the survey outcome, that we
unfortunately cannot quantify.

Statistics on the participating companies
The companies and their continents are structured as
follows (the most important countries were: USA 24%,

[RS02b] B. Rumpe, A. Schröder.
Quantitative Survey on Extreme Programming Projects.
In: Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.
www.se-rwth.de/publications

Germany 20%, Switzerland: 13%, UK: 13%)

6,7%

0,0%

2,2%

2,2%

28,9%

60,0%

0% 10% 20% 30% 40% 50% 60%

n.A.

Africa

Australia

Asia

America

Europe

The industrial sectors split as follows:

17,1%

7,3%

4,9%

7,3%

9,8%

12,2%

12,2%

29,3%

0% 5% 10% 15% 20% 25% 30%

n.A.

Others

Biotechnology

Bank/
Insurance

Consulting

other
IT/Elektronics

Internet/Web

Software
Development

XP is used in traditional as well as new economy
companies of all sizes:

36,6%

29,3%

12,2%

14,6%

7,3%

0% 10% 20% 30% 40%

n.A.

≤ 150 years

≤ 50 years

≤ 10 years

≤ 5 years

22,0%

4,9%

9,8%

17,1%

36,6%

9,8%

0% 5% 10% 15% 20% 25% 30% 35% 40%

k.A.

≤ 500.000

≤ 100.000

≤ 1000

≤ 100

≤ 10

Employees

Age of company

Background of the respondents and teams
In a third of the questioned teams the members are well
experienced in software engineering in general. In another
42% of the teams the experience was mixed (experts and
newcomers).

The roles of the respondents were distributed as follows:

11,6%

2,3%

18,6%

25,6%

41,9%

0% 10% 20% 30% 40% 50%

n.A.

Other

Developer

Coach

Teamleader

In more than 50% no external consultant was member of
the project team, 21% had one consultant, 24% even more
(5% didn’t answer that question).

That XP has a high expansion rate can be concluded from
the fact that more than half of the questionnaires were filled
on the first XP project:

30,2%

18,6%

51,2%

0% 10% 20% 30% 40% 50% 60%

n.A.

involved in
earlier XP projects

first XP
project

In several larger XP projects the start was quite
conventional:

• “The project itself started about two years ago using a
standard development methodology. The decision to
transition to XP was taken because of all the usual
difficulties of managing development projects.”

The projects
51,1% of the projects were finished, 48,9% still running.
The following project schedule indicates the rapidly
growing interest in XP:

11,1%

2,2%

2,2%

4,5%

15,6%

22,2%

42,0%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

n.A.

1996

1997

1998

1999

2000

2001
Project started in

The duration of the projects was rather equally distributed
among: less than six months, one year, and up to three
years.

The size of the teams, however, was somewhat surprising,
as larger XP projects do exist and are considered as
successful:

4,4%

11,1%

48,9%

35,6%

0% 10% 20% 30% 40% 50%

≤ 40 persons

≤ 15 persons

≤ 10 persons

≤ 5 persons

The application domain was rather mixed, with the
following peaks:

2,2%

15,6%

15,6%

28,9%

37,8%

0% 5% 10% 15% 20% 25% 30% 35% 40%

n.A.

Tool/ framework

Insurance-/
banking software

Web-software

Other

About 73% of the systems were developed completely new,
the others either added new functionality to a given system
(15%), developed a new part interacting with a legacy
system (9%) or were maintenance projects (11%) (multiple

[RS02b] B. Rumpe, A. Schröder.
Quantitative Survey on Extreme Programming Projects.
In: Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.
www.se-rwth.de/publications

selection was allowed).

The languages used were distributed as follows (again
multiple selection allowed):

11,1%

2,2%

11,1%

17,8%

73,3%

0% 20% 40% 60% 80%

Others

Lisp

Smalltalk

C++

Java

It is not surprising that XP is most efficient and therefore
mainly used with high-level (OO) languages. Similar for
technologies that have been used:

8,9%

17,8%

20,0%

46,7%

46,7%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
EJB

COM/ CORBA

JSP/ ASP

DBMS/ SQL

XML/ HTML/ WML

Why XP was used?
One of the most interesting questions: What were the
reasons for applying the XP approach? The free text
answers have been categorized as follows:

8,9%

11,1%

17,8%

28,9%

33,4%

0% 5% 10% 15% 20% 25% 30% 35%

Customer/management wanted it

Good experience in other projects

Personal interest

to the project settings

Frustrated from other methods

Fitted optimally

/seemed to be best

In many cases, XP seemed to be the appropriate method.
Some statements:

• “Basically, after reading and thinking and talking about
it a lot, I thought that it made more sense then any other
methodology I'd read about. I didn't agree with all of it
but I decided we should give it a try...”.

• ”We felt that the XP is simple & better Process.”

Others were frustrated from traditional techniques and
relaunched the project

• ”The project commenced in March 2000 using CMM
Level 5 outsourced developers using Unified method.
Code delivered unsatisfactory. Development brought in-
house February 2001, and project re-started”

XP in the project
55% of the projects had more than one person acting as
customer, 25% at least one, 4.6% none. 14% didn’t answer
this question, which could lead to the assumption they had
no on-site customer as well. Furthermore, several
customers were “substitutes” played from the project
manager, sales persons or the programmers themselves.
The pretty high rate for customers indicates either that the

on-site customer indeed plays a vital role in XP projects or
that a higher rate of the project teams were already satisfied
with a “normal” customer, who is more closely integrated
into the team, but still not a perfect on-site customer.

Testers, coaches and programmers were distributed as
follows:

4,4%
55,6%

28,9%
6,7%

4,4%

0% 20% 40% 60%
n.A.
≤ 5

≤ 10
≤ 15
≤ 30 Programmers

8,9%
6,7%

33,3%
51,1%

0% 20% 40% 60%
n.A.

none
one

several

Customers

20,0%

26,7%

15,6%

37,8%

0% 10% 20% 30% 40%
n.A.

none

one

several

Testers

6,7%

24,4%

15,6%
53,3%

0% 20% 40% 60%
n.A.

none

one
several

Coaches

In more than 60% of the projects additional roles, such as
time tracker have been mentioned.

Of particular interest have been the assessment 12 XP
elements. Each of them was rated on a scale from 9
(strongly used) to 0 (not used at all). The average values
and the deviation distribute as follows:

7,01
4,09

7,17
7,56
8,01

7,29
7,77

7,27
6,98

3,19
6,86

6,03

0 2 4 6 8 10

Coding Standards
On-Site Customer

40-Hour-Week
Continuous Integration

Common Code Ownership
Pair Programming

Testing
Refactoring

Simple Design
Metaphor

Short Release Cycles
Planning Game

2,26
3,24

2,37
2,11
2,14

2,6
1,7
1,9
1,96

3,14
2,8
3,05

0 2 4

Average value Deviation

Metaphor was seen most critically: It was not used by 40%
of the projects at all, because to many respondents it wasn’t
clear how to apply it. The on-site customer got a bad rate,
mainly because customers have not been as available as it
was desired. On the other hand, common code ownership
seems to be the easiest to realize. So it is consistent that the
metaphor and the on-site customer are the two elements
that need improvement most:

Helpful Can be improved

M
ak

es
su

cc
es

s
m

or
e

di
ffi

cu
lt

0% 20% 40% 60% 80% 100%

Coding Standards
On-Site Customer

40-Hour-Week
Continuous Integration

Common Code Ownership
Pair Programming

Testing
Refactoring

Simple Design
Metaphor

Short Release Cycles
Planning Game

Project goals
Questions dealing with project progress and results were to
be answered relative to traditional approaches in a scale

[RS02b] B. Rumpe, A. Schröder.
Quantitative Survey on Extreme Programming Projects.
In: Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.
www.se-rwth.de/publications

from 5 (much better), to 0 (as always) to –5 (much worse).
Interestingly none of the answers included a number below
0. This is a strong case for XP.

The detailed numbers have been split between ongoing and
finished projects. The questions where, whether the costs of
late changes have been reduced, the quality of the result
was increased, the work was more fun, and the software
can/could be delivered in time better than before:

4,04

4,13

4,18

3,77

4,11

3,95

4,4

4,44

3,4 3,6 3,8 4 4,2 4,4 4,6
Delivery in time

Fun factor of
work

Quality of
result

Costs of late
changes

running
finished

Interestingly, both the cost of change and the quality were
seen less positive from the finished projects than from
ongoing ones. This effect sustains that changes in later
stages of the project still have higher costs of change and
the projects are seen less optimistically. Furthermore,
design flaws usually occur at the end of the project, thus
reducing the quality ratings. But, although the optimism is
less after projects are finished, the rating of 3,77 still
indicates that the costs of late changes are much less in XP
projects than in traditional ones. Reasons for this may be
that refactoring, rigorous testing techniques and the
omission of redundant documentation enables changes and
lean (“simple”) software produces less rework when
changed. Interestingly, the fun factor for finished projects is
higher than for ongoing ones. This may come the fact that
people tend to forget negative experiences earlier than
positive ones.

Difficulties with XP elements
Knowing the ratings of their usefulness, it is not surprising,
what the difficult elements of the XP approach were:

0% 10% 20% 30% 40% 50% 60% 70% 80%

2,2%
4,4%
4,4%

6,7%
8,9%

15,6%
15,6%

20,0%
20,0%

31,1%
66,7%

68,9%

Continuous Integration
Common Code Ownership

Short Releases
40-Hour Week

Testing
Pair Programming

Simple Design
Coding Standards

Refactoring
Planning Game

On-Site Customer
Metaphor

While the metaphor was not used largely, due to difficulties
to understand it, the problems with the on-site customer had
other reasons. Some citations:

• “On-Site Customer: This would be great, but we did not
have a chance to experience it.”

• “Hard to convince the customer to be on-site always.”
• “[Customer] did not participate as much as would have

been preferred.”
• “On-Site Customer, didn't use this because we couldn't

get a customer to participate.”
• “The customer was very busy on other projects ...”

On the other hand, there were also cases, where the
customer wasn’t necessary all the time, or wasn’t able to
play his part accordingly:

• “On-Site customer - We didn't need him on-site 100%.”
• “Customers not really competent (or to busy) to write

stories.”

This indicates how important it is to have the customer
willing and able to support an XP project.

Project success
In a rating from 9 (full success) to 0 (failure) all except one
projects rated between 7 and 9. Average of the running
projects was 8,1, of the finished projects significantly
smaller: 7,6. As above, this indicates that running projects
are estimated more optimistic than finished ones.

The following success factors have been identified:

2,2%
8,9%

11,1%

11,1%
13,3%

17,8%
17,8%
17,8%

0 5 10 15 20%
Commited management, customer

Motivated team
Well trained developers

Priorizing of tasks, story card planning
Good communication to customer, mgmnt.

XP goals: quality, meets customer needs
Pair Programming

Testing

Comments on the success factors were:

• “Tests and pair programming had prio 1 as success
contributions.”

• “Test, test, test. Write test cases first. Have a good test
driver available for ALL components.”

• “Quality Software delivered on time.”
• “Stability and defect rate is excellent.”

Pair programming seems to be much harder to realize:

• “I was most sceptical about this [Pair Programming]
before; I'm most in favor of it now.”

• “The Pair Programming was a major benefit to the
project. Coding was completed much faster and there was
immense knowledge transfer between the programmers.”

• “Pair Programming: never decided to use it at 100\%,
had two developers in team who refused to do it or were
very difficult to work with.”

Project risks
Being asked what they consider as the most important risks
for the project success, the respondents answered:

8,9%

11,1%

15,6%

15,6%

28,9%

0% 5% 10% 15% 20% 25% 30% 35%

Unskilled developers

Not trained in XP enough

Problems with technology,
missing tools

Opposition against XP
Problems with On-Site Customer

[RS02b] B. Rumpe, A. Schröder.
Quantitative Survey on Extreme Programming Projects.
In: Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.
www.se-rwth.de/publications

Thus the most critical problems are the missing or
unwilling on-site customer, mental opposition against XP
by one or some of the participants, but interestingly also
technical problems. The opposition could come from a
variety of sources, such as management, other departments,
developers or the customer. Some comments indicate, that
a non permanently available customer can be at least
partially replaced by the planning game. Other comments:

• “No customer on site. Not too dangerous since there were
clear requirements and regular meetings.”

• “Lack of an on-site customer - very dangerous, causes a
lack of focus in the project.”

• “On-site customer - the current culture of how software
development "works" makes it extremely hard to apply
this in practice, i.e. to involve a non-technical stakeholder
as a peer within the team. Instead, the relationship
between engineers and users are implicitly viewed as
‘adversarial’.”

• “On-Site Customer, difficult from a logistic point of view;
not very well compatible with company's culture.”

Although, the customer(s) sometimes have been available,
they caused problems by not being able to priorize tasks or
to describe test plots.

Partly XP projects have been carried out without informing
the customer like in a “Guerrilla XP”:

• “Project management had no trust in team and XP - very
dangerous.”

• “The only obstacle was time and the customer. The
customer wasn't informed...”

On the technological side, questions on modeling
techniques such as UML showed, there is some interest in
combing UML in the XP approach. 35% of the respondents
used UML in the project. The desired main purpose for
UML in an XP project was for communication (28,9%) and
for code and test generation (13,3%). A majority of 53,3%,
however, doesn’t want to see UML in XP projects at all.

Conclusions on the XP approach
The question, whether XP shall be used again have been
answered with “yes” by 93,3%, whereas the remaining
6,7% wanted an improved XP. All 100% of the respondents
even want to actively advocate XP in the future. This
demonstrates that XP is superior to some of the traditional
approaches at least in the domains it was used. However, it
also raises the question, whether, the survey only reached
XP supporters and should therefore be treated carefully.
This has been discussed earlier already.

4 OUTLOOK
This survey has to be understood as an initial survey on the
use of XP in real world projects. The XP community has
grown up and more and more XP projects will be finished.
Therefore, more surveys on XP need to come and to refine
the data gathered with our survey in Summer 2001.

Actually we feel it too early to come up with final
conclusions based on this single survey, but more surveys
will follow and will either strengthen or change our
findings.

As discussed, the pretty high rate of developer statisfaction
with XP and the equally high number of people rating their
projects a success demonstrate that XP is an attractive
approach to software development. The company structure
also indicates, that XP is by no means restricted to the New
Economy or the internet world, but is appealing for all
innovative companies.

No doubt, a living methodology such as XP will improve,
as the body of knowledge will grow. It will be extended
with traditional elements and will be applied to new
domains, such as large and well structured
telecommunication systems, embedded systems software,
as well as to larger projects. Furthermore, tool support will
improve and lead to an adaptation of the importance of XP
concepts.

Not only based on this survey, we believe XP techniques
belong to the portfolio of a well trained software engineer
in the same way as more traditional techniques. This
enables the software engineer to flexibly react to upcoming
projects needs.

ACKNOWLEDGEMENTS
This work was supported by the Bayerisches
Staatsministerium für Wissenschaft, Forschung und Kunst
through the Bavarian Habilitation Fellowship and the
German Bundesministerium für Bildung und Forschung
through the Virtual Softwaereengineering Competence
Center (ViSEK). Special thanks go to our colleague Guido
Wimmel, Michele Marchesi for helping us identifying
contact persons, our partners BMW, ESG, Mummert +
Partner, Siemens and all participants of the survey.

REFERENCES
1. Beck, K. Extreme Programming Explained. Addison-

Wesley, 1999

2. Beck, K., Fowler, M. Planning Extreme Programming.
Addison-Wesley, 2000

3. Fowler, M. Refactoring. Addison-Wesley, 1999

4. Jeffries, R., Anderson, A., Hendrickson, C.: Extreme
Programming Installed. Addison-Wesley, 2000

5. G. Succi, M. Marchesi. Extreme Programming
Examined. Addison-Wesley, 2001

6. Jacobi, C., Rumpe, B. : Hierarchical XP – Improving
XP for large scale projects. In: [5]. 2001

7. Rumpe, B., Schröder, A.: Quantitative Untersuchung
des Extreme Programming Prozesses. Technical Report.
TUM-I01 (in print). Munich University of Technology.
2001.

[RS02b] B. Rumpe, A. Schröder.
Quantitative Survey on Extreme Programming Projects.
In: Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.
www.se-rwth.de/publications

