
Hierarchical XP
Improving XP for large scale projects in

analogy to reorganization processes

Carsten Jacobi
Lehrstuhl für Betriebswirtschaftslehre

Munich University of Technology
Germany

http://www.bwl.wiso.tu-muenchen.de

Bernhard Rumpe
Software & Systems Engineering
Munich University of Technology

Germany
http://www.rumpe.de/

Abstract. XP is a light-weight methodology suited particularly for small-sized teams that
develop software which has only vague or rapidly changing requirements. The discipline of
systems engineering knows it as approach of incremental system change or also of “muddling
through”. In this paper, we introduce three well known methods of reorganizing companies,
namely, the holistic approach, the incremental approach, and the hierarchical approach. We
show similarities between software engineering methods and company reorganization
processes. In this context, we discuss the extreme programming (XP) approach and how the
elements of the hierarchical approach can improve XP. We provide hints on how to scale up
XP to larger projects e.g. those common in the telecommunication industry.

Keywords. reorganization, XP, mixed scanning, project organization, hierarchical approach.

1. INTRODUCTION

Extreme Programming (XP) [Beck99] is a light-weight methodology for small-sized
teams developing software with vague or rapidly changing requirements. XP can be
regarded as an explicit reaction to the complexity of today’s modeling techniques like the
Unified Process [Jacobson+99], the V-model [KBSt97], Catalysis [D’Souza+98], or the
Open Modeling Language [Firesmith+97]. XP focuses especially on a small number of
best practices, disregarding many others advocated by the other methodologies. Being a
relatively new, promising approach, XP still has to be proven in various projects on its
superiority and usefulness when compared to other approaches. Measuring the quality of
a software development in quantitative numbers is such a complex issue, so that we will
mainly have a common sense of the advantages of XP over other methods. XP will
evolve, reducing its weaknesses and increasing its strengths. This article is not a criticism
of XP, but suggests an improvement in one of its obvious weaknesses: XP is designed for
a single small team of less than a dozen team members, therefore, it has its problems to
scale up for larger projects. Fortunately, applying the XP approach in projects seems to
considerably downsize the number of necessary participants, but there is still a number of

[JR01] C. Jacobi, B. Rumpe.
Hierarchical XP.
In: Extreme Programming Examined. G. Succi, M. Marchesi (eds.).
Addison-Wesley, 2001.
www.se-rwth.de/publications

2

areas, where hundreds of developers work on producing one single software product. For
example, the telecommunication industry is under enormous pressure to add and improve
functionality of their products. The time to market span in the mobile phone business
needs fast and flexible process for large projects. Switching systems need to be adapted
for each customer and for each country: XP could play its role here too.
The main obstacles against scaling up of XP are lack of documentation (therefore the
exponential increase of necessary communication between developers), lack of stable
interfaces and stable requirements. Consequently, scaling up of XP will probably be
indispensable in order to adopt methodical practices from other methodologies.

In industry, a big reengineering wave started in the 80’s, where companies tried to be
more efficient regarding the competitor. From the discipline of systems engineering, we
are acquainted with three approaches suited to manage a reorganization project. In the
Total Systems Approach [Picot+79], the desired properties of a new system are defined
first and then the whole system is introduced into the new organization like a big-bang
invention. In the Incremental Systems Approach also known as “Muddling Through”, a
set of small changes incrementally leads to local optimization. Through small changes of
the company structure and organization and its supporting software system, a series of
small localized improvements lead to a sub-optimal organization form.
As both approaches have several drawbacks, discussed below, system engineering
provides a third approach called “Hierarchical structuring” of system development or also
“Mixed Scanning”. This approach combines the advantages of both other approaches,
usually leads to better reorganization projects and therefore to an overall optimization.
Some similarities exist between the extreme programming approach and the incremental
systems developing approach, as well as similarities between the total system
development and the classic OO methods approach. It is, therefore, an interesting issue to
transfer the combination of these two approaches from systems engineering to the
software engineering discipline. There are two basic advantages:

• the combination leads to a scale up of the extreme programming approach to
larger projects by hierarchically structuring the teams, and

• it features a successful methodology named Genesis for organizing of hierarchical
approach which can be transferred to the software engineering discipline.

Both of above discussed points have interesting aspects. Of course, scaling XP up to a
larger project allows to apply the XP approach even if the system becomes more complex
needing more people to be involved. Another advantage is that there is a proven
methodology to get a hierarchical reorganization process organized; this can be easily
adopted to software engineering discipline.

In Section 2 we shortly repeat the aspects of XP which are of interest in this context.
We also discuss some of the advantages of XP over traditional OO methods to get a basis
for the following discussion. In the third Section we introduce three different approaches
to reorganize parts of the company and discuss their advantages and drawbacks. This will
show the analogy to software process models and will point out some possible
improvements for XP. In the fourth Section we discuss what XP can learn from company
reorganization approaches and how a successful methodology (Genesis) can be used to
incorporate XP.

3

2. XP - BRIEF INTRODUCTION AND DISCUSSION

Section 4 discusses adaptations of XP to a hierarchical variant. This is based on the
principles of XP that we briefly introduce in this section. We suggest to skip this section,
if the reader is familiar with the basics of XP. According to [Beck99], the light-weight
methodology XP basically consists of:

• four values: communication between the programmers and between programmers
and customers, simplicity of design, the early feedback through small changes in
the releases and the courage of programmers to do whatever necessary,

• a number of software engineering principles discussed below,

• four basic activities: coding, testing, listening and designing, and

• a number of practices that help to structure the basic activities in order to achieve
the basic principles.

Out of the four basic values a number of principles have been derived; this is again
partially quoted from [Beck99]. Here are some fundamental ones:

• Rapid feedback: XP advocates very early a rapid, if possible, daily feedback that
allows programmers to focus on the most important software features.

• Assumed simplicity: XP tries to focus on the simplest possible implementation
that works. Therefore, it focuses only on today’s problem and does not plan future
extensions of software. In particular, it does not plan for re-use at all.11

• Incremental change: a big change will never work at the first try. XP advocates
small changes to incrementally enhance the system with desired functionality.
This idea is based on the concept of Refactoring, first introduced in [Opdyke+93].

• Embracing change: “The best strategy is the one that preserves the most options
while actually solving your most pressing problem.” ([Beck99], page 38)

• Quality work: quality is what finally matters. It emerges as dependent variable of
the other three. The XP approach tries to ensure an excellent quality by focusing
on basic principles that have proved useful and trying to keep the motivation of
programmers up to its highest level.

For more on the software engineering principles, please refer to [Beck99].
There are four basic activities in the XP approach: coding, testing, listening and

designing. As a light-weight methodology XP explicitly abandons any explicit activity of
documenting and analyzing the system. Analysis remains a rather implicit, but continuous
activity that happens in everyday communication with the customer. Documentation is
explicitly discouraged. Therefore, it is not surprising that coding is one of the most
important activities in the XP approach. The second important activity is the testing of

1Disregarding re-use issues come simply from the observation that approaches that explicitly try to re-use
software have not been too successful in this task. Furthermore, software seems to be best reusable if
simple. So disregarding re-use may de facto lead to a higher re-use rate.

4

written code. In order to ensure that the code written actually works, the XP approach
advocates writing a high number of tests to check whether the code is correct or not. The
test suit can be seen as a specification, some of them written by programmers themselves
to ensure that programs they wrote actually work. In addition, customers or explicit
testers also write functional tests to ensure the system meets the desired functionality.
The third basic activity for XP programmers is listening. This means XP programmers
listen to customer’s needs and intentions as well as to those of other programmers by
means of their everyday communication. Finally, even in the XP approach, it is
sometimes necessary to step back from everyday coding and do some general design.
This is of particular interest if changes to systems become more complicated.

Even minor changes have impact on large parts of the system. A little bit of design is
part of the daily business for all programmers in XP. Even though good design is difficult
to evaluate, a number of hints exist. For example, the good design puts functionality that
operates on data near to that data. It also tries to concentrate pieces of functionality within
one place in system, not too distributed among numerous units. In order to establish all
the goals XP advocates, the good design also gives us several practices that should be
followed:

• The planning game: based on business priorities and technical estimates, the scope
of the next release should be determined. Please note that releases depend slightly
on one to a few of their incremental developments.

• Small releases: one release almost every day or a couple of days.

• Simple design: systems should be designed as simple as possible. This means in
particular, that unused functionality that complexes the system further should be
removed.

• Testing: unit tests are written by programmers, functional tests are written by
customers to demonstrate that a feature actually works.

• Refactoring: the techniques of refactoring deal with structural changes of a system
without affecting its behavior. They simplify the system, remove unused code,
add flexibility or improve the communication between the parts. This can be done,
e.g. by splitting or joining classes or moving methods or attributes from one class
to another [Opdyke+93].

• Pair-programming: two programmers sit at one machine. What one programmer
writes is immediately reviewed by the other. They continuously communicate
with each other to ensure directly the high quality of their code.

• Collective ownership: every programmer may change each part of the program at
any time. There is no single owner of the code.

• Continuous integration: the idea is to integrate the new code and build the system
many times a day whenever a task is completed. Of course, each time the set of all
tests is checked against the new version of the system.

• On-site customer: in order to ensure continuous communication not only among
programmers, but also with at least one customer, it is important to have one

5

customer in the team all the time. He can immediately answer all the questions
that programmers have.

• Coding standards.

For a more complete list and a detailed list of these practices, please refer to [Beck99].
Today, the XP approach is mainly used for small projects (1-10 team members). It

has been successful within small-scale projects, but had not really been applied to larger
projects. Due to its basic values and principles, we may assume that XP in its current
form does not easily scale up to larger projects. However, if we compare the XP approach
to classically oriented methods, like the already mentioned Catalysis, the Unified Process
or the methodology framework provided by OPEN, we discover several advantages of
XP. Compared to classical analysis design implementation or to more modern Inception-
Elaboration-Construction-Transition-life-cycle, XP is more flexible and includes more
explicitly the needs and intentions of all project participants. As in XP the stages of
analysis, design and implementation are no longer separated, the analyst and the
implementer are basically united in a single person. This, on one hand, allows us to forget
about a thorough analysis documentation. On the other hand, the implementer is directly
in touch with the customer, and, therefore, knows his intentions thoroughly when
mediated by the analyst. Such considerable increase of motivation is paired to the
appropriate decrease of misunderstandings on the communication path from the customer
to the implementers.
Altogether, XP is a promising approach with a number of strengths and few weak spots
that can be improved. This paper presents an approach to tackle the specific problem of
scaling XP up to larger projects. The characteristics of XP’s advantages and
disadvantages being similar to different ways of reorganizing companies, like those used
by the automobile industry in the 80's and 90's, we will show in the next chapter the
improvements made when reorganizing companies. This gives us more hints to improve
XP.

3. THREE APPROACHES TO COMPANY REORGANIZATION

Many different, more or less successful approaches were developed to reorganize
companies in the past. A systemization of these approaches suited for a reorganization of
companies divides them into three different types [Veitinger95]:

• The Holistic Approach, also called Total Systems Approach

• The Incremental Approach, also called Muddling Through

• The Hierarchical Approach, also called Mixed Scanning or Piecemeal Scanning

We shortly introduce each of these in its own right, and then compare them to each other.

3.1 The Holistic Approach

The holistic approach tries to manage the whole complexity of a planning process in one
comprehensive step, and does not divide the problem into any smaller parts. With this
approach, it is necessary to understand the whole problem in detail before working out a

6

solution. This needs a broad information basis and a detailed as-is-analysis. To initialize a
reorganization process, one also has to tag one’s targets exactly. Only then, various
alternatives can be generated and the best-fitting alternative chosen.

For a detailed as-is-analysis of an existing system in a complex environment, it is
sometimes useful to structure it into subsystems. Each subsystem with the functionality
(described through visible input and output) will then be analyzed separately. After the
as-is-analysis, we can again regard those subsystems as black-box description of a
system. This is basically the same approach as if a new system is being built by starting
with a rough planning on a high level, treating all subsystems of lower level as black-
boxes. The holistic approach is typically used in operation research, statistical decision
theory and systems analysis. When trying to reorganize more complex systems, certain
difficulties occur:

• The capacity of solution solvers is limited for a detailed analysis of all possible
solutions and their consequences.

• The derived description, i.e. information-flow does not fulfill the requirements.

• The process is time-consuming and costly (partly because of the detailed analysis
phase).

• Provided the system is open to future change, all economic influences must be
precisely estimated.

A significant disadvantage remains the enormous need of high-level competence and
detailed holistic knowledge to work out a solution. Numerous reorganization projects of
complex systems failed only because the solution was not reached in given time.

3.2 The Incremental Approach

The incremental approach develops the system step by step. The primary target is not a
perfect solution for a problem but a continuous progress. Consequently, the real targets of
reorganization exist only on a very high level. It therefore must be checked periodically
whether the activities are still effective and meet the targets. A typical example of an
incremental approach is the continuous improvement process (KAIZEN, originated in
Japan). It is based on the assumption that all steering and control mechanisms can be
changed independently. Six principles characterize the incremental approach:

• Comparison and Analysis are done step-by-step: the reorganization process starts
with the actual system and tries to improve it in small steps. The problem solver
focuses on the well known elements.

• The number of alternative solutions is restricted: possible solutions are restricted
since the modifiable elements stand only for a small part of the whole system.

• Restricting the regarded consequences: as we can modify only a small part of the
system, the consequences of a problem solution may regard only these few
elements; otherwise, the changes are not acquainted with context.

7

• Simplification: make a complex problem easy by dividing it into several smaller
ones and solve them first (but independently) before going further to a final
solution.

• Repeating analysis and evaluation: a certain situation may always be improved by
finding a better solution than the existing one.

• Healing negative symptoms: fast removal of weak points of a big complex
system, without trying to develop overall solutions. This approach is also called
inductive.

The incremental approach is easy for use and of great help when quick improvements for
small elements are needed. This is achieved by only involving the employees who best
know their processes. The disadvantages of this approach are the lack of innovative
solutions and the lack of one common target.

3.3 The Hierarchical Approach

Both the holistic and the incremental approach are combined here. Starting from an
overall view of a reorganization project, the whole system is divided into modular, very
detailed elements. When we work on such elements, we are always able to give feedback
on a higher conceptual level in order to check targets and singular planning. Several
principles should be fulfilled to make this approach successful:

• The problem should be clearly defined by an input / output relationship and
furthermore divided into elements. Possible criteria for the division are processes,
products or functions.

• Clearly defined targets for each element are needed.

• The target is approached stepwise through improvements on each particular step.

• A special form of project-management is necessary to handle the communication
and coordination of the modular elements appropriately.

Experience shows, especially the coordination task is a great success factor when it
comes to practical solutions that fulfil the targets adequately.

The analysis of each of the three approaches shows various ways to undertake a
reorganization process. All have been used in practice. The holistic approach is normally
implemented when changing bigger organization structures, if personal interests are
involved. Then a solution in such case cannot be reached involving the employees, since
it takes incredible planning time and personal objections are then bad driving forces.
With personal objections involved there is a high risk of not reaching the goals at all. The
incremental approach, on the other hand, is chosen in case of highly complex structures
without an overall detailed reorganization concept. There are only high level targets,
which do not allow explicit suggestions on the operational level. Last but not least, the
hierarchical approach has become a common choice for reorganizing companies. It
allows to combine the power and knowledge of employees on the detailed level while
solving problems with innovative concepts. Targets are well-defined and a special
coordination function is established in the project-management. To satisfy all principles

8

of an hierarchical approach, one basic method named Genesis has been brought to light,
with great success [Wildemann 97]. This method helps by means of coordination to
reorganize all elements in a system with defined targets and is described below.

3.4 Genesis: Managing the Change

Genesis is a management concept that consists of a combination of proper tools and
techniques to improve the objectives of a business process and that also includes some
management elements to guaranty the success. It is used to simplify work, taking
advantage of a very efficient cross-functional team-concept without many levels of
authorities and to operationalize a strategy for managing a change. Genesis is a way to
reach and implement quickly solutions in a defined process with inputs and outputs. The
Genesis approach:

• supports readiness to change things,

• encourages every subordinate to check one’s personal field of action or obstacles
and to use this evaluation,

• causes big impact implementing in a lot of singular steps,

• solves problems which can be handled by the subordinates themselves,

• helps to realize partial solutions with small efficiency,

• activates creativity, the idea pool and the performance of all subordinates, and

• encourages employee’s responsibility for the own task area.

The Genesis hierarchical approach can be organized as a series of workshops with a
clearly defined program for the reorganization object. It starts with a preparation phase,
where the project organization, the high level targets and the objectives of this
reorganization are defined. Usually, all team-members working in project are taught the
same problem-solving methods in order to have one common language. After setting up
the rough structure and the project team, a first planning workshop starts. Participants of
this planning workshop usually come from the management. The management defines the
basics of the new, innovative concept and then divides the system up into its elements. To
add to it, all targets for the elements and their process-input and output are defined in the
first workshop. For each element, a new workshop is defined. To coordinate all these
workshops, there is a core team in the project organization with special tasks, meeting
regularly. In these meetings, problems are discussed, e.g. whether a solution for one
element effects another. Such problems are first checked by members of the project-
organization group. Ideally, discussions concerning possible effects on other elements
should not arise at all, otherwise the whole system was divided into wrong elements.

Numerous case studies show that the hierarchical approach has proved to be the most
successful for reorganizing companies, whenever very detailed information is necessary
with respect to the processes, whereas at the same time though, implementation of new
innovative concepts is desired. At this point, the holistic approach did not yield
acceptable solutions, as an entire, undivided system was too complex to handle. The
incremental approach also did not achieve the targets set, because each solution for an

9

element can be perfect in its own right but not always perfect for the whole system. The
key method to reorganize companies with the hierarchical approach was the Genesis
method. The success of this method was shown in more than 500 workshops with an
average saving of about 250,000.- $ [Wildemann97]. The success factors of the Genesis
method are:

• involvement of all employees, also top management and management,

• defined communication steps, e.g. like a top-management presentation after four
days to put pressure on finding solutions,

• defined communication concept and coordination of multiple teams,

• supporting a clearly defined target through all workshops and team activities.

The description of the different approaches show that the hierarchical approach combines
the advantages of the holistic and incremental approach thus eliminating their
disadvantages. The major success factor of the hierarchical approach is a management
process, that is described by Genesis. In the following, we will try to transfer this kind of
improvement to a new way for XP with a hierarchical approach.

4. COMBINING XP AND THE HIERARCHICAL APPROACH

In the previous sections, we witnessed a characterization of the XP approach as a
light-weight software methodology, and the three variants for company reorganization.
Today it is for all companies imperative for success in a competitive market to supply
their business with extensive software support. A company reorganization always goes
together with the adaptation of existing and the introduction of new software. Therefore,
it is a natural consequence to combine suitable approaches that come from technical and
management disciplines, particularly, if both approaches possess a structure with similar
characteristics. Therefore, the first step towards such a combination can be a comparison
of the discussed approaches. Despite existing differences, a comparison also reveals some
similarities between the following approaches in software development resp. company
reorganization:

Software Development Company Reorganization

Classic Software Engineering
(Waterfall and Heavy-Weight OO)

Holistic Approach

Extreme Programming Incremental Approach

Hierarchical Extreme Programming Hierarchical Approach

The holistic approach has several characteristics in common with the classical
software engineering approaches, starting with the Waterfall model, but also newer
object-oriented approaches, like the Unified Process [Jacobson+99]. They e.g. share a

10

centralized approach providing a small coordination team with great power, but lack
adequate customer/employee participation. Their major advantages are:

• a common, clearly to be identified target, and

• a structured process that leads the team through the software development phases.

The major disadvantages:

• lack of involvement of employees in charge of the holistic approach, whereas in
the object–oriented approaches, the respective customers play a minor role. We
miss in particular the early feedback of the end-users.

• the missing customer/employee participation leads to reduced acceptance of the
solution. It is far easier to convince the people of new ideas, when they actively
helped to shape them.

• The incremental approach is comparable to XP. Both are rather decentralized and
both focus minor on local improvements of existing structures/systems. Such
improvements can be released early and get a fast feedback. Their major
advantages are:

• high involvement of employees / customers, and as a result,

• high acceptance of the solution.

• XP and the incremental approach do have also some disadvantages in common:

• applying this approach to several local problems does usually not lead to a shared
improvement with multiple teams. Instead, local improvements may contradict
each other,

• the approach is unstructured and cannot therefore be used for working out an
overall concept by a complex problem where an involvement of several persons is
necessary.

One interesting question is whether the hierarchical approach, as a combination of the
holistic and incremental approaches, can be carried over to the software development
discipline. Currently, newer object-oriented approaches, like the Unified Process
incorporate some of the elements of the hierarchical approach. However, these
approaches are too heavy-weight to fully support the advantages of the hierarchical
approach. Therefore, we decided to start from the extreme programming approach and
build a hierarchical structure upon it. The advantages of this approach have partly been
discussed before: While retaining a light-weight methodology, it becomes feasible to
structure larger projects into a bunch of smaller XP projects that still have a common
target to achieve. The approach taken also fits nicely into the Genesis program, which
basically consists of two important elements:

• on the top-level we set up a goal-oriented project management that organizes the
problem as a high-level structure by working out a rough concept,

11

• each of the now localized problem parts is solved in an extreme programming
approach by defining an own XP team.

Figure 1 demonstrates this advantage of the hierarchical approach compared to the other
two approaches. Each circle is a tea member, tight connections of circles form a team.

Figure 1: Comparing the three approaches of company reorganization

The XP teams function primarily on an independent basis; nevertheless, they are
coupled in a slack manner by a top-level management team, called “steering committee”,
that keeps track on the overall goal and measures local improvements. Even though the
XP teams dealing with local problems are to be formed as principally independent units,
some cross-dependencies usually arise. It is important to keep these cross-dependencies
as lean as possible. However, dealing with the complexity of today’s information
systems, this is a difficult issue. Today software engineering techniques still do not
sufficiently provide mechanisms to define crisp and small interfaces between software
parts (and their development projects). If the actual initial problem structure and its
software solution turns out to be inadequate, an appropriate refactoring of this structure is
encouraged. This goes along with dynamic restructuring of the XP teams, which is useful
anyway to dynamically react on varying workloads. Refactoring at this level is surely
more expensive, as it crosses team boundaries. Therefore it is imperative to have the top-
level project management at hand to handle these kinds of restructurings.

By organizing the software development process in a hierarchical manner we always
focus on one common target and use a structured process to reach this goal. The
involvement of the employees leads to a high solution acceptance starting from middle up
to highly complex project settings. Ideally, XP project teams are defined similarly to
company departments. The XP project team structure, therefore, resembles the company
structure. Thus, each XP team recruits its customer(s) from its associated department(s).

A certain part of the software infrastructure of a company is not localized in one (or a
few) departments, but its usage is spread over a number of departments. Of course its
development or enhancement is still a matter of one XP project, but if several of these
software subsystems are to be restructured or enhanced, then the setup of the XP project
structures in analogy to departments structures is not appropriate anymore. This can
partly be solved by identifying pilot departments with pilot customers that are able to
cover the needs and desires of other departments’ users as well.

These considerations show that the hierarchical extreme programming approach
needs a good, yet lean project organization. This is supported by the Genesis program and

12

can be carried over to software project structures. Five major principles can be identified
that characterize the hierarchical approach (cf. Figure 2).

Figure 2: The five major principles of the hierarchical approach

These principles are a combination and adaptation of corresponding XP principles
and principles from the hierarchical reorganization approach.

1. Customer participation: the solution is worked out with the customer/employee to
reach a high acceptance. This is in particular important for the customers to accept
the resulting new software system / company structure.

2. The whole system is divided up into subsystems with a lean and crisp interface.
The inputs and outputs, namely the data structures and the information flow
between the subsystems need to be clearly defined. Subsystems are implemented
respectively evolved through XP teams.

3. Each XP team has as target its associated subsystem, thus contributing to the main
target, namely the development of the whole system.

4. The worked out software solutions will be improved like an incremental process
to be successful very quickly. In a number of releases the team explores and
extends the desired system functionality.

5. The hierarchical approach needs to be well organized with a project team and a
steering committee followed by a Genesis program. The steering committee is an
ideal place to develop and maintain the common system metaphor. This cannot be
decentralized in several XP teams, but needs a central coordination.

Most of the additional principles and practices of XP, that have been introduced in
Section 2, carry over to the hierarchical approach without major changes. However, some
of these principles need slight enhancement. The test suite becomes even more important
when the XP teams have interfaces to each other. Tests need to be automatically
conducted that check the correctness of the cross project functionality and therefore the
correctness of the interfaces.

13

Case Study: Bidding Software

As a first case study (in non-hierarchical XP) in a management circle “Electronic
Sourcing“ held at the Technical University of Munich we decided to develop a software
able to support different parts of the purchasing process. This management circle was
joined by purchase managers of e.g. BMW, Dresdner Bank, DaimlerChrysler, Philipps
etc. To find out what features should be developed, we started with a planning workshop
with mainly customer and consultant participation. In order to systemize purchasing
processes we started with identifying existing needs and continued with controlling the
purchasing activities. Different concepts like online broker, purchasing card, and online
shopping malls where evaluated and online bidding were identified as the most valuable
techniques to reduce costs. This workshop was dominated by the participants of the
management circle and members of the business and economics institute. In a second
workshop, where also information technology people were involved, we defined the core
features of the B2B real-time online bidding software. In a first (non-hierarchical) XP
project, the online bidding software was developed. All elements of the software were
developed using an incremental approach with short feedback loops to the customer
(intensive meetings 2-3 times a week, weekly releases). In this way we were able to
develop a bidding software in a very short time with a high acceptance for the customers,
namely the consultants using the software to actual B2B online bidding. The software
started productive use after only 8 weeks of development, but is still evolving through
adding flexibility and new functionality. This evolvement is necessary to ensure meeting
the needs of consultants and their customers that cannot be foreseen in this highly
innovative field of e-commerce. With this software we realized an impressive number of
auctions with a volume of millions of Euro in two months with an average saving of
approximately 20%.

In a second and larger effort, extension subprojects have been defined that also use
the XP process for their development. An overall steering committee is ensuring that all
sub-projects stay on track. A second case study dealing with hierarchical XP is currently
under investigation. The results will surely take time, as a hierarchical approach to XP
cannot be implemented in field as fast as XP can.

5. CONCLUSION

In the context of the FORSOFT project and its industrial partners, we had a close
look at the basic question of software engineering. FORSOFT focuses both theoretical
and practical issues of software development as well as management issues, in particular,
on their combination. This paper contains a result that focuses on the particular question
how to optimize and reorganize companies that make heavy use of software products.

If a company is reorganized, this usually means restructuring its software products,
its databases and network infrastructure, because a company reorganization usually
concentrates on optimization of its business cases. In this paper, we have introduced and
discussed different software development processes as well as different company
reorganization approaches. In particular, we have discussed similarities and differences
between these approaches and concluded that an extension of the extreme programming
approach by elements of the hierarchical reorganization process leads to a considerable
scale-up of the XP approach. Furthermore, XP approach extended this way can nicely be

14

integrated with the hierarchical reorganization process allowing the use of both at the
same time.

Another interesting issue for further discussion is the fact that the hierarchical
approach cannot oddly be carried over to software development discipline. Usually both
disciplines – reorganizing a company and restructuring the software – go hand in hand.
Therefore, it turns out to be extremely useful to combine the hierarchical management
approach with above software development approach in a hierarchical software and
company restructuring setup. Thanks to integrated project structure, we can usually
expect far better results than if we use the centralized approach, which does not involve
employees/clients enough, or a decentralized or unstructured approach that does not focus
sufficiently the global target.

Acknowledgements

This work was partially supported by Siemens AG Munich, the Bayerische
Forschungsstiftung under the FORSOFT II research consortium, and the Bayerisches
Staatsministerium für Wissenschaft, Forschung und Kunst under the Habilitation-
Förderpreisprogram.

References

[Beck99] K. Beck . Extreme Programming explained, Addison-Wesley. 1999.

[Firesmith+97] D. Firesmith, B. Henderson-Sellers, I. Graham, I. OPEN Modeling Language
(OML) Reference Manual. SIGS Books. 1997.

[Jacobson+99] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley. 1999.

[KBSt97] Koordinierungs- und Beratungsstelle der Bundesregierung für Informationstechnik. V-
Modell; Allgemeiner Umdruck Nr. 250 Vorgehensmodell. Bundesdruckerei Bonn. 1997.

[Picot+79] A. Picot, B. Lange. Synoptische versus inkrementale Gestaltung des strategischen
Planungsprozesses – Theoretische Grundlagen und Ergebnisse einer Laborstudie. ZfbF 31, S.
569-596. 1979

[D’Souza+98] D. D’Souza, A. C. Wills. Objects, Components and Frameworks with UML. The
Catalysis Approach. Addison-Wesley. 1998.

[Opdyke+93] W. Opdyke, R. Johnson. Creating Abstract Superclasses by Refactoring. Technical
Report. Dept. of Computer Science, University of Illinois and AT&T Bell Laboratories. 1993.

[Veitinger95] M. Veitinger. Controlling von Reorganisationsprozessen in der Logistik: Eine
empirische Untersuchung. Universitätsverlag München. 1995.

[Wildemann97] H. Wildemann. Produktivitätsmanagement: Handbuch zur Einführung eines
kurzfristigen Produktivitätssteigerungsprogramms mit GENESIS. TCW Verlag München. 1997.

