
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Event Handling in ET++
A Case Study in Algebraic Specification

of Object–Oriented Application Frameworks

Klaus Bergner
Bernhard Rumpe

������
TUM-I9503

Februar 1995

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

[BR95] K. Bergner, B. Rumpe.
Event Handling in ET++ -- A Case Study in the Algebraic Specification of Object--Oriented Application Frameworks.
Technical Report TUM-I9503, TU Munich, 1995.
www.se-rwth.de/publications

TUM-INFO-02-1995-I9503-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�1995 MATHEMATISCHES INSTITUT UND
INSTITUT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

Event Handling in ET��

A Case Study in Algebraic Speci�cation

of Object�Oriented Application Frameworks�

Klaus Bergner

Bernhard Rumpe

Institut f�ur Informatik� Technische Universit�at M�unchen

Arcisstr� ��� ���	� M�unchen� Germany

e
mail� fbergnerjrumpeg�informatik�tu
muenchen�de

February ��� ����

Abstract

In this report we investigate the suitability of algebraic speci�cation

techniques for the modular speci�cation of complex� object�oriented sys�

tems� As an example� part of the event handling mechanism of the ap�

plication framework ET�� is speci�ed using a variant of the algebraic

speci�cation language Spectrum�

Keywords� algebraic speci�cation� modular speci�cation� Spectrum�

object�oriented application framework� ET��

Contents

� Introduction �

� The Event Handling Mechanism of ET�� �

� The Speci�cation Language Spectrum �

� The Speci�cation of Event Handling �

�� Basic and Subsidiary Speci�cations � � � � � � � � � � � � � � � � � �

�� Speci�cation of Class EvtHandler �

�This work was sponsored by Siemens AG as part of the project �ASE � Automatisierte

Software�Entwicklung��

�

� Conclusion �	

� Bibliography ��

A Appendix
 Basic Speci�cations ��

A�� Natural Numbers ��
A�� Simple Sequences ��
A�� Sequences �

A�
 Trees ��
A�� Trees with Paths ��

� Introduction

A programmer who wants to use the event handling mechanism of the application
framework ET�� in the proper way has two sources of information�

On the one hand� there is the source code� a detailed and accurate description
with the disadvantage of being not very readable� This is not only due to the
fact that e�cient code written in languages like C�� generally tends to be at
a low abstraction level� but also due to the fact that information concerning
the event handling subsystem is scattered over a lot of di�erent classes� Some
information is not explicitly contained in the code� Abstract classes may not
provide implementations for some functions and hence may carry no information
about the intended use of these �pure virtual� functions�

The other source of information is informal documentation� which is an incom

plete and maybe sometimes wrong� but readable and understandable description�
It explains not only the intended behaviour of the single objects� but also the be

haviour of the whole event handling subsystem which arises from the combination
of the interdependent behaviours of its components� Only by reading the infor

mal documentation the programmer can fully understand the rules that should
be obeyed in programming with the application framework�

In this paper we report about a study to determine whether algebraic spec

i�cation may be a suitable formalism for stating desired properties of complex
object�oriented systems� This approach seems promising� because the expressive
power of algebraic speci�cations makes it possible to write very abstract and
therefore readable speci�cations that on the other side have a precisely de�ned
semantics and are suitable for theorem proving�

� The Event Handling Mechanism of ET��

ET�� was developed between the years �	�� and �		� by Erich Gamma and
Andr�e Weinand �GAM	��� �GMW�	�� �WEI	��� It facilitates especially the de

velopment of applications with graphical user interfaces by serving as an object�

�

oriented application framework with hundreds of reusable� interdependent C��
classes� These classes provide basic� generally useful abstractions and mecha

nisms and can be specialized and adapted in new systems by using inheritance�
In this way� a programmer doesn�t have to build a totally new program from
scratch� but must only write the code speci�c for the new application�

ET�� o�ers the programmer a uniform interface to possibly very di�erent
underlying window systems �e�g� SunWindows and the X Window System�� Only
a small set of their features is used� because most of an application�s functionality
is provided by the reusable classes and the powerful mechanisms of ET���

A typical ET�� application is structured into subsystems� each consisting
of all objects performing a certain task �like drawing windows� handling un

and redoable commands or �le management�� One of these subsystems is the
event handling mechanism� which is responsible for receiving� interpreting� and
executing the requests of the user�

For that� the event handling mechanism receives �raw� events �e�g� key presses
or mouse clicks� from the underlying window system� �nds out� which of the
visual objects on the screen �e�g� scrollbars or buttons� is concerned� generates a
Command object and directs it to an appropriate ET�� object that can handle
the command� In the following� we explain �rst the concerned classes and then
the connection structure of the objects at runtime�

In the inheritance hierarchy of ET��� the classes VObject and Manager are
the only direct subclasses of class EvtHandler� Therefore� every EvtHandler object
belongs to one of these classes �because of the exclusive use of single inheritance
in ET��� an object cannot belong to both classes at the same time�� VObject and
Manager provide the functionality for event handling via inheriting and adapting
the needed operations from class EvtHandler� In this way� all of the various visual
objects on the screen �objects of subclasses of VObject� like Button or Window
objects�� and also all objects managing the data of the application �objects of
subclasses of Manager� like Application and Document objects� are capable of
performing the needed framework operations on events and commands�

�����
����
�����
������
�����
����
�����
����

�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�

�
��
��
��
��
��
��
��
��
���������������������

�����
������
�����
������
������
������
�����
������
������
�����
������
������
�����
������
������
�����
������
������
�

��������������������
��
��
��
��
��
��
��
�
��
�

�����
����
�����
������
�����

����
�����

����

��
���
��
���

��
���
��
���

��
��
���
�

�
��
��
��
�
��
��
��
��
��
��������������������

����������

����������

�������

���������������������
��
��
��
��
��
��
��
��
�

��
���
���
��

���
���
���
�

���
��

��
��
�
��
��
��
��
�
��
��
��������������������

���������� ���������� �

�����
�����
�����
�����
�����

�����
�����
���

����������

����������

�����

���������������������
��
��
��
��
��
�
��
��
��

��
���
��
���

���
���
��
��

��
���

��
�
��
��
��
��
��
��
��
���������������������

����������

����������

�����

���������������������
��
��
��
��
�
��
��
��
��

Object EvtHandler

VObject

Manager Application

Figure �� Part of the ET�� Inheritance Hierarchy

At runtime� EvtHandler objects are arranged in the so�called �part�of� tree�
which is dynamically created and manipulated ��gure � shows a simple example��
The part�of tree describes how the event handling objects of the application
�which are connected by bidirectional pointers� are nested� A Window could for

�

example contain some Button elements as children and it could itself be contained
in a Manager object of class Document� On top of this hierarchy should always be
a single object of class Application� All objects above a Manager object must also
be of class Manager� whereas all objects beneath a VObject must also be of class
VObject� and the �rst VObject beneath a Manager has to be of class Window�

Whereas the Application object and the other Manager objects themselves
are not visible on the screen� every VObject has a screen representation with
appropriate coordinates� The bounding box of a visual object that is part�of

another visual object is geometrically located entirely inside the bounding box of
the other object�

At runtime� events �which include a component specifying the screen coor

dinate to which they pertain� come from the underlying window system and
are assigned to the corresponding visual ET�� object of class Window in the
part�of hierarchy� This assignment mechanism is one of the few parts of ET��
that must be adapted when porting ET�� to a new window system�

From the Window object� events usually traverse the part�of tree downwards
on a path that consists of visual objects with appropriate coordinates until they
have reached a leaf object of the tree �e�g� a Button that contains no further
visual objects�� In that leaf the events are analyzed� If the object cannot handle
an event� it should hand it up to an object higher in the hierarchy� otherwise
it usually generates a corresponding Command object and hands this object up�
On this chain of event handlers all events should �nally reach an event handler
that can handle them �that is� generate a Command from them� and all Command
objects should �nally reach a Manager object where they can be processed�

��
��
�
��
��
��
��
�
��
��
��������������������

��

���������
����������������
������
�����
��

��

���
������

�����
����������
���������
�����

��

���������������������
��
��
��
��
��
��
��
��
�

��

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

��
��
��
��
��
��
��
��
��
��������������������

��

��
����
����
����
����
����
���
����
���
����
��

���
���
���
����
���
��������
����
����
���
���

���

��������������������
��
��
��
��
��
��
��
�
��
�

��������������������

��������������������������������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������������������
��
��
��
��
��
��
��
�
��
�

��
��
��
��
��

���
��
��
��
�

��
��
��
���
�

��
��
��
��
��

��
���
��
��
�

��
��
��
���
�

���
��
��
��
�

����
���
����
���
����
��
����
����
����
����
��

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

���
���
���
�

���
���
��
��

���
��
���
��

��
���
���
��

��
���
��
���

���
���
��
��

���
��
���
��

��
���
���
��

��
���
���
�

���
������

�����
����������
���������
�����

�������������������������������������� �����
����
�����
������
�����
�����

�����
���

� � � � � � � � � � � � � � �

���
�����
�����
�����
������

����
�����
�����

���������� ���������� ���������� ���������� ���������� ����������

����
�����
�����
����
������

�����
�����

����

myDocument�

myApplication

myDocument�

myWindow

myButton� myQuitButton

Bidirectional Connections

in the �part�of� Hierarchy

Event Flow

Command Flow

Window

System

Figure �� Example of a Simple �part�of� Hierarchy at Runtime

In this example� the user of an application has created two documents� One

of these has opened a window with two buttons in it� The dotted lines show

the event and command �ows for a Quit command that terminates the whole

application�

While this is the standard behaviour� a programmer is free to change it in
various� unpredictable ways� It is for example possible to write an event handling

class whose objects don�t generate a Command when they get an event of a certain
kind� but instead instantly perform the desired action by themselves� Similarly�
it is possible �and often required� to change the standard �ow of commands at
will by creating new upward connections in the part�of tree�

In the following� only the �basic� aspects of the event handling mechanism
are speci�ed that are intended to be valid in all applications built with ET��
nothing is said about the behaviour of customized event handlers in a special
application� In the domain of algebraic speci�cation languages this concept is
known as underspeci�cation�

� The Speci�cation Language Spectrum

There exist already some languages for the speci�cation of object�oriented sys

tems examples are OOZE �AG	��� Troll �EG	��� and OS �BRE	���

The speci�cation language we use is a variant of the algebraic speci�cation
language Spectrum version ��� �BFG�	��� Spectrum speci�cations are based
on �rst�order predicate logic and can therefore be understood easily by every

one familiar with that formalism� Spectrum allows the speci�cation of partial
functions by adding an unde�ned element � to every sort and by o�ering a de

�nedness predicate �� The semantics is based on the loose algebra approach� that
is� it supports underspeci�cation� Besides the features for specifying datatypes
and functions ��speci�cation in the small��� Spectrum also o�ers some operators
for combining and transforming speci�cations ��speci�cation in the large���

We propose a variant of Spectrum that is enhanced by some features for
the support of object�orientation� like class speci�cations and an inheritance
operator� These additions can be easily mapped to pure Spectrum and are
intended mainly as notational shortcuts� They are described in section
���

The most important di�erence between object�oriented languages and alge

braic speci�cation languages like Spectrum is� that functional speci�cation only
deals with stateless values and functions on these values� whereas objects have an
identity and a state� which is changed by operations� However� for speci�cation
purposes it is possible to abstract away from the internal state� An object in a
certain state� characterized by its attribute values �one of which is the immutable
object identity�� is modeled as a value�

Usually� objects are not isolated� They contain pointers to other objects� such
forming systems of cooperating objects� In the framework of algebraic speci�ca

tion� these systems can also be modeled by values� In our case� the whole event
handling subsystem of an ET�� application� consisting of many interconnected
event handler objects� is modeled as a single value of a tree sort�

The practicability of algebraic speci�cation techniques depends crucially on
the existence of encapsulated subsystems with a well�de�ned functionality� If all
objects of an application were interconnected with each other in various ways� one

�

would have to model the state of the whole complex application as a single value
! a nearly impossible task� One aspect of this case study is therefore to examine
whether existing object�oriented application frameworks contain encapsulated
subsystems suitable for algebraic speci�cation�

� The Speci�cation of Event Handling

��� Basic and Subsidiary Speci�cations

For the speci�cation of the event handler system we use some basic speci�ca

tions Nat of natural numbers� SimpleSeq and Seq of sequences� Tree of trees� and
PathTree of trees with path handling� These speci�cation units provide reusable
components that can be enriched in various ways by adding new axioms� much
like abstract C�� classes can be extended by adding new behaviour via provid

ing implementations for virtual functions� The arising hierarchy of speci�cations
is similar to the inheritance hierarchies of object�oriented programming�

We enclose all employed basic speci�cations with comments in the appendix�
It provides a self�contained introduction to Spectrum and shows how speci�

cation modules can be reused and combined� The element sorts nat� seq� and
tree that are introduced in these speci�cations serve only speci�cation purposes�
They are not intended to be implemented by means of C�� classes�

In contrast to this� the subsidiary sorts Id� Token� Command� Point� VObject�
Class� and Object correspond with equally named classes� Objects of class Id
serve as unique identi�ers for event handlers� objects of the classes Token and
Command are used for events and commands �which where both explained in
section ��� Point objects contain screen coordinates� and VObject is the sort of
visual objects� Class provides for every class in the ET�� class hierarchy an
object with informations about the class �its objects are used e�g� for querying
the name of an object�s class at runtime�� Finally� Object is the root class of
nearly all classes of the ET�� inheritance hierarchy� It provides some basic
operations common to most objects in an ET�� application� like the operation
�IsA�� which tests whether an object is compatible with a certain class �represented
by an object of class Class�� Although we use these sorts� we do not specify them
further� because no knowledge about the internal structure and the behaviour of
their elements is needed�

��� Speci�cation of Class EvtHandler

The class speci�cation EvtHandler �which is included as a whole starting on page
�� is essentially an ordinary speci�cation unit with some syntactic extensions that
can easily be translated into standard Spectrum notation�

One of these notational shortcuts is� that the statement class before the

�

name of the speci�cation unit ��EvtHandler�� automatically introduces an equally
named sort EvtHandler� There is an analogy to some programming languages �e�g�
Ei�el� where the name of a class is at the same time the name of a module as
well as the name of a type �MEY���� Elements of sort EvtHandler are intended
to be implemented by objects of a corresponding C�� class� That means that
a speci�cation class X " f ��� g �introducing a new sort X that is intended to be
implemented by a C�� class X� can also be written as X " f sort X� ��� g�

The inherit�operator models the inheritance operator of object�oriented pro

gramming languages� The di�erence to enrich is� that elements of the inheriting
class EvtHandler may be used at runtime in place of elements of class Object�
Semantically� this means that a subsort relation between the involved sorts is
introduced� The speci�cation class Y inherit X " f ��� g can therefore also be
written as Y " f sort Y� Y � X� ��� g�

As described in section �� EvtHandler objects are connected via pointers� such
yielding a system of interacting objects� In the speci�cation we describe the
properties of this system by using an element of sort tree that is renamed to
EHSystem� �The axioms for tree elements are given in the speci�cation unit
PathTree in the appendix�� Sort w of the value components of EHSystem nodes
is set to EvtHandler by renaming it� and the functions getvalue and setvalue are
renamed to gethandler and sethandler� Thus� a call of gethandler�ehs�p� yields
the event handler that is characterized by the path p from the root of the event
handler tree ehs to its corresponding tree node�

Not every tree consisting of event handling objects is a valid EHSystem for an
application� To specify this� the operators conforms and validAppEHS are de�ned�
These operators aren�t available as functions in the ET�� class EvtHandler !
they serve only speci�cation purposes� To indicate this� the keywords op and to
are used in their signature�

In the axioms section of conforms� function containsPoint is used� It stems
from the class speci�cation VObject �which we haven�t included in this paper�
and tests whether a screen coordinate of sort Point is contained geometrically in
the bounding box of the concerned visual object on the screen� The axioms state
that an event with a certain Point coordinate pertaining to a visual event handler
object y must also pertain to y�s father object �provided the father object is also
a graphical object of sort VObject with certain coordinates and not a Manager
object� and that events can�t pertain to two sons of a single event handler at the
same time� On the level of graphical elements on the screen this is equivalent
to the fact that every element must be geometrically located entirely inside the
bounding box of its father element and that the graphical elements of a certain
window can�t overlap partly�

In the next axioms section� conforms is employed to specify validAppEHS which
can be used to test whether an EHSystem has a valid form and may be legally used
in an application� The part �eh IsA Manager � ��eh IsA VObject�� is especially
interesting� because it implicitly imposes a constraint on the inheritance structure

�

of sensible applications built with ET��� It makes it impossible for the developer
to use objects of newly introduced classes that directly inherit from EvtHandler�
The remaining properties have already been explained in section �� The root
of the �nonempty� EHSystem tree should always contain the only object of class
Application� All objects above a Manager object must also be of class Manager�
whereas all objects beneath an object of class VObject must also be of class
VObject� This makes sure that the operator conforms can be applied to each
subtree with a root element of sort VObject� Further� the �rst VObject element
directly beneath a Manager has to be of class Window� so that the objects in
the subtree beneath this Window have the chance of getting events from the
underlying window system�

Another speci�cation section gives the laws for Id�handling� Every event han

dler must have a unique identi�er� The up arrow #�� in the signature part of the
SetId speci�cation

SetId � EvtHandler� � Id�

is an abbreviation for the more verbose notation

SetId � EvtHandler � Id � EvtHandler�

For the rest of the operations of class EvtHandler only the signatures can be
given� In ET�� these functions are declared virtual� that is� their implementation
has to be provided in subclasses or may be changed there� If the programmer
wants to assure a special behaviour in some subclasses� that behaviour must be
speci�ed in the appropriate class speci�cations �an example for part of such a
speci�cation is given below��

class EvtHandler inherit Object " f

enrich Id � Token � Command � Class � VObject �
�rename � tree to EHSystem�

w to EvtHandler�
getvalue to gethandler�
setvalue to sethandler � in PathTree��

hidden op conforms � EHSystem to bool�

axioms 	 v� VObject� s� treeseq� ehs�eht� EHSystem� coord� Point in
conforms�$��
conforms�mktree�v�s���
�ehs
s � conforms�ehs�� �
���v containsPoint coord� � ehs
s�

���value ehs� containsPoint coord�� �
�ehs
s � �value ehs� containsPoint coord �

�

eht
s � �value eht� containsPoint coord � � ehs " eht��
endaxioms

op validAppEHS � EHSystem to bool�

axioms 	 ehs� EHSystem� eh�ehh� EvtHandler� p�q� Path in
validAppEHS�ehs� �
�ehs
" $� �
�eh IsA Manager � ��eh IsA VObject�� �
�eh " gethandler�ehs�p� � p " �� � eh IsA Application� �
�eh " gethandler�ehs�p� � ehh " gethandler�ehs�q� � pvq �

�ehh IsA Manager � eh IsA Manager� �
�eh IsA VObject� ehh IsA VObject� �
�eh IsA Manager � ehh IsA VObject� ehh IsA Window�� �

�eh " gethandler�ehs�p� � eh IsA VObject�
conforms�subtree�ehs�p����

endaxioms

GetId � EvtHandler � Id�
SetId � EvtHandler� � Id�

axioms 	 ehs� EHSystem� p�q� path� eh� EvtHandler� i� Id in
p
"q � ��gethandler�ehs�p�� � ��gethandler�ehs�q��

� GetId�gethandler�ehs�p��
" GetId�gethandler�ehs�q���
GetId�SetId�eh�i�� " i�

endaxioms

GetNextHandler � EvtHandler � EvtHandler�
FindNextHandlerOfClass � EvtHandler � Class � EvtHandler�
GetMenu � EvtHandler � Menu partial�
DoSetupMenu � EvtHandler� � Menu partial�
DoMenuCommand � EvtHandler� � MenuCmd � Command partial�
PerformCommand � EvtHandler� � Command partial�
SetFirstHandler � EvtHandler� � EvtHandler partial�
KbdFocus � EvtHandler� � bool partial�
Input � EvtHandler� � Point � Token � Clipper partial�
DoIdleCommand � EvtHandler� partial�
Send � EvtHandler� � Int � Int � Void partial�
Control � EvtHandler� � Int � Int � Void partial�
SendDown � EvtHandler� � Int � Int � Void partial�
InputKbd � EvtHandler� � Token partial�
g

	

In the following� some axioms are given that specify the default behaviour of
the functions GetNextHandler and FindNextHandlerOfClass of the EvtHandler class�
These functions are used to determine the next event handler that is passed a
Command object in case a certain event handler cannot handle that Command�
Normally� GetNextHandler�eh� yields eh�s father in the part�of tree� whereas
FindNextHandlerOfClass�eh�cl� yields eh�s �rst ancestor in the path from eh to the
root of the tree that is compatible with class cl�

If in a given application this default behaviour is assured for every object
that is compatible with class EvtHandler �or with a heir class of EvtHandler� re

spectively�� these axioms can be inserted into the speci�cation of EvtHandler �or
into the speci�cation of the heir class� respectively�� thus fully specifying the
previously underspeci�ed behaviour�

axioms 	 eh�ehh� EvtHandler� cl� Class� p�q�r� Path� ehs� EHSystem in
eh " gethandler�ehs�p� � ����GetNextHandler�eh���� p " ���
eh " gethandler�ehs�p� � ehh " gethandler�ehs�q� �

�GetNextHandler�ehh� " eh � p " lead�q�� �
�FindNextHandlerOfClass�ehh�cl� " eh �

eh IsA cl � pvq �
	r�p�r�q � ��gethandler�ehs�r� IsA cl���

endaxioms

� Conclusion

This study has shown that the algebraic speci�cation of complex� object�oriented
application frameworks can have some advantages� but also bears a number of
di�culties�

There is no doubt that a formalism for the succinct and clear description of
object�oriented frameworks is urgently needed� It could help to cure the perhaps
biggest disadvantage of the framework approach� the di�culty of understand

ing how to use and to adapt the various classes and mechanisms of a complex
framework in the intended way�

The main reason for this di�culty is� that the informations for a certain
mechanism are usually scattered over a lot of di�erent places in the source code
of a framework� In our case� not only the classes EvtHandler� Token� and Command
had to be examined in detail� but also the Manager� VObject� and Window classes�
In general� this means that for the speci�cation of a superclass� the source code
of all subclasses have to be examined� too� Only then it can be avoided to state
�axioms� in the speci�cation of a superclass that are violated by objects of one
of its subclasses�

Some of the information about the framework can not be found in the source

code at all� To understand the intended properties of virtual functions� for which

��

no or only a simple default implementation is given� the documentation must
be read� In our case� the intention of some mechanisms wasn�t described in the
documentation at all and an expert had to be consulted� A good example is the
Id�handling� It only makes sense� if every event handler has its own� unique Id�
Because the programmer is responsible for setting Ids� he or she could also decide
to implement a mechanism where a number of event handlers may have the same
Id� Whereas the source code and even the documentation don�t forbid that� our
speci�cation does�

The possibility to change the behaviour of the event handling mechanism
quite drastically is an intended feature of ET��� It implies adaptibility to many
problems� On the other side� it also causes some disadvantages� First� it makes
the comprehending of applications more di�cult� because every programmer may
freely modify the mechanisms of the application framework in a highly non�
standard way� It also makes it impossible to give a complete� formal description
of all aspects of the ET�� event handling system� If the programmer is legally
allowed �and even encouraged� to change certain aspects of a system at will� no
general axioms concerning these aspects can be given� In our case� only the basic
rules concerning the behaviour and structure of the event handling mechanism
could be given most of the essential functions had to be left unspeci�ed� because
the programmer is free to modify their standard behaviour at will�

A problematic issue with functional� algebraic speci�cation languages is� that
they are no practical tools for specifying applications whose objects are intercon

nected in various ways by means of pointers� In this case� one would have to
model the state of the whole application as a single value� resulting in incompre

hensible and therefore useless speci�cations� Though most of the objects in an
ET�� application are interacting and therefore interconnected event handlers�
they are always organized in a simple� tree�like structure� As we have shown� it is
possible to describe their behaviour and connections very succinctly and clearly�
However� a programmer who adds code to the framework could in principle add
new connections between random event handlers in the tree �cf� section ��� thus
making it very di�cult to fully specify the processing of events� However� it is
our conjecture that in a well�designed� comprehensible object�oriented system
the communication between objects is always structured in a very regular way
that is suited for functional speci�cation�

Acknowledgements

We want to thank Peter Sommerlad from Siemens� Hans J� Fr�ohlich� Rainer
Weinreich� and Reinhold Pl�osch from Johannes
Kepler
Universit�at� and Dieter
Nazareth and Barbara Paech from Technische Universit�at M�unchen for providing
useful comments on draft versions of this paper�

��

	 Bibliography

References

�AG	�� Antonio J� Alencar and Joseph A� Goguen� OOZE with Examples� Tech

nical report� Programming Research Group� Oxford University Com

puting Laboratory� �		��

�BFG�	�� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hu%mann� D� Nazareth�
F� Regensburger� and K� St&len� The Requirement and Design Speci�

�cation Language Spectrum� An Informal Introduction� Version ����
Technische Universit�at M�unchen� Interner Bericht TUM
I	�
�� �		��

�BRE	�� Ruth Breu� Algebraic Speci�cation Techniques in Object Oriented Pro�

gramming Environments� Springer
Verlag� �		��

�EG	�� Hans
Dieter Ehrich and Martin Gogolla� Objects and Their Speci�ca�

tion� In M� Bidoit� C� Choppy� H� Ehrig� F� Orejas� and H� Reichel �ed

itors�� �th Workshop on Abstract Data Types� LNCS� Springer
Verlag�
�		��

�GAM	�� Erich Gamma� Objektorientierte Software	Entwicklung am Beispiel

von ET

� Springer
Verlag� �		��

�GMW�	� Erich Gamma� Andr�e Weinand� and Rudolf Marty� Design and Imple�

mentation of ET

� a Seamless Object	Oriented Application Frame�

work� Structured Programming� Vol� ��� No� �� Springer
Verlag� �	�	�

�MEY��� Bertrand Meyer� Object	Oriented Software Construction� Prentice
Hall� �	���

�WEI	�� Andr�e Weinand� Objektorientierte Architektur f�ur graphische Be�

nutzungsober��achen� Springer
Verlag� �		��

A Appendix
 Basic Speci�cations

A�� Natural Numbers

The following speci�cation with the name Nat consists essentially of two parts�
First comes a signature part� where sorts �here only sort nat� and functions

with their functionality are introduced� In our case� the constant functions �� 	
and
� the successor and predecessor functions succ and pred� and in�x functions
for addition ��� and test for ��� are present� The double�headed arrow denotes
strict and total functions� whereas the keywords prio and left describe the binding
power and associativity of the respective operators�

��

In the second part� axioms for the natural numbers are given� The natural
numbers can be inductively generated by repeated application of the successor
function succ to the constant � and certain axioms of �rst�order predicate logic
are valid� The operator � denotes a de�nedness predicate�

Nat " f

sort nat�

��	�
 � nat�
succ � nat � nat�
pred � nat � nat strict�
��� � nat � nat � bool prio ��
��� � nat � nat � nat prio �� left�

nat generated by �� succ�

axioms 	 a�b� Nat in
	 " succ����
 " succ�	��
a
"b � succ�a�
"succ�b�� succ�a�
" ��
����pred ���� pred�succ a� " a�
a � � " a� a � succ�b� " succ�a�b��
a � a�b� ��a�succ�b� � a��

endaxioms
g

A�� Simple Sequences

Sequences with the generic element sort w are speci�ed� They can be generated by
repeated application of the append function to the empty sequence��� Functions
for selecting the �rst element of a sequence and the rest of the sequence are
available�

Other operations are the constructor ��� for building one�element sequences�
the functions lead and stock that behave similar to rest and append� only at the
end of the sequence� and the function �
� for concatenation of two sequences�

SimpleSeq " f

sort w � seq�

data seq " �� j append� �rst� w� rest� seq ��

��� � w � seq�
stock � seq � w � seq�

��

lead � seq � seq strict�
�
� � seq � seq� seq prio� � left�

axioms 	 a�b� w� s� seq in
�a� " append�a�����
stock����a� " �a�� stock�append�b�s��a� " append�b�stock�s�a���
lead�stock�s�a�� " s� ����lead������
s
append�a�t� " stock�s�a�
t� s
�� " s�

endaxioms
g

The data�notation is an abbreviation for the following signature

�� � seq�
append � w � seq � seq�
�rst � seq� w strict�
rest � seq � seq strict�

in combination with the axioms

seq generated by ��� append�
axioms 	 a� w� s� seq in
�rst�append�a�s�� " a� �����rst �����
rest�append�a�s�� " s� ����rest �����

endaxioms�

These axioms imply the initiality of the sequence datatype� that is� one can
deduce

��
" append�a�s��
a
"b � s
"t � append�a�s�
" append�b�t��

A�� Sequences

The speci�cation of simple sequences is enriched by a function that gives the
length of a sequence �length�� mix�x functions that select the nth element ������
and a �nite subsequence ��������� and in�x functions that test for inclusion of an
element ��
�� and whether sequences are pre�xes of other sequences ��v� and
�����

The application of the enrich operator on the speci�cation units SimpleSeq
and Nat makes the signatures and axioms of these two units available�

Seq " f enrich SimpleSeq � Nat�

length � seq� nat�

�

���� � seq � nat � w strict�
������ � seq � nat � nat � seq�

axioms 	 a� w� m�n� nat� s�t� seq in
length�� " �� length�s
t� " length�s��length�t��
�������n���� ����s������
append�a�s��	� " a� append�a�s��
�n� " s�	�n��
���n�m� " ��� append�a�s��	�
�m� " append�a�s�	�	�m���
append�a�s��
�n�	�m� " s�	�n�m��
�n�m� � �n
"m� � s�m�n� " ��� s���n� " s�	�n��

endaxioms�

�
� � w � seq � bool�
�v� � seq � seq � bool�
��� � seq � seq � bool�

axioms 	 a�b� w� s�t� seq in
��a
���� a
�b� � a"b� a
s
t � a
s � a
t�
s v t � �t
"�� � s�	�"t�	� � rest�s�vrest�t�� � s"���
s � t � svt � s
"t�

endaxioms�
g

A�� Trees

Ordered trees with an unbounded number of sons for each node are speci�ed� A
tree node of a non�empty tree consists of a value part of the generic parameter
sort w and a sequence sonseq of the son�trees� From these two components a tree
is built via the constructor mktree� The empty tree is denoted by $�

The rename operator changes the names of the sorts and functions in speci

�cation Seq according to the given renamelist� Note that w in speci�cation Tree
references to two di�erent sorts� the w in the renamelist is renamed to tree� in
this way instantiating the generic sort parameter w in Seq� whereas the w below
is a freshly introduced generic parameter sort for the elements of the tree�

Tree " f enrich �rename � w to tree� seq to treeseq � in Seq��

sort w�

data tree " $ j mktree� value� w� sonseq� treeseq ��
g

��

A�� Trees with Paths

The above speci�cation of trees is enriched� yielding trees with support for easy
manipulation of the contents of single nodes �via the functions getvalue and set�
value� and access to whole subtrees �via function subtree�� Locations in trees are
speci�ed by paths� which in this context are sequences of natural numbers iden

tifying single nodes in a tree� The sequence append����
�� would for example
identify the second son of the third son of the root of a tree�

PathTree " f enrich Tree � �rename� w to nat� seq to path � in Seq��

getValue � tree � path � w strict�
setValue � tree � path � w � tree strict�
subtree � tree � path � tree strict�

axioms 	 t� tree� a�b� w� p� path� n� nat in
getValue�t���� " value�t��
getValue�t��n�
p� " getValue�sonseq�t��n��p��

����setValue�$�p�a����
setValue�mktree�b�s�����a� " mktree�a�s��
setValue�mktree�b�s�� �n�
p� a� "

mktree�b� s�	�n�	�
 setValue�s�n��p�a�
 s�n�	�length�s����

subtree�t���� " t�
subtree�t��n�
p� " subtree�sonseq�t��n��p��

endaxioms
g

��

