
User-Driven Adaptation of Model Differencing Results

Klaus Müller, Bernhard Rumpe
Software Engineering

RWTH Aachen University
Aachen, Germany

http://www.se-rwth.de/

Abstract—In model-based software development, models are
core development artifacts which are typically created and
modified by multiple developers over a period of time. In order
to be able to reason about the evolution of models, the compu-
tation of the differences between different versions of a model,
called model differencing, is a crucial activity. However, in
general a completely automatic approach to model differencing
cannot infer the differences correctly in all cases. Errors in the
reported model differences are particularly problematic, when
the model differences are used in an automated process as a
basis to perform other activities.

In this paper, we propose an approach to model differencing
in which users can integrate knowledge of how specific model
elements changed from one model (version) to the other.
By means of this, users can influence the reported model
differences to avoid that wrong model differences are reported.

I. INTRODUCTION

In model-based software development, models are the
central development artifacts which are usually transformed
into software implementations [1]. However, due to changing
requirements, the models often have to change too. Con-
sequently, developers typically have to create and modify
multiple versions of models over a period of time.

Due to this, dedicated support for model versioning and
management is necessary to be able to cope with the evolu-
tion of models [2], [3]. One central functionality in the area
of model versioning is model differencing, the computation
of differences between two models. Model differencing is
not only crucial for being able to reason about the evolution
of models, but is also the basis for further model versioning
functionalities such as model patching [4] or model merging
[5], [6]. In this paper, the term model differencing refers
to syntactic model differencing, intending to find structural
changes in models. Other definitions to model differencing,
e.g., semantic model differencing [7], [8], are not in the
scope of this paper.

Despite the importance of model differencing, a com-
pletely automatic approach to model differencing cannot
infer the differences correctly in all cases in general [9]. This
can even hold for small changes like a renaming of a model
element. For instance, a renaming of a class in a UML class
diagram cannot only be regarded as a renaming but also as a
deletion of the class with the original name and the addition

of a class with the new name. The probability of such prob-
lems can be reduced, e.g., by integrating new concepts into
model differencing tools. The previously mentioned problem
regarding the renaming of a model element can, e.g., be
addressed by checking linguistic databases such as WordNet
[10] to take the semantics of strings into account when
performing model differencing [9]. The problem that an
automatic approach to model differencing cannot calculate
the differences correctly in all cases especially holds when
working with state-based model differencing approaches
[11], [6]. Such approaches only utilize the state of the
models to be compared to calculate the model differences.
Alternatively, operation-based approaches [11], [6] could
be used. In such approaches, the change operations that
are performed by the modeler are basically ”recorded”.
Although this can help to reduce the likelihood of wrong
model differences, it does not guarantee that the reported
model differences reflect the user expectations as well.

In principle, it is not necessarily critical if wrong model
differences are reported, as long as users of model dif-
ferencing tools are aware of this and, consequently, check
the validity of the reported model differences. However, if
the calculated model differences are used in an automated
process as a basis to perform other activities, then wrong
model differences are indeed problematic. In a cooperation
project with an industrial partner, we are working on the
generation of checklists, which inform developers about
(potential) development steps that are necessary due to
specific model changes [12]. For this purpose, at first the
differences between two models are identified. If the model
differencing activity reports wrong model differences, the
resulting checklists might be unusable as parts of the check-
lists might have been created for wrong model differences.
Although this is a special use case, the underlying problem is
generally valid and also applies to other use cases in which
the model differencing results are used to perform further
tasks.

In this paper, we propose an approach to model dif-
ferencing in which users can integrate knowledge of how
specific model elements changed from one model (version)
to the other. This knowledge is embodied by so-called
user presettings and is stored in separate files. One user
presetting instruction can, e.g., express that a specific model

[MR14b] K. Müller, B. Rumpe 
User-Driven Adaptation of Model Differencing Results 
International Workshop on Comparison and Versioning of Software Models (CVSM 2014) 
GI Softwaretechnik-Trends, Volume 2, May 2014, pages 25-29. 
www.se-rwth.de/publications



element should be regarded as renamed. For the sake of
simplicity, we limit examples in this paper to integrating
knowledge of how model elements in UML class diagrams
changed. We chose UML class diagrams as an example as
UML class diagrams still represent the most frequently used
modeling technique of the UML [13]. Despite this, the idea
is applicable to other types of models too.

The paper is structured as follows: in Section II, we
present examples for user presetting instructions before we
give an overview of our approach in Section III. Afterwards,
we outline the retrieval of relevant user presettings for
a particular model comparison in Section IV before we
briefly present related work in Section V. Finally, Section VI
summarizes the paper.

II. EXAMPLES FOR USER PRESETTING INSTRUCTIONS

The root cause for wrong model differences is that cor-
responding elements which are considered ”the same” are
not detected or that inappropriate elements are regarded
as corresponding elements [9], [14]. As a consequence of
this, user presetting instructions can be provided, which
are capable to prevent the model matching engine from
calculating wrong matchings. This aspect is explained in
more detail in Section III.

In the cooperation project in which the idea of user
presettings arose, there were mainly two situations which
occurred in the model matching phase that led to wrong
model differences:

• A model element was reported as deleted or added,
although it was moved or renamed (or both).

• A model element was reported as renamed or moved
(or both), although a model element was deleted and
another model element was added.

To cope with these situations, the following user presetting
instructions were derived:

• added ”modelElementRepresentation”: Indicates that
the model element was added.

• deleted ”modelElementRepresentation”: Expresses
that the corresponding model element was deleted.

• moved ”modelElementRepresentation” to ”newMod-
elElementLocation”: Indicates that the model element
was moved.

• renamed ”modelElementRepresentation” to ”new-
ModelElementName”: Expresses that the respective
model element was renamed.

• moved and renamed ”oldModelElementRepresen-
tation” to ”newModelElementRepresentation”: States
that the model element was moved and renamed.

Each affected model element has to be addressed through
a unique string representation. Concrete examples for user
presetting instructions are shown in Figure 1. The comments
(indicated by the hash keys) above each user presetting
concretize the meaning of each user presetting example.

1 # Addition of class Animal (in package de)
2 added "de.Animal";
3

4 # Deletion of association with name _Owner
5 # (of class Animal in package de)
6 deleted "de.Animal#_Owner";
7

8 # Moving of class Animal from
9 # package de into package de.shop

10 moved "de.Animal" to "de.shop";
11

12 # Renaming of attribute name from class
13 # TroubleCd (in package de) to newName
14 renamed "de.TroubleCd#name" to "newName";
15

16 # Renaming of class Animal (in package de)
17 # to OtherAnimal and moving of class into
18 # package de.se.
19 moved and renamed "de.Animal"
20 to "de.se.OtherAnimal";

Figure 1. User presetting instruction examples

Internally each user presetting instruction is basically
treated like a mapping from a source model element to a
target model element. Table I exemplifies this for the user
presettings from Figure 1. The first two examples from
Table I are special cases, as the added and deleted user
presetting instructions express that no corresponding element
exists in the other model. Due to this, the source element
is null in the first case and the target model element is
null in the second case. In all other cases each source
model element can be mapped to a target model element.

Source element Target element
1) null de.Animal
2) de.Animal#_Owner null
3) de.Animal de.shop.Animal
4) de.TroubleCd#name de.TroubleCd#newName
5) de.Animal de.shop.OtherAnimal

Table I
RESULTS OF THE MODEL DIFFERENCING COMPONENT ASSESSMENT

The decision to specify user presetting instructions as edit
operations was motivated by discussions with developers in
the aforementioned cooperation project. These discussions
showed that most developers favored this notation over other
notations such as stating user presetting instructions directly
as mappings between a source and a target model element
as indicated by Table I.

III. OVERVIEW

In order to perform model differencing including the
possibility to process user presettings, we slightly extended
the state-of-the-art model differencing tool EMF Compare
[15]. Figure 2 gives an overview of the general workflow.

Like lots of model differencing tools EMF Compare
performs model differencing in two phases: a matching and



Matching 

engine

Differencing 

engine

Model version k Model version n

A

C

A

D

E F

Difference model

Match model

User

can verify

SVN Repository/

Hard disk

can specify 

User presettings

User 

presetting 

Finder), nk VUP(V

), nk VUP(V

Figure 2. Overview of the integration of user presettings

a differencing phase [16], [3]. In the matching phase a match
engine is responsible for finding the elements in both models
that correspond to each other. The result of the matching
phase is a match model, that reveals which model element
in model version k is mapped to which model element in
model version n. Moreover, the match model can contain
unmatched elements, i.e., model elements of a model that
could not be mapped to a model element of the other model.

The root cause for wrong model differences is that cor-
responding elements which are considered ”the same” are
not detected or that inappropriate elements are regarded as
corresponding elements [9], [14], as described in Section II.
We address this problem by extending the matching phase
by the processing of user presettings. This is outlined in the
following.

Before the model matching engine is actually invoked,
the user presetting file that is relevant for the particular
model comparison is obtained. Section IV outlines this
step. After that, it is at first validated whether the user
presetting instructions only refer to model elements that
really exist in the models. If a model element is specified
that does not exist, the user is informed about that and
the model matching is canceled. In addition to that, it
is validated that the user presetting instructions do not
contradict each other. A contradiction occurs if a model
element is reported as added and deleted at the same time or
if two different user presetting instructions concern the same
source or target model element. For instance, the instruction
’renamed ”de.Y” to ”X”’ contradicts the instruction ’moved
”de.core.X” to ”de”’ as both instructions would map
different source elements to the same target model element
de.X. The user is also notified about contradictory user

presetting instructions and the model matching is canceled
in this case too.

After these validating steps, the actual model matching
step is initiated. The model matching engine searches for
matching model elements in the usual way, except it finds
a model element for which a user presetting instruction
exists. In this case, the model matching engine determines
the model element to which the currently considered model
element should be matched to according to the user preset-
ting instruction. The resulting match element is then added to
the match model, if the according user presetting instruction
does not represent the addition or deletion of a model
element. Otherwise an unmatched element is added to the
match model as no matching element exists in this case.

The model differencing component finally builds the
difference model based on the match model as usual. As the
user presettings have been taken into account in the model
matching step, the resulting difference model will not violate
the user presetting instructions.

One aspect that has to be emphasized is that the only
purpose of user presetting instructions is to influence the
model matching for specific model elements. Consequently,
user presetting instructions only have to be provided if the
model matching engine would create a wrong match model
otherwise. For all model elements that are not concerned
by user presetting instructions, the model matching engine
creates the match model as usual.

IV. USER PRESETTING RETRIEVAL

Before the actual model matching can be performed, the
model matching engine has to be aware of the user presetting
file that has to be taken into account in the model matching



phase. This user presetting file can either be passed directly
to the model differencing tool or it is automatically checked
if a proper user presetting file exists in the version control
system. The benefit of storing user presetting files in a
version control system1 is that user presetting files can be
obtained automatically each time the corresponding model
versions are compared - no matter which developer invokes
the model differencing tool. Lets assume a user presetting
file has been created and committed when comparing a
model with version i and with version k. The next time
a developer performs the model differencing for the model
versions i and k, the corresponding user presetting file can
be used again without passing it explicitly to the model
differencing tool. Thus the developer does not need to worry
about creating or obtaining a user presetting on his own.

One prerequisite for such a behavior is that it is known
which model versions a user presetting concerns. For this
purpose, we established a naming convention for user pre-
setting files which allows for inferring which model versions
are concerned. The concrete naming scheme that is used is
as follows: ”up <sourceRevision> <targetRevision>”. For
instance, the user presetting file named ”up 240 271” would
concern a model with the revision 240 and the model with
the revision 271. In addition to this naming convention, a
further convention was applied to be able to derive to which
concrete model file a user presetting refers to: if the model
file is stored in the version control system under the path
https://<parent folder>/<model>, then the user presettings
for this model are stored in the version control system
in the folder https://<parent folder>/up <model>. These
both conventions combined allow for identifying relevant
user presetting files.

V. RELATED WORK

The idea for user presetting instructions presented in
this work was motivated by delta modeling approaches
[17], [18], [19]. Delta modeling is a language-independent
approach to model system variability. A set of deltas spec-
ifies modifications to a core system and each delta usually
expresses that certain elements are added, removed, modified
or replaced. Figure 3 shows how a delta that renames
an element would typically look like in a delta modeling
approach.

1 delta RenameElement {
2 modify class de.X {
3 Rename to Y;
4 }
5 }

Figure 3. Delta modeling example for the renaming of a model element

1Actually any storage location can be used to which every developer has
access to.

The corresponding user presetting instruction ’renamed
”de.X” to ”Y”’ is basically an abbreviated form of the delta
operation. However, delta modeling is far more powerful
than that and is typically used to create new versions of
models - and not to capture differences in model versions.
Furthermore, delta modeling cannot be used to adapt the
results of a model differencing tool.

The adaptability of model differencing tools has been
analyzed in [14] too. In [14] it is presented how model
matching can be adapted to user preferences in the model
differencing framework SiDiff. For instance, SiDiff provides
the possibility to specify a custom algorithm for calculating
the similarity of properties [20]. However, the focus in [14]
is on configurable matching algorithms in general and not
on guaranteeing that a particular model element is mapped
to a particular other model element as in this work.

To the best of our knowledge, no other work focused on
the user-driven adaptation of model differencing results by
using a delta-like specification.

VI. CONCLUSION

In this paper, we have presented an approach that allows
users to integrate knowledge of how specific model elements
changed from one model (version) to the other - embodied in
so-called user-presettings. This allows users to influence the
results of a model differencing tool and is useful if reported
model differences deviate from the expectations of a user.

This user-driven adaptation of model differencing results
is particularly helpful when model differencing is used as
an intermediary step and if the results are processed and
used automatically to perform further steps. In such cases
errors in the reported model differences can be especially
problematic.

REFERENCES

[1] R. France and B. Rumpe, “Model-Driven Development of
Complex Software: A Research Roadmap,” in Proc. Future
of Software Engineering (FUSE’07), 2007, pp. 37–54.

[2] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayer, “Challenges in software evo-
lution,” in Proc. International Workshop on Principles of
Software Evolution (IWPSE’05), 2005, pp. 13–22.

[3] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and
M. Wimmer, “An introduction to model versioning,” in Proc.
International Conference on Formal Methods for the Design
of Computer, Communication, and Software Systems: Formal
Methods for Model-driven Engineering (SFM’12), 2012, pp.
336–398.

[4] U. Kelter, T. Kehrer, and D. Koch, “Patchen von modellen,”
in Software Engineering, 2013, pp. 171–184.

[5] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu,
and M. Sabetzadeh, “A manifesto for model merging,” in
Proc. International Workshop on Global Integrated Model
Management (GaMMa’06), 2006, pp. 5–12.



[6] T. Mens, “A state-of-the-art survey on software merging,”
IEEE Transactions on Software Engineering, vol. 28, no. 5,
pp. 449–462, May 2002.

[7] S. Maoz, J. O. Ringert, and B. Rumpe, “A manifesto for se-
mantic model differencing,” in Proc. International Workshop
on Models and Evolution (ME’10), 2010, pp. 194–203.

[8] ——, “An interim summary on semantic model differencing,”
Softwaretechnik-Trends, vol. 32, no. 4, 2012.

[9] P. Pietsch, K. Müller, and B. Rumpe, “Model match-
ing challenge: Benchmarks for ecore and bpmn diagrams,”
Softwaretechnik-Trends, vol. 33, no. 2, May 2013.

[10] WordNet Lexical Database (visited 02/2014). [Online].
Available: http://wordnet.princeton.edu/

[11] T. Kehrer, U. Kelter, P. Pietsch, and M. Schmidt, “Operation-
based model differencing meets state-based model compari-
son,” Softwaretechnik-Trends, vol. 32, no. 4, 2012.

[12] K. Müller and B. Rumpe, “A Model-Based Approach to
Impact Analysis Using Model Differencing,” in Proc. Inter-
national Workshop on Software Quality and Maintainability
(SQM’14), ECEASST Journal, vol. 65, 2014.

[13] B. Rumpe, Modellierung mit UML, 2nd ed. Springer Berlin,
September 2011.

[14] T. Kehrer, U. Kelter, P. Pietsch, and M. Schmidt, “Adaptability
of model comparison tools,” in Proc. International Confer-
ence on Automated Software Engineering (ASE’12), 2012, pp.
306–309.

[15] EMF Compare homepage (visited 02/2014). [Online].
Available: http://www.eclipse.org/emf/compare/

[16] M. Stephan and J. R. Cordy, “A Survey of Methods and
Applications of Model Comparison,” School of Computing,
Queen’s University, Tech. Rep. 2011-582 Rev. 3, June 2012.

[17] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tan-
zarella, “Delta-oriented Programming of Software Product
Lines,” in Proc. International conference on Software product
lines (SPLC’10), 2010, pp. 77–91.

[18] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer, “Delta
Modeling for Software Architectures,” in Tagungsband des
Dagstuhl-Workshop: Modellbasierte Entwicklung eingebet-
teter Systeme (MBEES), 2011.

[19] A. Haber, K. Hölldobler, C. Kolassa, M. Look, B. Rumpe,
K. Müller, and I. Schaefer, “Engineering delta modeling
languages,” in Proc. International Software Product Line
Conference (SPLC’13), 2013, pp. 22–31.

[20] D. Kolovos, D. Di Ruscio, A. Pierantonio, and R. Paige, “Dif-
ferent models for model matching: An analysis of approaches
to support model differencing,” in Proc. ICSE Workshop on
Comparison and Versioning of Software Models (CVSM’09),
2009, pp. 1–6.




