
Workshop on Modeling in Software
Engineering at ICSE 2009

Robert Baillargeon
Panasonic Automotive Systems

rcbaillargeon@acm.org
Robert France

Colorado State University
france@cs.colostate.edu

Steffen Zschaler
Lancaster University

szschaler@acm.org
Bernhard Rumpe
RWTH Aachen

rumpe@se.rwth-aachen.de
Steven Völkel

RWTH Aachen
voelkel@se-rwth.de

Geri Georg
Colorado State University

georg@cs.colostate.edu
DOI: 10.1145/1543405.1543432

http://doi.acm.org/10.1145/1543405.1543432

Abstract
The Modeling in Software Engineering (MiSE) workshop

series provides a forum for discussing the challenges associated
with modeling software and with incorporating modeling practices
into the software development process. The main goal of the
series is to further promote cross-fertilization between the
modeling communities (e.g., MODELS) and software-engineering
communities.

In particular, the workshop provides a medium to exchange
innovative technical ideas and experiences related to modeling.
The 2009 MiSE workshop provided a venue for presentation and
discussion of eleven papers in the five areas of model evolution,
domain specific languages, verification and validation, model
transformation and state-of-the-art modeling usage in software
development. These papers represent a 44% acceptance rate to the
workshop. Three posters were also accepted. This report
summarizes the discussions and conclusions of the workshop.
Keywords: MiSE workshop, software modeling

Introduction
The 2009 MiSE workshop at ICSE represents the third in this

series of workshops. It provides a venue for interactive
presentation and discussion of ideas and experiences in the
innovative uses of modeling in software engineering. The topics
of interest in these workshops include technical challenges
associated with modeling software, incorporating modeling
practices into existing software development practices, and even
the use of models during software execution. This year we
received twenty-five submissions, and accepted eleven papers and

SIGSOFT Software Engineering Notes Page 34 July 2009 Volume 34 Number 4

[BFG+09] R. Baillargeon, R. France, G. Georg, B. Rumpe, S. Völkel, S. Zschaler
Workshop on Modeling in Software Engineering at ICSE 2009
In: ACM SIGSOFT Software Engineering Notes, Volume 34, Issue 4. July 2009
www.se-rwth.de/publications

http://www.ast2009.com/�
mailto:georg@cs.colostate.edu�

three posters. The papers were grouped into the following
categories: Using models in software evolution, Domain-specific
modeling languages, Using models in software system verification
and validation, Model transformation, and State-of-the-art use of
models.

A present-respond-discuss format was used to stimulate
discussions during the workshop. Each presentation was followed
by a reaction to the topics raised in the paper by one of the
workshop PC members. This response was then followed by a
short discussion on the presentation topic and reaction points.
Poster presentations used a similar format, shortened to
accommodate the topics.

The workshop also included discussion of a proposed model
repository to be used by researchers and practitioners, and a final
discussion bringing together the threads of the workshop into a
summary and direction for future research on modeling in
software engineering.
Summary of Papers and Topics
The workshop papers are summarized according to the session in
which they were presented.

Using Models in Software Evolution
There were two papers presented during this session. In the

first, “Towards Engineered Architecture Evolution” [3], Chaki, et
al. argue that close-ended architectural evolution, where the
starting and ending design points are known, can be modeled as a
sequence of steps. The authors present a framework to describe
such evolution trajectories. The framework enables exploration of
potential evolutionary paths and their evaluation.

“Relationship-Based Change Propagation: A Case Study”, by
Chechik et al. [5], describes an automated algorithm that
propagates changes between requirements and design models.
Propagation is driven by defined relationships between these two
types of models. Conditions are defined to allow syntactic and
semantic relationship validity checking. The algorithm uses the
relationships to minimize portions of the models that must be
changed. The authors demonstrate their algorithm using a case
study.

Domain-Specific Languages
This session contained two papers and the poster session. The

first paper, “Raising the Level of Abstraction in the Development
of GMF-based Graphical Model Editors”, by Kolovos, et al. [7],
tackles the well-known complexity of creating a visual editor
based on GMF. The paper describes a method that raises the level
of abstraction a developer uses to specify the visual editor.
Annotations to the meta-model are used to produce low-level
GMF models. These models are used to create the visual editor
via model transformations.

The second paper in this session “Tailoring a Model-Driven
Quality-of-Service DSL for Various Stakeholders” [10], by
Oberortner et al addresses the problem of service-oriented
contract and agreement specification. These agreements are often
specified in technical models or even the implementations of
systems, which makes it difficult for non-technical stakeholders to
provide input. The authors present a domain-specific language
for specifying these contracts, including sub-languages tailored to
specific stakeholder sets. The approach is demonstrated through

development of a quality-of-service DSL to specify contracts and
agreements.

Verification and Validation
Three papers were presented and discussed in this session.

Spanfelner et al. presented “Formal Specification of System
Functions” [11], proposing an approach to provide informal,
intuitive validation and efficient formal verification of system
functions, specified as services. The approach uses algebraic
techniques to specify relations among services, which were
intially described as use cases. The common approach of defining
use cases early in system development, then translating them into
formats suitable for formal verification is inefficient compared to
the algebraic technique.

In “Finding Inconsistency for UML-Based Composition at
Program Leve [4]l”, Chavez and Shen describe a method to detect
inconsistency between a class model that uses the concept of
composition of constituent parts and its associated
implementation. The method generates all valid object diagrams
systematically, then applies an owner–object destructor, and
validates that all external links to the owned objects are also
destroyed. The approach prunes the large search space for
efficiency.

Herrmannsdoerfer et al. describe a simulator for the
Component Language in “Model-Level Simulation for COLA”
[6]. COLA is a language used in avionic and automotive
embedded systems. The simulator guarantees the same behavior
as specified in associated models. The architecture and
capabilities of the simulator are described using a case study.

Model Transformation
Acher et al. present an approach to generate an application

from a specification, taking advantage of variations in both the
specification and the component implementations. Two feature
models are used, one for the specification and one for the
components. Variability and constraint modeling then drive
transformations. Their paper, “Tackling High Variability in Video
Surveillance Systems through a Model Transformation Approach”
[1], describes the method in the context of video surveillance
applications.

The second paper in this session was “Model Transformation
of Dependability-Focused Requirements Models” [8], by Mustafiz
et al. This work extends the process of use case elicitation and
specification to model exception behavior of a system. Well-
formed use cases are then transformed into activity diagrams
using transformation rules. Partial or degraded outcomes and
exception-handling activities are documented with stereotypes.

State-of-the-Art Model Usage
There were two papers in this session. In the first, “Non-

Functional Requirements Analysis Modeling for Software Product
Lines” [9], Nguyen surveys existing techniques to design and
analyze non-functional requirements in the context of software
product line commonality and variability. An automated
methodology, called Product Line UML-Based Software
Engineering, is introduced to deal with the problem.

The second paper in this session was “On the Use of Software
Models during Software Execution” by Bencomo [2]. This paper
describes software systems that must run and evolve, with little
human intervention. These systems require first-class

SIGSOFT Software Engineering Notes Page 35 July 2009 Volume 34 Number 4

representations of themselves to support change. Different types
of changes and analysis dictate using different types of models,
and in all cases reflection is needed to create and maintain the
models. Bencomo summarizes on-going research to support
runtime models, and presents related issues and questions.

Workshop Discussion Summary
The workshop discussion centered around two areas: software

development modeling concepts that are widely understood and
accepted by practitioners and aspects of software modeling that
are still active areas of research and discussion.

Current Understanding of Modeling
Theory of Modeling

The discussion noted that while abstraction is necessary to
create models, every diagrammatic description of software is not
necessarily an abstraction over code level descriptions. Rather,
there is a need for some “distance” between the abstractions
present in a model and the concrete implementation it represents.
Abstractions have specific meaning for their creator, which, if not
properly communicated in models, may not coincide with the
meaning gleaned by a reader. This results in problems when the
model is used as a communication medium. An abstraction may
also be described from many viewpoints, and thus there may be
multiple valid models that describe the same abstractions.
Application of Modeling

There are several paradigms that are generally accepted for
modeling various software applications, for example, relational,
state-based, and object-oriented paradigms. Each paradigm uses
particular notations and concepts. Where agreement and common
use has occurred, industrial/organizational standards are possible.
Such standards are useful in that they provide a foundation for the
interchange of model information across automations.
Automations, in the form of tools, also provide lower entry points
to model usage and at the same time provide more robust
environments in which to use modeling techniques.
Practice of Modeling

Once modeling has been put into practice, several other
observations are apparent. First, workshop participants noted that
unchanging models are not particularly valuable, since the context
in which they are used is constantly changing. Thus, the models
must be manipulated to meet new needs. Secondly, more and
more users have perceived the value of domain specialization.
Practitioners are attempting to leverage models by using their own
domain-specific languages for model development and use.
Finally, participants noted the use of models to abstract variations
in domain applications. Applications must often deal with
concerns that have pervasive implications, and models, in the
form of aspects, can be used to specify the cross-cutting elements
that address these concerns.

On-going Areas of Research and Discussion
Theory of Modeling
Abstraction continues to be an on-going issue, in particular the
question of how to find the proper level of abstraction of any giv-
en application of modeling. The purpose of an abstraction is clear-
ly an important factor, but the drivers for deciding the appropriate
level of abstraction are still unclear in many cases. This has led to
“abstraction” being viewed as a skill that cannot be taught other

than by a process of trial and error through practical application,
which appears unsatisfactory for an engineering discipline. In
addition, the process of modeling—the order in which activities
occur and the relationship between the resulting artifacts are an
important issue. It was noted that the value of a particular model-
ing technique can often only be assessed in the context of a me-
thodology in which such models are to be used. Guidance is
available from many sources, but concrete application is open to
interpretation. MDE attempts to address this to some degree, but
it was noted that more work is needed. In summary, what are the
base modeling methods, that, when applied in the large, constitute
the transition of modeling to an engineering practice.

Application of Modeling
The discussion of future research in this area focused on

domain-specific modeling. Several points were brought up,
including the question of deciding when domain specialization
should be pursued, and how to transition from general modeling
concepts and notation to ones that are domain-specific. A more
basic problem is defining what is meant by a domain-specific
language; possibilities range from light weight approaches such as
profiles to complete specification such as using ECORE with a
domain-specific front-end. In either case, there are questions that
should be used in designing a DSL, but these are not well-defined.
Such questions should include precise notions of what is being
abstracted, for which stakeholders, and from which domain
concepts the abstractions are consequently derived. DSLs also
have relationships among themselves in many instances, and these
relations must be defined. Finally, creators of DSLs currently
represent a mixture of roles, from developers to architects. The
question arises whether this broad range of activities actually
requires the creation of a new role of domain-language engineer.
Practice of Modeling

Open areas of research in practice include the on-going issue
of keeping models consistent, or at least correlated. This problem
is related to that of defining and maintaining relationships
between models, in particular where these models are expressed in
different modeling languages. Finally, the issue remains of
continuing to enhance the links between various modeling
communities, such as ICSE, MODELS, and Eclipse, for example.
The problems and concerns of each of these communities appear
to be related, but additional work is needed to bridge the
differences to promote communication and exchange of ideas.

Conclusions
Finally, the workshop participants proposed topics for the next

installment of MiSE. A potential organizing principle is to focus
on the challenges of modeling—a case study or set of case studies
was proposed as an opportunity to highlight the challenges and
solicitation of tools and techniques that can be applied directly to
the case studies. However, it was unclear whether the community
is sufficiently homogeneous to be covered by a single case study
proposed by the workshop organizers. As an alternative, a panel
on challenge topics was recommended, along with the
presentation of a keynote address.

We would like to thank the ICSE workshop organizers, the
MiSE program committee, and all the MiSE workshop
participants for another outstanding workshop event.

SIGSOFT Software Engineering Notes Page 36 July 2009 Volume 34 Number 4

References
[1] Acher, M., P. Lahire, S. Moisan, and J.-P. Rigault (2009): Tackling High
Variability in Video Surveillance Systems through a Model Transformation Ap-
proach. In MiSE’09 – Workshop on Modeling in Software Engineering at ICSE
2009, Vancouver, Canada, May 17-18, 2009, IEEE.
[2] Bencomo, N. (2009): On the Use of Software Models during Software Execu-
tion. In MiSE’09 – Workshop on Modeling in Software Engineering at ICSE
2009, Vancouver, Canada, May 17-18, 2009, IEEE.
[3] Chaki, S., A. Diaz-Pace, D. Garlan, A. Gurfinkel, and I. Ozkaya (2009): To-
ward Engineered Architecture Evolution. In MiSE’09 – Workshop on Modeling in
Software Engineering at ICSE 2009, Vancouver, Canada, May 17-18, 2009,
IEEE.
[4] Chavez, H., and W. Shen (2009): Finding Inconsistency for UML-Based
Composition at Program Level. In MiSE’09 – Workshop on Modeling in Software
Engineering at ICSE 2009, Vancouver, Canada, May 17-18, 2009, IEEE.
[5] Chechik, M., W. Lai, S. Nejati, J. Cabot, Z. Diskin, S. Easterbrook, M. Sabet-
zadeh, and R. Salay (2009): Relationship-Based Change Propagation: A Case
Study. In MiSE’09 – Workshop on Modeling in Software Engineering at ICSE
2009, Vancouver, Canada, May 17-18, 2009, IEEE.
[6] Hermannsdoerfer, M., W. Haberl, and U. Baumgarten (2009): Model-Level
Simulation for COLA. In MiSE’09 – Workshop on Modeling in Software Engi-
neering at ICSE 2009, Vancouver, Canada, May 17-18, 2009, IEEE.
[7] Kolovos, D., L. Rose, R. Paige, and F. Pollack (2009): Raising the Level of
Abstraction in the Development of GMF-Based Graphical Model Editors. In
MiSE’09 – Workshop on Modeling in Software Engineering at ICSE 2009, Van-
couver, Canada, May 17-18, 2009, IEEE.
[8] Mustafiz, S., J. Kienzle, and H. Vangheluwe (2009): Model Transformation of
Dependability-Focused Requirements Models. In MiSE’09 – Workshop on Mod-
eling in Software Engineering at ICSE 2009, Vancouver, Canada, May 17-18,
2009, IEEE.
[9] Nguyen, Q. (2009): Non-Functional Requirements Analysis Modeling for
Software Product Lines. In MiSE’09 – Workshop on Modeling in Software Engi-
neering at ICSE 2009, Vancouver, Canada, May 17-18, 2009, IEEE.
[10] Oberortner, E., U. Zdun, and S. Dustdar (2009): Tailoring a Model-Driven
Quality-of-Service DSL for Various Stakeholders. In MiSE’09 – Workshop on
Modeling in Software Engineering at ICSE 2009, Vancouver, Canada, May 17-
18, 2009, IEEE.
[11] Spanfelner, B., C. Leuxner, and W. Sitou (2009): Formal specification of
system functions. In MiSE’09 – Workshop on Modeling in Software Engineering
at ICSE 2009, Vancouver, Canada, May 17-18, 2009, IEEE.

SIGSOFT Software Engineering Notes Page 37 July 2009 Volume 34 Number 4

mailto:khanraees@yahoo.com�
mailto:Behzad.Bastani@cl.cam.ac.uk�
mailto:David.Greaves@cl.cam.ac.uk�

