
Efficient Editor Generation for Compositional DSLs in

Eclipse

Holger Krahn, Bernhard Rumpe, and Steven Völkel

Institute for Software Systems Engineering
Niedersächsische Technische Hochschule, Standort Braunschweig, Germany

http://www.sse-tubs.de

Abstract. When a domain specific language (DSL) shall be commonly used, it is im-
portant for the development team to have a comfortable editor well integrated in the
project’s development environment. As DSL are rather often subject to changes, efficient
development and evolvement of a comfortable editor is an important success criterion for
the acceptance of domain specific languages. In this paper we demonstrate how this issue
is addressed in the MontiCore DSL development framework. Basically an extension of the
MontiCore DSL definition language can be used to efficiently generate DSL editors for
Eclipse. The generation tool also supports the compositional language definition features
of MontiCore and allows therefore the reuse of existing language and editor definitions.

1 Introduction

Domain specific languages (DSL) have a crucial advantage over general purpose languages. They
allow us to describe the elements, relations and constraints of a certain domain a lot more concise
and compact. However, there are many domains and technical spaces out there and we will see a lot
of new DSLs coming up in the future, many of them to be used in software development projects.
Especially these types of DSLs are predestinated for a textual realization [4].

The development of a new, but usable domain specific language involves various activities. Far
too often the development activities for a DSL usually focus on concrete and abstract syntax only.
Sometimes also an informal document, describing the semantics is provided, and of course the devel-
opment of appropriate tooling to assist the purpose the DSL is a central aspect. This usually involves
a code generator to transform the language into an executable form, but sometimes also test code
generation or simulation to study essential properties of the system under development are needed.

The editor environment for such a newly defined language is a far too often neglected labor
intensive development work that does not directly contribute to the project, but only helps the
developers to become more effective later on. Therefore, a comfortable editor is an important success
factor for a DSL, when a new, and for other developers unknown DSL has to compete with a general
purpose language (GPL) like Java. For GPLs the existing tools are usually mature and support
the user with a sophisticated user interface. DSLs therefore must be supplemented by a similar
development environment.

The Eclipse platform [1] is an ideal target for this kind of approach. First, the platform supports
the user by a full-functional Java-IDE including among others an incremental compiler. Second, the
user is supported by various build and version management utilities which are essential for efficient
software development. Third, due to Eclipse’s extensible nature, it allows integrating new plugins
for DSLs. The downside of this approach is, that due to the flexibility and power of the Eclipse
platform, the provided interfaces for DSL-tooling are rather complex and still lack stability. This
means a lot of experience is needed to develop and maintain a sophisticated language support. To
make our MontiCore DSL framework [2, 3, 8–10, 14] as introduced in Section 2 more comfortable for

[KRV07] H. Krahn, B. Rumpe, S. Völkel.
Efficient Editor Generation for Compositional DSLs in Eclipse.
In: Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling (DSM' 07), Montreal, Quebec, Canada
Technical Report TR-38, Jyväskylä University, Finland 2007.
www.se-rwth.de/publications

language development, we have added technology to the framework that helps deriving DSL editor
configurations based on their language definition.

For this purpose we identified an extension of the MontiCore language definition format [10]
that allows the generation of specific Eclipse plugins to integrate editors and code generators in the
Eclipse platform without further knowledge about the platform itself. Therefore the developer can
concentrate on the language development and the tool integration is developed and maintained inside
the MontiCore framework for every DSL.

The rest of this paper is structured as follows. In Section 2 we explain the basic principles of our
extended grammar format that is used to define languages in the MontiCore framework. In Section 3
we explain how an extension of this grammar format can be used to generate Eclipse plugins. To
explain this extension a bit further, we applied it to a demonstrating example in Section 4. Section 5
explains other approaches whereas Section 6 concludes this paper.

2 Language definition using MontiCore

Using the MontiCore framework a DSL is defined by an extended context-free grammar that deter-
mines concrete textual syntax as well as the internal representation (abstract syntax). The grammar
is similar to the input language of common parser generators, but allows defining non-compositional
associations and inheritance for the abstract syntax. Fig. 1 contains a simple demonstrating example
with three nonterminals Greeting, Person, and VIP. Further details can be found in [10].

MontiCore-Grammar

1 grammar HelloWorld {

2

3 ident NAME =

4 (’a’..’z’)+;

5

6 ident NUM =

7 (’0’..’9’)+ : int;

8

9 Greeting =

10 "Hello"

11 Person ("," Person)* "!";

12

13 Person =

14 NAME;

15

16 VIP extends Person =

17 NAME assets:NUM;

18 }

Fig. 1. Example of an MontiCore grammar and induced abstract syntax

A production has a name and body (right hand side) separated by ”=”. The body contains
nonterminals (reference to other rules) and terminals. The usual concepts for structuring the body are
alternatives (separated by ”|”) and blocks (in parenthesis). Blocks, nonterminals and terminals can
have the cardinality ”?” (optional), ”*” (unbounded cardinality) or ”+” (at least one). Furthermore,
blocks, nonterminals and terminals respectively their presence can be named (in form of a prefix like
”assets:”) in order to access these elements in the abstract syntax.

The abstract syntax is realized by heterogeneous typed Java classes where the named elements
are represented as attributes. To distinguish them from further attributes that can be added to mimic
attribute grammars [7], we call these special form of synthesized attributes production attributes.

The MontiCore grammar supports two kinds of modularity concepts: First, multiple language
inheritance (similar to [12]) to reuse a language definition by specifying the delta only. Second,
language embedding where language fragments with explicit holes are used. These holes have to be
filled by other grammars at configuration time to form a complete language.

Multiple languages can be bundled to a DSLTool that executes algorithms, so called workflows,
on the languages instances. The framework simplifies reoccurring challenges like error messages,
file creation, loading of depending instances and logging. The MontiCore grammar language has a
flexible concept definition mechanism to specify further properties of the language under design. In
the following the concept named texteditor is used to define the Eclipse integration.

3 Generation of Editors

We divide the generation of Eclipse-based editors into three levels. First, the fragment level contains
functionalities which depend on language fragments (including language inheritance) as described
in Section 2. Second, functionalities which are specific for a complete language or depend on the
composition of fragments to a complete language are defined on the language level. And third, the
tool level describes functionalities which depend on several languages bundled to a deployable Eclipse
plugin.

3.1 Fragment Level

Grammar fragments can be enriched by editor attributes which are used to define several aspects of
a generated texteditor specific for the current grammar fragment. In order to define these aspects,
the concept called texteditor is included in a fragment definition whose functionalities are introduced
in the following.

Syntaxhighlighting. MontiCore offers a build-in mechanism for the usage of comments similar to
Java: single-line comments are preceded by // and are terminated at the end of the line whereas
multi-line comments are delimited by /* and */. These comment definitions are also used in the
generated editor: Each language instance is partitioned into comment (in green) and code regions.
Furthermore, keywords which will be colored in magenta inside code regions are defined by a comma-
separated list.

Folding. Folding allows to collapse/uncollapse code regions in order to get more overview of the
language instance. Small symbols are shown next to different code regions, a minus as symbol to
collapse a region, a plus as symbol to uncollapse. When collapsing a region, the according code is
abbreviated by the first line followed by two dots. Doing so, the delevoper can concentrate on the
important parts whereas the uninteresting but necessary parts (e.g., the list of imports in Java) can
be hidden.

MontiCore connects the definitions of nonterminals and the definitions of regions to be foldable.
A comma-separated list of nonterminal names is used to define which regions can be folded in the
generated editor.

Outline. An outline visualizes the structure of a language instance in a tree view which consists of
segments representing different parts of the instance. MontiCore allows to define nonterminal-specific
segments. Therefore, each segment is related to a nonterminal and can include a path to an icon

which can be used in order to visualize the type of the segment and an instance-specific text which
consists of combinations of static text and production attributes of the corresponding nonterminal.
Figure 2 shows an addition to the grammar from Figure 1. In this example, each instance of the
nonterminal Person is represented by a segment in the outline containing the defined icon and the
word “person” followed by his name. Note that it is possible to use an arbitrary combination of static
strings and production attributes.

MontiCore-Grammar

1 concept texteditor {

2 segment: Person ("pict/person.gif") show: "Person" name;

3 }

Fig. 2. Definition of segments in MontiCore

Compositionality on Fragment Level. The compositionality on the fragment level is particularly
targeted at grammar inheritance which is not only reflected in the abstract and concrete syntax of the
involved languages but also in the functionality of the generated editors. Editor attributes defined for
a supergrammar are reused in order to generate editors for a subgrammar. Therefore, all keywords,
foldings, and outline segments of the supergrammar are automatically evaluated whereas it is still
possible to customize them. Doing so, it is possible to extend the list of keywords by defining the
additional keywords only. Furthermore, it is possible to add new foldings and segments by defining
them in the normal way.

By this strategy, it is possible to create a library of language fragments including their editor
definitions which then can serve as basis when defining a new language by inheritence or embedding.
This minimizes the effort for developing new DSLs as well as their specific editors.

3.2 Language Level

Several functionalities are dedicated to a concrete combination of fragments in a specific editor and
therefore, cannot be expressed at the fragment level. A prominent example are error messages: com-
piler errors and errors occurring in a syntactic analysis (also denoted by semantic analysis in compiler
theory) typically depend on which fragments are combined. Furthermore, editor actions, such as code
formatting, code generation, or model composition are often developed for a specific fragment combi-
nation. Therefore, MontiCore supports the declaration of editor-specific functionalities in a subsection
of the DSLTool definition - the concept texteditor.

Error Messages. Adequate and understandable error messages are one crucial criterion for a suc-
cessful adoption of a language. This is especially important for syntax-driven editors. Error messages
should not be shown in textual form inside a console but should be integrated into the environment.
The problems view inside Eclipse offers a possibility to show error messages and to connect them to
a file and a line within that file. By selecting a marker the file is automatically opened and the line
is highlighted.

MontiCore automatically produces problem reports for generated components which are shown
inside the problems view inside Eclipse. Furthermore, hand-written components such as syntactic
analyzers can be integrated into the parsing process by adding their class names in the workflow
section of the editor concept. These components can produce problem reports which lead to the
same effect as for generated components.

Editor Actions. It is possible to add context menu items to a generated text editor by implementing
the interface shown in Figure 3 and adding the class name and the name of the context menu
item in the editor concept. Since some functionalities such as refactoring depend on the specific
position/string the user has selected, both information are forwarded to the hand-written code.
Furthermore, the current editor is forwarded in order to gain access to the filename, to the whole
project and thus to all other files within the project, or to write back refactored code.

Fig. 3. Interface IEditorAction

Another prominent example for editor actions is code formatting. MontiCore allows to define
pretty printers for languages on the fragment level which are combined automatically and can be
included in an editor as format action.

Navigator Actions. Editor actions are hooked in the context menu of a generated text editor.
However, there are often functionalities which depend on more than one input file, e.g. composition
of models. Therefore, the developer can hook in hand-written functionalities into the navigator view
of Eclipse similar to editor actions. This navigator view shows all projects and their contents such as
files and folders within the workspace. The user is able to select different resources and to invoke the
context menu depending on them. Again, the developer implements the interface as shown Figure 4
and adds the name of the implementing class and the name of the context menu item to the editor
definition. For convenience, the run method has a parameter which maps each selected input file to
its project.

Fig. 4. Interface INavigatorAction

Compositionality on Language Level. In order to support compositional definitions of languages
we decided to use a two-stage strategy. First, the language combination defined in the DSLTool is
evaluated and all involved editor definitions are analyzed and combined. Second, we generate the
functionalities as a plugin depending on the first stage resulting in a combined tool. Doing so, the
functionalities such as the segments in the outline result from the combination of the definitions of
all involved fragments.

The most important advantage is that the definitions are independent from each other regardless
which fragments will be combined. Beyond that, there is no redundancy: each functionality is defined
only once even if the fragment is used in several language combinations. Thus, changes in a fragment
are immediately reflected in all language combinations (and therefore tools) the fragment is involved
in.

We decided for a strict separation between language and fragment level functionalities as this
enables to reuse fragments in a new composition as well as to reuse different languages in a new

project without re-implementing the tool support. Thus, we are not only able to set up a library
of composable language fragments but a library which consists of languages and language specific
editors which can be reused in new project settings with minimal effort.

3.3 Compositionality on Tool Level

DSLs are typically defined to solve a clear cut task. Several languages may be used to describe all
aspects of the system under design. In order to support the composition of languages and their
specific tools into deployable products it is necessary to combine the editor definitions in a generated
plugin instead of generating a plugin for all editors separately and to install them in parallel which
is unpractical if tools shall handle cooperating languages. This is especially important if a fixed set
of languages (e.g. a specific subset of the UML) is used to describe a system.

Therefore, MontiCore allows to define more than one editor in a single project. All grammars
are handled separately and the plugin description/manifest file which is necessary for each Eclipse
plugin is composed of all editor-specific information. However, it is still possible to generate plugins
seperately for each language if desired and to install them in parallel. Furthermore, the generated
parts can be supplemented by handwritten plugins such as a debugger or simulation engine.

4 A Demonstrating Example

To demonstrate the introduced capabilities of MontiCore we use a simplified and adapted version of
message sequence charts [5]. MSCs are used to describe actions between objects or processes (referred
to as instances). Instances transfer messages via send and receive events. Furthermore, conditions can
be added to an instance, they are used to describe invariants in an appropriate language which have
to be valid at a certain point of time. Conditions can be valid for a specific instance, at a bundle of
instances, or all instances. Figure 5 shows a graphical and the according textual version of message
sequence charts combined with Java for the conditions.

The first step towards a textual version is to define the grammar in MontiCore as outlined in
Figure 6. MSCs consist of a name and set of instances and Methods (line 7). Instances in turn
have also a name and several Events (line 9). SendEvent, ReceiveEvent, and Condition implement
the Event interface and can therefore be used in an instance (line 11-21). Furthermore, SendEvents
pass a message to a receiver, ReceiveEvents are defined analogously (line 11-15). Conditions (line
17-21) have a name and can be shared with all other instances (determined by the keywords shared
all) or with specific instances (determined by shared followed by the the names of the instances in
a comma-separated list). Both Cond and Method are marked as external rule (line 4 and 5) in order
to combine the MSC language with any other language.

In order to define the properties of the generated editor on the fragment level the concept texte-
ditor has to be added to the basic grammar as shown in lines 23-29 of Figure 6. The first part is to
define the keywords which have to be colored in the code area in a comma separated list (line 24).
Since we use the standard comments, the resulting editor automatically recognizes comment regions
displayed in green.

Foldable code regions allow to collapse/uncollapse parts of the code in order to get more overview
of the instance under design. A comma separated list (line 25) defines the nonterminals to be foldable,
in this example an MSC, an instance, and a condition.

Segments describe the items to be shown inside the outline. As example we describe the segment
for SendEvents (lines 26-27). The outline item should consist of a small icon (pict/arrow.gif) and an
instance-specific text. This text in turn should be “Send to” followed by the name of the receiver, a
colon, and the message.

In this example, MSCs should be combined with Java as action language, hence we have to define
the Java grammar and the editor attributes in an analogous form to MSC. We omit details here for

MontiCore-Grammar

1 msc mail{

2

3 instance sender{

4 out message to receiver;

5 in response from receiver;

6 }

7

8 instance receiver{

9 in message from sender;

10 condition inbox {

11 checkInbox()

12 }

13 out response to sender;

14 }

15

16 public boolean checkInbox() {

17 return receiver.messages > 0;

18 }

19 }

Fig. 5. Simple MSCs in diagrammatical and textual version

the sake of space. Note that both definitions are completely standalone, i.e. the MSC grammar and
the corresponding concept editor attributes do not know anything about the grammar/editor they
are combined with.

In order to combine the editors on the language level, the concept texteditor has to be added
to the DSLTool definition as shown in Figure 7. Lines 3-5 combine the languages: the MSC-parser
is used as start-parser (line 2), Java expressions are embedded into MSCs by replacing the external
nonterminal cond (line 3) whereas methods are used to replace the external nonterminal method (line
4/5). Lines 7-10 combines the pretty printers which leads to a format action in the resulting editor
as described in Section 3.2.

The concept texteditor consists of several parts which describe the behavior and the functionalities
of the resulting editor. We describe the most important points. Line 13 defines the class of the tool
which is used to process the text inside the editor. This tool is manually written, command line
arguments can be used in order to define the workflows which have to be executed (parsing, symbol
table building, etc.). Line 14 defines additional workflows which should be executed when the editor
evaluates the text. We implemented 2 workflows: symtab for building a symbol table and check for
checking context conditions. The declaration of symtab and check leads to arguments which are
passed to the tool. These workflows are able to add problem reports to the processed file leading to
error messages inside Eclipse (c.f. Section 3.2).

The last functionalities of our example are editor and navigator actions. The former are added
to the context menu of the generated editor, the latter can be used inside the context menu of the
navigator. Both actions consist of a name to be shown in the context menu and the name of class
which realizes the functionality. As example we implemented an algorithm which generates traces
for an MSC which is realized as editor action in line 15. Furthermore, we implemented a class which
vertically composes 2 or more MSCs as navigator action (line 17).

MontiCore-Grammar

1 grammar MSC {

2

3 interface Event;

4 external Cond;

5 external Method;

6

7 MSC = "msc" name:IDENT "{" (Instance | Method)* "}";

8

9 Instance = "instance" name:IDENT "{" Event* "}";

10

11 SendEvent implements Event =

12 "out" message:IDENT "to" receiver:IDENT ";";

13

14 ReceiveEvent implements Event =

15 "in" message:IDENT "from" sender:IDENT ";";

16

17 Condition implements Event = "condition" name:IDENT

18 (shared:["shared"]

19 (sharedWithAll:["all"] | sharedWith:IDENT ("," sharedWith:IDENT)*)

20)?

21 ("{" Cond "}" | ";");

22

23 concept texteditor {

24 keywords: msc, instance, in, out, to, from, condition, shared, all;

25 foldable: MSC, Instance, Condition;

26 segment: SendEvent ("pict/arrow.gif")

27 show: "Send to " receiver ":" message;

28 // further segments

29 }

30 }

Fig. 6. Definition of MSCs

The definitions desribed so far are sufficient to generate a language specific editor for MSCs
combined with Java as embedded language. The most important functionalities are shown in Figure 8
and Figure 9. Furthermore, Table 1 shows some key figures of the example.

Lines of code
DSL-specification (handwritten) 2,379
Java-Code (handwritten code generation) 3,296
Java-Code (generated editor) 2,413

Table 1. Key figures for MSC example

MontiCore-Grammar

1 rootfactory MSCRootFactory for MSCRoot<MCCompilationUnit>{

2 mc.examples.msc.msc.MSC.MCCompilationUnit mscdefinition <<start>>;

3 mc.examples.msc.java.JavaDSL.Expression cond in mscdefinition.cond;

4 mc.examples.msc.java.JavaDSL.MethodDeclaration method in

5 mscdefinition.method;

6

7 prettyprint {

8 mc.examples.msc.msc.prettyprint.MSCConcretePrettyPrinter;

9 mc.examples.msc.java.JavaDSLConcretePrettyPrinter;

10 }

11 }

12 concept texteditor {

13 tool: "mc.examples.msc.msc.MSCTool";

14 workflows: symtab, check;

15 menuitem Generate Trace

16 ("mc.examples.msc.msc.action.GenerateTraceAction");

17 navigatoritem Compose

18 ("mc.examples.msc.msc.compose.ComposeAction");

19 }

20 ...

Fig. 7. Excerpt from language and editor composition for MSCs and Java

Fig. 8. Resulting Editor for MSCs

Fig. 9. Problem Reports and Navigator Actions

5 Related work

DSL are often developed using special language workbenches [11, 13, 17] that supply the user with
help to develop the language efficiently. These workbenches allow the definition of languages and the
generation of editors that look similar to the meta environment as they use a common code base. In
contrast to our approach [11] and [13] generate graphical editors.

The SAFARI project [16] allows to develop programming languages and their Eclipse integration.
In contrast to their approach, we focused on a pure textual approach that is needless integrated with
our language definition and avoided wizards that - to our impression - hinder language evolution.

In [6] is described how textual syntax and as a further step the frontend of a compiler can be
derived from an abstract syntax as first step towards a generation of text-based IDE. The generation
of language-specific editors is not performed.

XText is part of the openArchitectureWare project [15] and can be used in order to generate
Eclipse-based editors from a grammar definition. These editors provide similar functionalities to the
editors generated by MontiCore. However, there are some important differences between xText and
our approach. The most important is that we aim at compositional DSL and tools, wheras xText
concentrates on standalone grammars.

6 Conclusion

In this paper we introduced an extension of the MontiCore grammar format to generate Eclipse
plugins for simplifying the development of DSLs. We especially investigated how modular language
development can supported by modular editor definitions. We identified elements that are best defined
at fragment, language or tool level to maximize the reuse for future development.

In the future we like to explore the generation of further tool support for Eclipse by supplying
the language developer with a convenient interface for defining refactorings for the language un-
der design. In addition graphical outlines that supplement the textual interface could be generated
from the user input. As proof of concept we are currently bootstrapping an editor for MontiCore itself.

Acknowledgement: The work presented in this paper is undertaken as a part of the MODELPLEX
project. MODELPLEX is a project co-funded by the European Commission under the ”Information
Society Technologies” Sixth Framework Programme (2002-2006). Information included in this docu-
ment reflects only the authors’ views. The European Community is not liable for any use that may
be made of the information contained herein.

References

1. Eclipse Website http://www.eclipse.org.
2. Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von Mod-

ellen in einen codebasierten Softwareentwicklungsprozess. In Proceedings of Modellierung 2006
(LNI P-82), 2006.

3. Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel. Monti-
Core 1.0 - Ein Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen. Tech-
nical Report Informatik-Bericht 2006-04, Software Systems Engineering Institute, Braunschweig
University of Technology, 2006.

4. Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
Textbased Modeling. In 4th International Workshop on Software Language Engineering, 2007.

5. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99). Technical
report, ITU-TS, Geneva, 1999.

6. Anneke Kleppe. Towards the Generation of a Text-Based IDE from a Language Metamodel. In
ECMDA-FA, pages 114–129, 2007.

7. Donald F. Knuth. Semantics of context-free languages. Mathematical systems theory, 12:127–145,
1968.

8. Holger Krahn and Bernhard Rumpe. Techniques For Lightweight Generator Refactoring. In
Proceedings of Summer School on Generative and Transformational Techniques in Software En-
gineering (LNCS 4143). Springer, 2006.

9. Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development using
Domain Specific Modelling Languages. In Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling 2006, pages 150–158, Finland, 2006. University of Jyväskylä.

10. Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract and
Concrete Syntax for Textual Languages. In Proceedings of Models 2007, 2007. to be published.

11. Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles Thomason,
Greg Nordstrom andJonathan Sprinkle, and Peter Volgyesi. The Generic Modeling Environment.
In International Workshop on Intelligent Signal Processing (WISP). IEEE, 2001.

12. Marjan Mernik, Mitja Lenič, Enis Avdičauˇ sević, and Viljem ˇ Zumer. Multiple Attribute
Grammar Inheritance. In D. Parigot and M. Mernik, editors, Second Workshop on Attribute
Grammars and their Applications, WAGA’99, pages 57–76, Amsterdam, The Netherlands, 1999.
INRIA rocquencourt.

13. MetaCase Website http://www.metacase.com.
14. MontiCore Website http://www.monticore.de.
15. OpenArchitectureWare Website http://www.openarchitectureware.com/.
16. Safari Website. http://domino.research.ibm.com/comm/research projects.nsf/

pages/safari.index.html.
17. Safari Website. http://www.jetbrains.com/mps/.

