A new Concept of Refinement
used for Behaviour Modelling with Automata

Barbara Paech, Bernhard Rumpe
Fakultat fiir Informatik, Technische Universitat Miinchen

D-80290 Miinchen

Abstract

This paper introduces a new approach of using automata to model behaviour
of objects. Automata allow to design a software model on the abstract level of
states and transitions. We make precise the meaning of states and transitions in
the context of objects and types. This formal semantics serves as a link between
informal and formal software development methods. Second, we give a formal, but
nevertheless intuitive definition of automata specialization which not only provides
a way for reuse of type definitions in subtypes, but also shows how to incrementally
design types through refinement. Third we define the notion of a role an object takes
when viewed from the environment. Then we can give a formal, but short proof
that our definitions satisfy the subtype requirement, that means that an object of
the subtype plays the roles of its supertypes.

Object oriented analysis and design (OOA/OOD) results in software models capturing
static and dynamic aspects of a system. Types, consisting of attributes and operations,
and relationships between types, in particular inheritance, constitute the static part.
Dynamic aspects are captured in the behaviour of types. On the level of object oriented
programming languages (OOP) the behaviour of a type is determined through the code
of the operations and possibly some synchronization conditions [Fro92, Mes93]. The
latter determine the circumstances under which the operations are enabled. During the
analysis phase the code is not available, so another behaviour description is neccessary.
Many authors [RBP*91, MO93] use some kind of automata as a very intuitive means
of describing operation sequences. However, the relationship between the (labels of the)
automata and the types is not made clear, and similarly the relationship between the
automaton of a type and the automata of its subtypes is not made precise. On the other
hand several formal approaches to the specification of object systems exist, e.g. [JSHS91,
DDP93, LW93]. Specifications capture behaviour seperated from its implementation.
They can be used to give an abstract, but complete account of the behaviour formulated
as the outcome of the analysis phase. During the analysis process, however, one needs to
be able to work with incomplete behaviour descriptions which are easy to extend.

In this paper we will show that incomplete behaviour descriptions need not be imprecise.
Instead, incompleteness imposes some kind of abstraction, describing only certain aspects
of an information system. Therefore we will enhance automata by a few formal details
leading to the concept of behaviour automata. Behaviour automata can serve as a link
between informal and formal software design methods. On the one hand they are easy
to read and to use informally. Therefore they are an adequate base for the discussions
between software designers and customers in the process of designing the system model.

[PR94] B. Paech, B. Rumpe. 1

A new Concept of Refinement used for Behaviour Modelling with Automata.
Technical Report TUM-19413, TU Munich, 1994.
www.se-rwth.de/publications

On the other hand the formal semantics leaves no room for ambiguities. Thus, we can
define a formal notion of refinement which shows how to safely enhance the system model.
This notion of refinement coincides with the notion of type specialization (typesafe in-
heritance). This is not surprising, since specialization can be viewed as a preservation of
a refinement step for reuse.

This paper is structured as follows: First we define behaviour automata as a means of
behaviour description of types. The main contribution of this definition is to make explicit
the state space of a type. The state space of a type is the set of all states an object of
that type may occupy in its lifecycle. As usual an object state is given by the values of
its attributes. The labelling of the states of the behaviour automata induces a partition
on the state space of the type. The transitions of the behaviour automata are labelled
by operations (and possibly conditions). Behaviour automata allow to grasp quickly the
sequence of operations objects of a given type may perform, and also the important states
these objects may pass.

In the second part we define specialization of behaviour automata. This notion of spe-
cialization allows for reduction of the state space, refined partition of the state space and
reduction of nondeterminism. First we motivate this definition by discussing several ex-
amples of type specialization (inheritance). We also show that this specialization relation
is transitive. Then we discuss refinement steps based on the specialization relation.

In the third part we show that our definition of type specialization satisfies the subtype
requirement as formulated in [LW93], namely that “the subtype’s objects must behave
‘the same’ as the supertype’s objects as far as anyone using the supertype’s objects can
tell”. The expectations of the using objects are made explicit in the concept of role which
are a special kind of type. The behaviour automaton of a type has to specialize all the
automata of its roles. Because of transitivity of automata specialization it is trivial to
show the above subtype requirement.

We conclude the paper with a discussion of related work.

1 Behaviour Automata

Our work is independent of a specific notation for the static aspects of types. In figure 1
an example is given for the essential parts of such a notation.

Type Figure

Attributes center position(x,y-coordinate), color, outline,
visibility(true,false), selection(true,false)

Operations move(new center), show, hide, select, deselect

Figure 1: Type Figure

Type Figure describes geometric figures typically used in graphical editors. The term
‘type’ is mostly used in the context of specifications, while ‘class’ is used in OOA and
OOP. We use the term ‘type’ to indicate that in our framework inheritance is behaviour
preserving. The type definition consists of the name of the type and a set of attributes
and operations. Attributes are defined by a name and an optional value space (another

type or an informal description). Operations are given by names and a possibly empty
list of parameters. Relationships to other types - other than specialization - are captured
by attributes. The attributes in the type definition do not have to be implemented as
attributes. E.g. attributes depending on other attributes could be implemented as derived
functions [Mey92]. However, during the analysis phase it is natural to think in terms of
attributes. We distinguish between wisible and hidden attributes and operations. The
client (or user) of an object can see only the visible attributes, via selection operations
that do not affect the object’s state. Visible operations constitute the interface of the
type together with the selection operations. Hidden attributes and operations describe
internal details.

A type defines a set of objects. Each object has a unique identity and a state. The state
is defined by the values of the attributes. The application of the operations to the objects
depends on the state. The behaviour of an object is its lifecycle, a unique sequence of
states and operation calls. The behaviour of a type is the set of possible lifecycles of its
instances. Note that in OOP the objects’ lifecycles are completely determined through the
code of the operations and the synchronization constraints. This is due to the fact that
the state of an object can only be modified through operations and that the semantics of
the operations is completely determined. The latter is not true for OOA. The behaviour
of an object is incompletely specified. Behaviour automata allow to restrict lifecycles
without having to define them completely.

1.1 Automata States

Automata states partition the set of allowed object states through constraints on their
attributes. As an example consider the type Automatic Teller Machine of figure 2.

Its attributes are password, account number, cash and output, where only the latter
is visible. We abstract from the money given to or from the teller machine. Possible
constraints are password undefined, account number defined. Many methods [RBP91]
characterize automata states by names instead of constraints. Introducing a special at-
tribute status ranging over all the possible names of the states one can model the name
X as the constraint status = X. This way, however, the dependencies between the at-
tributes are not made explicit. In the example 2 the constraint account number undefined,
password defined is not meaningful. This cannot be expressed through names.

1.2 Transitions

The state of an object can only be modified by operations defined in the type description
(encapsulation). Thus only operations can cause transitions between automata states.
Pre- and postconditions of the operations which concern only attributes are captured by
the automata states. Additionally the automata states show how the operations interact.
Preconditions which concern the parameters are not covered through automata states
but through additional constraints on the transitions. A typical example is checking
the password for access to the automatic teller machine (see figure 2). The transition
constraint is made explicit in brackets [,] following the operation name.

The transition relation is not required to be deterministic. Therefore it is also possible to
leave the dependency of the successor state from the parameters unspecified (e.g. opera-
tion get of type Queue in figure 3). A missing constraint is equivalent to the constraint
true.

Type Automatic Teller Machine
Attributes Visible output (“Insert Card!”, “Password?”, “What please?”)
Hidden password(undefined or digits), account number (undefined or digits),
cash (natural number)
Operations Visible input card(account number), check password (password), fill(amount),
withdraw(amount), deposit(amount), transfer, cancel
Behaviour

input card [account number incorrect]

fill

output = "Insert Card?" cancd

password undefined . output = "What please?"
account number undefined password defined

account number defined

input card

cancel
[account number correct]

withdraw

output = "Password?"
password undefined
account number defined

check password
[password correct]

check password[password incorrect]
fill

Figure 2: Type Automatic Teller Machine

Clearly, operations not only modify the internal state but also invoke operations on other
objects (including operations of self). This interaction between types can be captured by
listing the invoked operations together with the transitions (see e.g.[GM93]). We will not
pursue this topic here.

We close this section with a list of the graphical elements representing behaviour automata
in figure 4.

1.3 Formal Definition of Behaviour Automata

There are two important restrictions on the labelling of the automata states and the
transitions.

e As noted above automata states induce a partition. Therefore the predicates la-
belling the automata states have to be exclusive.

e The transition constraints capture the case analysis on the parameters. This analysis

Type Queue
Attributes Visible empty (boolean)
Hidden counter(natural number)
Operations Visible put(element), get put

Behaviour
put

empty _—— | notempty
counter =0 counter >0
et
g U o

Figure 3: Type Queue

@ automaton state labelled with predicate p

f[p] state transition caused by f under transition

constraint p

Figure 4: Graphical representation of automata

has to be exhaustive. Because of nondeterminsm we allow multiple transitions
labelled with the same operation and overlapping transition constraints.

For readability reasons a constraint common to all automata states can be factorized as
an invariant. All states of all objects of the type have to satisfy this invariant. For the
moment we only allow non-temporal invariants talking about single states. We expect it
to be easy to extend our work to more powerful invariants as in [LW93, JSHS91, DDP93].
The invariant of the automata need not be maximal in the sense that every condition
implied by the labels of all the automata states is implied by the invariant. The reason
is that sometimes it might be difficult to check for this implication.

In the following the concept of behaviour automaton is made precise.

| Definition of behaviour automata: |
Let £ be a first-order language, V be the set of its free variables, |= denote validity

and OP be a set of names.
Then Lab = {f[p]: f € OP,p € L} is the set of transition constraints.
Let S be a nonempty, but finite set, A C 5 x Lab x S a finite relation, I € £ and
L:S — L afunction. For s € S, f € OP the set
enabled(s, f) = {p € L : A(s, f[p],t) holds for some t € S}
contains the transition constraints for f in state s.
A= (S,A,L 1) is called a behaviour automaton with automata states S, transi-
tion relation A, state labelling L and invariant I, if

A1l. the state labels are exclusive:

for all sy # s € S holds = (I A L(s1) A L(s2)) & false.

A2. transition constraints are exhaustive:
for all s € S, f € OP such that enabled(s, f) # 0 holds
E (L(s) A1) = \Venabled(s, f).

(Note that a missing transition constraint is per default true.)

Because the invariant is not required to be maximal the state space is characterized by
IAV,es L(s). Automata states whose label contradicts the invariant are possible, however,
they do not correspond to any object state.

1.4 Formal Definition of Types

Behaviour automata are intended to define the behaviour of a type. This is only possible,
if they satisfy certain syntactic restrictions. In the following Var[z] denotes the set of
free variables of the term x € L.

Definition of a type:

Let £ be a first-order language, V be the set of its free variables, OP be a set of
names.

A typeis given by (name, Att, VAtt, Op, VOp, par, A, so), where name is the name
of the type, Att C V are the names of the attributes, V Att C Att denotes the
visible attribute subset, Op C OP are the operation names, VOp C Op denotes
the visible operation subset, par : Op — Set(Par) is a function associating
parameter names Par C V to operations with Att N Par =0, A= (S, A, L, 1) is
a behaviour automaton over £ and OP and sy € S is the initial state such that

T1. state labels and invariants are restrictions on attributes only:

Var[I] C Att and for all s € S holds Var[L(s)] C Att.

T2. only operations label the transitions:

for all s,t € S, f[p] € Lab with A(s, f[p],t) holds f € Op

T3. the transition constraints are restrictions on parameters and attributes:

for all s,t € S, f[p] € Lab with A(s, f[p],t) holds Var[p] C Att U par(f)

Note that not every operation of the type has to appear as label of the automaton. If not,
nothing is required of its behaviour. The selection operations corresponding to visible
attributes are not shown in the automaton, since they cannot modify the state. They are
only relevant to the interface of the type.

flpy]

@ of an object

osy satifsfies|, pg 0s, satisfies I, p;

os; with parg satisfies P

Figure 5: Lifecycles and Automata

The state space of a type is formalized as follows:
Let U be the universe of all values and object identifiers, including the undefined value
L. The state space of a type T = (name, Att, VAtt,Op,VOp, par, A, so) is characterized
by

OS(T)={os € [Att = U] : L & os(Att) A (0s = T A V,es L(3))},
where 0s = p denotes the fact that the predicate p € £ is true under the valuation induced
by 0s. A type definition T' = (name, Att, VAtt, Op,VOp, par, A, so) induces the following
requirement on the implementation of an operation f € Op (see also figure 5):

Let 0s; € OS(T) be an object state, s € S with osy = I A L(s). Let parg € [par(f) — U]
be a parameter valuation and f(parg,osy,s) =

{t € S: there exists p € L such that parg U os, = p and A(s, f[p],1)}
be the set of possible successor states. If f(parg,os,s) is not empty, the application of
f with parameter valuation parg in state os; results in state osy € OS(T') such that
0sy = 1 A L(t) for some t € f(parg,osy,s).

From this semantics it is easy to see that the behaviour description by automata is very
close to the rely/quarantee-style of behaviour specification [Jon83]. Assuming that the
environment calls f(parg) in an object state osy satisfying I A L(s) for an automata state
s, the object guarantees the successor state osy to satisfy I A Vief(parg,os,s) L(1)-
More formally, for every operation f define the rely/guarantee pair (R, G¢) (written as
R; = () as follows:

Rs(0s1) = (o0s1 = defy), and

Gt(0s1,082,parg) = (0sy = f(parg,o0sy) =

ds,t € S;p € L. (pargUosy | p)A(os1 |E L(s))A(0s2 |E L(t))ANA(s, flp], 1)),

where def; = I AN\V{L(s) : enabled(s,) # 0}.

Then for all f € OP,o0s1,082 € OS(T), parg € [par(f) — U] holds
R;(0s1) = G081, 082, parg).

Note that, since we allow state labels to be contradictory (to the invariant), the above
guarantee condition might not be satisfiable for an operation f. Clearly, this has to be
checked for at some point during the development process. However, incorporating this
test into the definition above, in our view, constitutes too strong a restriction to be useful
in the analysis process.

2 Specialization

The specialization relation between types is an important means of structuring the static
aspects of the system. Coming from OOP at first specialization allowed arbitrary reuse
of code. In the meantime several specialization relations have been proposed preserving
some kind of behaviour, e.g. [LW93, Mes93, Fro92]. In the following we introduce the
concept of behaviour automata specialization. In section 5 we show how it relates to other
definitions of the specialization relation between types.

Subtypes inherit all attributes and operations of the supertype as well as the invariant.
Visible attributes and operations remain visible. To motivate further conditions on the
specialization relation we discuss typical instances of specialization. Consider the type
Figure and its subtypes depicted in figure 6 (the definitions of the subtypes exhibit only
the additional attributes, operations and invariants, all attributes and operations are

visible).

Addition of an invariant
This corresponds to a restriction of the state space. See for example the spe-
cialization of type Ellipse to type Circle through the addition of the invariant
xradius=yradius. The operations of the subtype can take advantage of the ad-
ditional invariant, e.g. for efficiency reasons. For example, the operation rotate
will be trivial for type Circle, since by the invariant xradius = yradius a circle is
preserved by rotation.

Addition of one or more attributes
The state space is constrained through the new attribute'. The addition of the
attribute x can also be considered as the addition of an invariant “z exists”.

In its most simple case the addition is orthogonal preserving the behaviour of in-
herited operations. For an example consider the specialization of Two-dimensional
Figure to Ellipse by addition of the attributes xradius, yradius.

We do not allow arbitrary modification of inherited operations by a treatment of
the new attribute. Consider the type Bad Queue adding attribute lastput to type
Queue. Figure 7 shows the behaviour automaton of type Bad Queue. The opera-
tion get is only activated in Bad Queue, if lastput is true (that means the last
operation was put). Contrary to type Queue operation get is not activated in all
states satisfying counter > 0. This is considered too strong a modification to be
summarized under specialization.

LOften addition of an attribute is considered an extension instead of a restriction. Note, however, that
the state space of a type contains all objects with at least the attributes of the type. Therefore addition
of an attribute restricts the state space.

Figure
center position move(new center)
color show
outline hide
visibility(true,false) select
selection(true,false) deselect
Two-dimensional figure One-dimensional figure Point
contents
magnify(x,y-magnification) magnify(magnification)
rotate rotate
fill
empty
Line
start(point)
Ellipse end(point) Type
xradius Attributes
yradius Operations
Circle inherits from

invariant xradius = yradius

Figure 6: Typehierarchy for Figure

Addition of operations
The preconditions of the new operations give rise to a refined partition of the state
space. An example is type Two-dimensional Figure, where operations £ill und
empty have been added. Fill is only activated, if content = false, Empty is only
activated, if content = true. The corresponding behaviour automaton results from
splitting the state visibility = true, selection = true. Compare figures 8 and 9,
where we use a Statechart-like notation [Har87]%.

Addition of operations induces the restriction that the implementation of the new
operations may not invalidate the inherited invariant.

?Here we use this notation only as a shorthand to cope with the state explosion. We are not concerned
with the real-time semantics underlying the framework of Statecharts.

put

counter = 0 /\ counter > 0
empty lastput = true
not empty
get [counter =1]

put get [counter >1]

counter >0
lastput =false
not empty

Figure 7: Behaviour Automaton of Type Bad Queue

show

visibility = false visibility = true
selection = false selection = false

select

hide deselect

visibility = true
selection = true

Figure 8: Behaviour Automaton of Type Figure

Altogether we have the following characteristics of automata specialization:

e Specialization may restrict the set of possible object states. Every state of the
subautomaton has to refine a state of the superautomaton. However, it is possible
that states of the superautomaton have no correspondent in the subautomaton. It
is also possible that the correspondent state in the subautomaton is not satisfiable
by an object state (e.g. because of strengthening the invariant).

e Transitions of the superautomaton are preserved, if their enabling states are pre-

10

visibility = false visibility = true
selection = false selection = false

deselect
hide
visibility = true selection = true

empty
fl Il

magnify
rotate
move

L

Figure 9: Behaviour Automaton of Type Two-dimensional Figure

served. However, reduction of non-determinism is allowed (and also desirable).
Since transition constraints correspond to an exhaustive case analysis, they have
to be preserved in any case. Enabledness of an operation can be restricted and ex-
tended. The latter only, if no additional non-determinism is introduced. The former
only, if it is induced by reduction of the state space in the specialized automaton.

Now let us give a formal definition of behaviour automata specialization:

‘Deﬁnition of behaviour automata specialization:

Let A, = (S;,As, Li, I;),0 = 1,2 be two behaviour automata. Ay specializes A,
(denoted as Ay < Ay), if

Spl. the invariant is preserved, that means |= I, = .

Sp2. the set of possible object states is not extendend and the partition is
preserved, that means for all s € S, there exists s; € S; such that

E (Ia A La(s2)) = Li(sy).

Sp3. transitions are preserved, if their enabling states are preserved, that means
for all s; € S;,;7 = 1,2 such that = (I3 A La(s2)) = L1(s1) and
e (I3 A Lay(s2)) < false and for all f such that enabled;(sy, f) # @ holds:

Sp3a. enabledy(sy, f) # ()

Sp3b. for all ty € S5, py € L with Ay(sq, fp2],12) there exists
t1 € S1,p1 € L with Ay(s1, f[p1],t1) and
|: ([2 N LQ(SQ)) = (p2 = pl) and |: ([2 A Lz(tz)) = Ll(tl)

Note that spezialization permits the elimination of invalid states (whose labels contradicts
the invariant) with no incoming transitions. Invalid states with incoming transitions can
only be eliminated through reduction of non-determinism. Otherwise they indicate a
meaningless and therefore not implementable behaviour model.

Based on automata specialization one can define type specialization. The only additional
requirement is that initial states have to be preserved and visible attributes and opera-
tions remain visible.

‘Deﬁnition of type specialization:

Let T; = (name;, Att;, VAtt;, Op;, VOp;, par;, A;, s0i) be two types.

T, is a subtype of Ty (denoted as Ty < Ty), if Att; C Atty, VAtl, C VAtt,,
Op1 C Opy, VOpy C VOpy, pary restricted to Op, equals pary, Ay < Ay and

E (12 A Lay(so2)) = Li(so1)-

We close this section with the proof of transitivity of automata specialization. The tran-
sitivity of specialization follows trivially.

Theorem 1: Transitivity of specialization
Let A; = (S, As, Liy 1;),i = 1,2,3 be three behaviour automata.
Then Az < Ay and Ay < A; imply Az < A;.

Proof:
Spl: E I3 = [; follows trivially from transitivity of implication.
Sp2: Similarly, for s3 € S5 follows |= (I3 A Ls(s3)) = Li(s1) for some s; € Sy.

Sp3a: Now let s3 € S3,8; € Sy, f € OP such that I3 A Ls(ss) is satisfiable and
E (Is A Ls(s3)) = Li(s1) and enabledy(sy,) # 0.

Since A; < Aj there exists sy € Sy with = (I3 A Ls(s3)) = La(s2). Therefore
La(s2) A Li(sy) is satisfiable. By exclusiveness of state labels of A; and A; < A4
follows = (12 A La(s2)) = Li(s1). Since Ay < Ay follows enabledy(sq, f) #) and
by As < A, follows enableds(ss, f) # 0.

Sp3b: Now let As(ss, f[ps], t3) for somets € S3,p3 € L. By A; < A, follows Ay(sa, fp2], t2)
for some ty € Sy, pe € L and = (I3 A Ls(s3)) = (ps = p2) and | (I3 A Ls(t3)) =
La(tz). By Ay < Ay follows Aq(sy, f[pi1],t1) for some ¢4 € Si,p;1 € L and and
E (Ix A La(s2)) = (p2 = p1) and | (I A La(ta)) = Li(t1). By transitivity of
implication follows |= (Is A L3(s3)) = (p3s = p1) and = (I3 A Ls(ts)) = Li(t1). #

3 Refinement

Refinement is used to incrementally develop the system model. In our view type re-
finement coincides with type specialization. Typical refinement steps are reduction of

12

non-determinism and change of data representation. The former has already been dis-
cussed in the context of type specialization and is reflected in the definition of behaviour
automata specialization through condition (Sp3). The latter can be achieved through
addition of a new attribute and a new invariant relating the new and the old attribute.
For example, the type Queue can be refined through addition of an attribute elements of
type 1ist to hold the elements of the queue (see figure 10).

Type NewQueue
Attributes Visible empty (boolean)

Hidden counter(natural number), elements(list)
Operations Visible put(element), get

Invariant counter = length(elements) mput
Behaviour
put
empty _—— | notempty
length(elements) =0 length(elements) > 0

Figure 10: Type NewQueue

The relation to counter is given by the invariant counter = length(elements) . Often
instead of an invariant an abstraction function is used (e.g. [LW93]) to relate the different
representations. Our definition of type specialization can easily be extended such that
only the visible attributes and operations need to be preserved, while hidden attributes
and operations can also be related through abstraction functions.
Note that in our framework it is not possible to specify that put adds exactly one elements
to the queue, since we are only dealing with finite state automata. So automata describe
only certain aspects of a type, for fine grained specification a more expressive formalism
has to be used. Therefore we suggest to use an algebraic specification language like
SPECTRUM [BFG193] together with our concept of behaviour automata.
We also allow reduction of the state space through refinement. As an example consider
the type Bounded Queue (see figure 11).
If we add attributes full and bound in figure 3, type Queue can be seen as a refinement
of Bounded Queue via the addition of the invariant

counter < bound
to Bounded Queue. It is somewhat unusual to regard a bound as a dynamic changing
value, but bound can be seen as the amount of dynamically allocated memory to store
the elements of the queue.
It is interesting to compare our notion of refinement with the refinement used for speci-
fications in rely/guarantee style (e.g. [SDW93]). A rely/guarantee pair (Ry = Gs) is a
refinement of (R = G1), if Ry = Ry and (Ry A G3) = Gy.

13

Type Bounded Queue
Attributes Visible empty,full

Hidden counter, bound
Operations Visible put,get
Invariant bound > 1

Behaviour mput

ut
_ counter >0 P
counter =0 _—— . |counter = bound
empty counter < bound not empty
not full not empty full
not full

get
Uget

Figure 11: Type Bounded Queue

Taking Ry and Gy as defined in section 1 it is straightforward to show that 75 < 7Ty
implies for all operations f € OP, object states 0s1,0s2 € OS(Ty) and arguments parg €
[par(f) — U] that

R (0s1) = R3(0sy) and

(Ry(0s1) A G(0s1, 089, parg)) = G'(0sy1, 082, parg).

Thus type specialization implies operation refinement. The opposite is not true, since
type specialization also induces structural refinement of the automaton which cannot be
expressed by operation refinement.

4 Roles

In the preceeding sections we have discussed how to model the behaviour of a single type
and its subtypes. To understand the interaction between several types it is important
to make explicit the expectations the environment has about the behaviour of a type.
These expectations are often called roles of the type [Ree92]. A typical example is the
Bounded Queue whose environment consists of a Producer and a Consumer (for the type
description see figure 11).

The Producer expects to be able to invoke some number of put operations (depending on
the bound and the counter). The Consumer expects to be able to invoke some number of
get operations. The expectations can be made explicit in the Enqueue and Dequeue role,
respectively. These roles are captured by the behaviour automata depicted in figure 12.
Note that in roles all attributes and operations are visible.

The Producer is only concerned with the attribute full and doesn’t care about the case
empty. Similarly, the Consumer doesn’t care about full, but only is concerned with
empty.

14

Role Enqueue
Attributes full
Operations put

Behaviour
put
put
T
Role Dequeue

Attributes empty
Operations get

Behaviour

not empty

get

Figure 12: Roles Enqueue and Dequeue

Having made the expectations explicit as roles it is easy to check whether a type fulfills its
roles. The behaviour automaton of the type has to specialize the behaviour automata of
its roles. In the example above this is straightforward to show. The only interesting point
is the split up of one state of every role automaton in two states of the type automaton. In
the case of Enqueue state s labelled with not full is split up into sy, sy labelled empty,
not full and not empty, not full respectively. The implications (I A Lgueue(si)) =
L Enquene (8) are straightforward to show. Also condition (Sp3) is straightforward to show.
In general it is important to note that, although the expectations are captured by au-
tomata, nothing is said about sequences of operations the environment of an object may
invoke. The semantic of behaviour automata (apparent in the definition of specialization)
is only concerned with states, the enabledness of operations and to some extend their
result. Since we allow a concurrent environment, a user object o cannot expect the used
object to be modified solely according to the sequence of operations invoked by o. There-
fore single operations invocations are the units of concern.

In the following we give a formal definition of roles.

15

| Definition of roles: |
Let T = (t, Atty, V Atty, Opy, VOpy, pary, so, Ai) be a type description.

R = (r,VAt,, VOp,,par,, A,) is called a role of T, if r is a name, V Att, C V Att,
are the attributes, VOp, C VOp; are the operations, par; is a function from
operations to parameters which restricted to VOp, equals par, and A; < A,

Note that the only difference to the subtype relation is that for roles no initial states are
specified® and that roles do not have hidden, but only visible attributes and operations.
Now it is easy to show the subtype requirement.

Theorem 2: Subtype requirement for roles holds

Let Ty, Ty be two type descriptions and R be a role of T7.
If T, <Ti, then R is also a role of T5.

The proof is trivial by transitivity of automata specialization.

5 Related Work

In this section we discuss related work. In the framework of [LW93] the behaviour of
a type is captured by pre- and postconditions. As mentioned before our description
by predecessor and successor states is more coarse. So for example we cannot describe
different behaviour for every individual element added to a Queue by put. More generally,
we cannot describe enabledness of operations which depends on parameters®.

In our framework def; defines some sort of precondition. As mentioned in section 4 for
all 0osy € OS(T,) holds R}(osl) = Rfc(osl). This implies that for all s, € S, holds
= (I A La(s2)) = (def} = def?). Liskov and Wing require that pre} = pre7. Thus
our specialization is more general, since we only require the implication pre} = pre?c
for the states the refined objects can assume. This weaker requirement can only be
formulated because we have made the state space of a type explicit. Another difference
is the treatment of invariants. In [LW93] every property of the supertype is preserved. In
OOA this is too strong a requirement, since the specification of the types is not complete.
Consider the example of Fat Sets given in figure 13.

Fat Sets cannot shrink because the delete operation is missing. Sets can be seen as
a refinement of Fat Sets by addition of delete. Clearly, the property not to shrink is
lost. Therefore in [LW93] Sets are not allowed as specialization of Fat Sets. In our
framework the analyst can decide. If the property not to shrink is important, it can be
formulated as an invariant of the behaviour automaton®. Then no delete operation can
be added. If the property is not deemed important and the invariant not specified, it is
not required of subtypes and therefore Set can be a subtype of Fat Set.

In some sense our definition of subtyping can be seen as an integration of the work of
[LW93] and [Fro92]. Frglund requires the synchronization constraints of the supertype to
be an “upper limit” on the subtypes. In his framework therefore the subtype requirement

3The expectations of an object o on another object which was created by o might also include initial
states. This can easily be incorporated in our framework.

‘However we can model this situation by totalizing the operation and introducing an explicit error
state.

®Note that we have not considered such temporal invariants so far.

16

Type Fat Set
Attributes Hiddenelements
Operations Visible insert, select, size

Type Set
Attributes Hiddenelements
Operations Visible insert, delete, select, size

Figure 13: Types Set and Fat Set

can be violated. In our framework the state space of the supertype is an upper limit
for the state space of the subtypes and the synchronization constraints depend on the
state space. Relative to the reduced state space of the subtype, however, we require the
synchronziation constraints of the supertype to be stronger than the ones of the subtypes
(see the discussion about def; above).

6 Conclusion

In this paper we have shown how to model the behaviour of types by automata in a
precise way. By labelling the automata states with predicates we make the state space
of a type explicit. These labels partition the state space. The transitions are labelled by
operations. Thus operations are only classified in so far as they relate different equiva-
lence classes of the state space. In our view this level of granularity is adequate during
the process of OOA, while specification with pre- and postconditions is too fine-grained.
Behaviour automata allow to grasp quickly important classes of object states and the
effect of operations on them. We have given a precise definition of automata specializa-
tion. This not only provides for a new definition of the subtype relationship, but also
shows how to safely enhance the system model during the analysis and design process.
Thus we have sketched the use of our specialization mechanism for type refinement. Our
definition of type specialization guarantees the subtype requirement, namely that as far
as the environment is concerned the object of the supertype and the subtype cannot be
distinguished. Using behaviour automata we have defined precisely the expectations of
the environment.

In our future work we intend to extend this work to the aggregation hierarchy and general
interaction between types. This requires to make explicit in the operations of a type
invocation of operations on other types.

Since automata are a very intuitive means to model behaviour, it is easy to use behaviour
automata in an informal way. The formal definitions guide the user to the important
points where to look at while designing and modifying the behaviour of types. Thus be-
haviour automata are an adequate link between informal and formal software development

17

methods.

Acknowledgments

We would like to thank Klaus Bergner, Manfred Broy, Thomas Fees, Stefan Merz, Stefan
Schiffer, Lothar Schmitz and Alois Stritzinger for critical discussions and remarks during
the preparation of this paper.

References

[BEFG*93]

[DDP93]

[Fro92]

[GM93]

[Har87]

[Jon&3]

[JSHSO1]

[LW93]

[Mes93]

[Mey92]
IMO93]
[RBP*91]

[Ree92]

[SDWO3]

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hulmann, D. Nazareth, F. Re-
gensbhurger, O. Slotosch, and K. Stglen. The Requirement and Design Specifi-
cation Language SPECTRUM, An Informal Introduction, Version 1.0. Technical
Report TUM-19312, Technische Universitat Minchen, 1993.

E. Dubois, P. DuBois, and M. Petit. Oo requirement analysis: an agent per-
spective. In KCOOP,LNCS 707, pages 458-481. Springer Verlag, 1993.

S. Frolund. Inheritance of synchronization constraints in concurrent oo pro-

gramming languages. In FCOOP,LNCS 615, pages 187-196. Springer, 1992.

D. Gangopadhyay and S. Mitra. Objchart: Tangible specification of reactive
object behaviour. In FCOOP,LNCS 707, pages 432-457. Springer Verlag, 1993.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.

C.B. Jones. Tentative steps toward a development method for interfering pro-

grams. ACM ToPLaS, 5(4):596-619, 1983.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented spec-
ification of information systems: The troll language. report 91-04, TU Braun-

schweig, 1991.

B. Liskov and J.M. Wing. A new definition of the subtype relation. In
ECOOP,LNCS 707, pages 118-141. Springer Verlag, 1993.

J. Meseguer. Solving the inheritance anomaly in concurrent object-oriented

programming. In FCOOP,LNCS 707, pages 220-246. Springer Verlag, 1993.
Bertrand Meyer. Fiffel: The Language. Prentice Hall, 1992.
J. Martin and J. Odell. Object-oriented Analysis and Design. 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, F. FEddy, and W. Lorensen. Object-
oriented Modeling and Design. Prentice-Hall, 1991.

Trygve Reenskaug et al. OORASS: seamless support for the creation and
maintenance of object oriented systems. JOOP, 5(6):27-41, October 1992.

K. Stolen, F. Dederichs, and R. Weber. Assumption/commitment rules for
networks of asynchronously communicating agents. report TUM-19303, TU
M”unchen, 1993.

18

