
Visualizing MDD Projects

Timo Greifenberg1, Markus Look1, Bernhard Rumpe1

Abstract: Visualizing information enables humans to capture, understand, and analyze them in an
efficient way. Tools providing such visualization possibilities are omnipresent in software develop-
ment processes and still subject to current research. While visualization is widely tried in classical
software development, the application to MDD is much less common, but still desperately needed.
In this paper we outline an integrated and pervasive visualization approach for artifacts and software
engineering tools as well as their static and dynamic dependencies by employing, extending, and
combining well established visualization approaches to the MDD domain.

Keywords: Software Engineering, Model-driven Software Engineering, Visualization, Artifacts,
Generative Software Engineering

1 Introduction
Visualizing information [BS03] enables humans to capture, understand, and analyze them
in an efficient way. Thus, tools providing such visualization possibilities are omnipresent
in classical software development processes and still subject to current research. These
tools help to understand the development of today’s complex software systems. In con-
trast, Model-driven development (MDD) lacks this integrated visualization tool support.
MDD aims at employing models as primary development artifacts to abstract from tech-
nological and reoccurring details. MDD requires a partly automated development process,
where software engineering tools such model transformations and code generators perform
model-to-model and model-to-text transformations [CH03] in order to generate the source
code of a complex software system. It is our believe, that due to the large amount of in-
volved artifacts, their dependencies, the amount of employed software engineering tools,
the high degree of automation, and new roles in the process with different visualization
needs, it is crucial to provide an integrated visualization tool landscape for MDD projects.
In this paper, we outline an idea of employing, extending and combining well established
tools and techniques to the MDD domain. By doing so, an integrated and pervasive visual-
ization for artifacts, software engineering tools, and their different kinds of dependencies
is created.
We will start with notion of MDD Projects, by presenting the involved artifacts, tools and
dependencies between them in Section 2. Built upon this, we will show how we imagine
related tools being utilized and combined in order to visualize MDD projects coherently
in Section 3. Section 4 concludes our idea.

2 MontiCore-based MDE/MDD Projects
Before explaining how elements and relations of MDD projects could be visualized, our
notion of MDD projects is presented. We concentrate on the development phase of the
project and especially on the tools and artifacts involved. This means, that we are leaving
aside all other terms, which can be regarded as part of a project, such as roles, manual
executed activities, informal requirements and project management activities. Figure 1
sketches our view on MDD projects. We use the language workbench MontiCore [Gr08]
1 RWTH Aachen University, Chair of Software Engineering, Ahornstr. 55, 52074 Aachen, www.se-rwth.de

Jan Jürjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 101

[GLR17] T. Greifenberg, M. Look, B. Rumpe: 
Visualizing MDD Projects. 
In: Software Engineering Conference (SE'17), LNI, pp. 101-104. Bonner Köllen Verlag, 2017. 
www.se-rwth.de/publications/



Trafo-M

M

Traces

HWC

«gen»
Java

Modeled
System

Target
System

Filesystem

Config
MontiCore

Generator

Templates

Helper

Trafo-
Engine

M’

Toolchain
Execution

Figure 1: MDD projects with its tools and artifacts.

to enable our MDD processes efficiently. Models, shown as M, serve as primary develop-
ment artifacts, capturing requirements and specification. In addition, transformation mod-
els, shown as Tra f o-M, are processed by the MontiCore transformation engine to perform
model-to-model transformations for the input models. Generators use (transformed) mod-
els, shown as M′, as input to generate parts of the target system. Note, that Figure 1 only
shows two tools (Tra f o-Engine and Generator), while in general, an arbitrary number
of tools form MDD toolchains. In addition, the system can consist of handwritten code,
shown as HWC, which has relations to the generated files. Furthermore, the same HWC
is respected and reacted upon during generation by the generator. The code generator is
composed of templates, which can execute other templates or call helper functions, written
in Java. Thus, we consider models, transformation models and handwritten code files, as
primary input artifacts of an MDD process. Templates and Java artifacts providing helper
functionality form the code generator and Java artifacts including HWC files are the pri-
mary output. HWC is regarded as input and as output artifact. Furthermore, the toolchain
requires configuration, which is also captured in an artifact, shown as Con f ig. During exe-
cution of the toolchain artifacts containing trace information, shown as Traces, are created
as a side product.
This together leads to a plethora of dependencies within an MDD process. In general we
consider static and dynamic dependencies. Static dependencies are relations that can be
determined by analyzing the involved artifacts without executing the toolchain while dy-
namic dependencies are relations that can only be observed when executing the toolchain.
Static dependencies consist between input artifacts (M and Tra f o-M), code generator ar-
tifacts (Templates and Hel pers) as well as output artifacts (generated and handwritten
code). Additionally, dynamic dependencies such as templates that are executed by other
templates and tools that create files occur during toolchain execution. Moreover artifact-
based architectures can be defined within the MDD project. Dependencies between archi-
tectural structures, composed of artifacts, can be derived from the dependencies of their
artifacts. This shows, that there are other kinds of elements and dependencies to be con-

102 Timo Greifenberg, Markus Look und Bernhard Rumpe



sidered than in classic software development, which motivates the integrated visualization
approach introduced next.

3 Visualizing MDD Projects

In this section, we envision an integrated visualization approach for MDD projects. The
different elements and dependencies of MDD projects are mapped to existing visualization
tools. Moreover, the approach describes the interaction between the different perspectives
leading to an integrated and preservative visualization.
Toolchains: The visualization of toolchains is the entry point of our integrated visualiza-
tion approach. Here, the configuration of the MDD project’s toolchain is displayed. Tools
are connected by their expected input and output artifacts and a tool could be applied more
than once in a single toolchain. This view is also used to visualize the last execution of
the toolchain. In this case, real artifacts and trace information about tool executions are vi-
sualized. A tool capable of visualizing toolchain configurations is the Validas Tool Chain
Analyzer2. Examples for tools visualizing toolchain traces are ExplorViz3 and ProM4. As
we suggest to use the same view to display both, configurations and traces, it must be
hinted, which of both is actually shown.
Artifact Dependencies: From the toolchain view, the user is enabled to display the de-
pendencies of any involved artifact, which is used as input, output, intermediate result or
part of a tool’s source code. Selecting an artifact results in a perspective switch to dis-
play only artifacts and dependencies between them as a directed dependency graph. Here,
an approach similar to the Massey Architecture Explorer5 can be used. This visualization
tool displays static dependencies between Java classes and packages and could be easily
adapted to display any kind of artifact dependencies of MDD projects.
Models: When selecting a model file from one of the perspectives, it is possible to rep-
resent it in its own notation. This notation can be textual [Sc12] or graphical [Ru16]. To
display dependencies between models, the graph visualization described before could be
used. In addition, a filter may be required to focus on models only for this use case.
Tool Artifacts: When selecting a tool from the toolchain view, the perspective changes
to the tool view. Here, the generator’s artifacts, namely templates and Java artifacts, are
shown. Dependencies between those artifacts can also be visualized by the directed de-
pendency graph, but there exists another tool specific perspective for this. In ExplorViz
exists a possibility to view relations between artifacts of an application in a city like visu-
alization. Real communication is visualized by this tool and there is a possibility to ”zoom
into” a single tool from a tool landscape perspective. Again, we propose to use this per-
spective for both, configuration and trace information.
Hierarchy: As we assume that artifacts are organized in a file system, a file explorer view
is displayed in parallel to other perspectives. This view supports expanding artifacts such
that elements defined within artifacts (e.g. model elements within model files) can also
be displayed. For Java artifacts this is supported by the package explorer of the eclipse

2 http://www.validas.de/TCA.html
3 https://www.explorviz.net/
4 http://www.promtools.org/
5 http://xplrarc.massey.ac.nz/

Visualizing MDD Projects 103



IDE6 for example. Moreover, Sonargraph7 can display references in addition to contains-
relations in a similar view.
Artifact-based Architecture: In MDD projects architectures can be defined on various lev-
els as discussed in section 2. For each of these levels, different analysis tools like
HUSACCT8 or ARAMIS [Ni15] can be adapted to display artifact-based architectures.
Such a perspective is added to the overall approach to display dependencies between archi-
tectural structures, which increase the understanding of MDD projects on a more abstract
level.
Analysis Data: We assume that specific analyses of the overall data visualized so far are
needed and that their results are visualized, too. Metrics are a special form of analysis,
whose results are graphically displayed. Existing visualization techniques such as those
used in Sonarqube9 can be used. Other analyses result in a subset of dependencies and el-
ements, which can be visualized by reusing the respective part of the integrated approach.

4 Conclusion
In this paper, we motivated the need for visualization tools supporting MDD projects and
project analysis. Moreover, we presented our view on MDD projects focussing on tools and
artifacts in the development phase of the project. Based on this, our vision of an integrated
visualization approach was sketched taking into account existing approaches applicable for
different development scenarios. As outlook to this work, we want to (1) ease the focus we
put on MDD projects by taking into account the overall development process, (2) compare
project data at different points in time, and (3) take into account more complex scenarios
in which a tool generate parts of another tool used in the MDD project.

References
[BS03] Bederson, Benjamin B; Shneiderman, Ben: The craft of information visualization: readings

and reflections. Morgan Kaufmann, 2003.

[CH03] Czarnecki, Krzysztof; Helsen, Simon: Classification of model transformation approaches.
In: Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture. volume 45. USA, pp. 1–17, 2003.

[Gr08] Grönniger, Hans; Krahn, Holger; Rumpe, Bernhard; Schindler, Martin; Völkel, Steven:
MontiCore: a framework for the development of textual domain specific languages. In:
30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, Companion Volume. pp. 925–926, 2008.

[Ni15] Nicolaescu, Ana; Lichter, Horst; Göringer, Artjom; Alexander, Peter; Le, Dung: The aramis
workbench for monitoring, analysis and visualization of architectures based on run-time
interactions. In: Proceedings of the 2015 European Conference on Software Architecture
Workshops. ACM, p. 57, 2015.

[Ru16] Rumpe, Bernhard: Modeling with UML: Language, Concepts, Methods. Springer, 2016.

[Sc12] Schindler, Martin: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag, 2012.

6 http://www.eclipse.org/
7 https://www.hello2morrow.com/products/sonargraph
8 http://husacct.github.io/HUSACCT/
9 http://www.sonarqube.org/

104 Timo Greifenberg, Markus Look und Bernhard Rumpe




