
User-Centric Model-Aware Recommendations for
Industrial Domain-Specific Modelling Languages

Rohit Gupta
Siemens AG

Otto-Hahn-Ring 6,

81739 Munich, Germany

rg.gupta@siemens.com

Nico Jansen
RWTH Aachen University

Ahornstraße 55,

D-52074 Aachen, Germany

jansen@se-rwth.de

Nikolaus Regnat
Siemens AG

Otto-Hahn-Ring 6,

81739 Munich, Germany

nikolaus.regnat@siemens.com

Bernhard Rumpe
RWTH Aachen University

Ahornstraße 55,

D-52074 Aachen, Germany

rumpe@se-rwth.de

Abstract—Domain-specific modelling languages (DSMLs) fa-
cilitate practitioners in solving complex modelling scenarios
related to their particular domains. As such heterogeneous
domains grow in complexity, industrial DSML practitioners often
face challenges in getting assistance with the help of effective
methods, guidance, and support for their current modelling
situation. Often, only a static source of modelling information is
provided to these practitioners which leads to endless search for
information relevant to their modelling. An integrated approach
that combines the modelling language, method, and the modelling
tool in a single modelling environment is still missing. To solve
this challenge, we integrate various aspects of methods, including
providing general training material for the models, commonly
asked questions in the respective domains, active recommenda-
tions for the models in consideration, and prescriptive process
models that detail the current modelling situation for these DSML
practitioners. In this paper, we detail a methodology that provides
methods, techniques, and recommendations to practitioners with
the help of configurable rules that are checked against the
current models and a predefined dataset of information related
to the specific domain and the DSML. Ultimately, methods and
recommendations that are directly integrated within the DSML
and the modelling tool, by analysing model information, is more
beneficial in actively assisting practitioners in their modelling
and fosters the use of such industrial DSMLs.

Index Terms—Domain-Specific Languages, Model-Based Sys-
tems Engineering, Industrial Domain-Specific Modelling Lan-
guages, Industrial Language Engineering, Methods

I. INTRODUCTION

As systems engineering domains become more heteroge-

neous and interdisciplinary, there is a substantial shift in the

way modelling is introduced early on in industrial projects.

The overall engineering process in modelling is to move

from documents to models to effectively comprehend com-

plex systems. Consequently, model-based development and

model-based systems engineering (MBSE) techniques have

been constantly applied and maintained in both academia and

industry [1]. To this end, General-Purpose Languages (GPLs)

are inherently not particularly suited to solve the challenges

of domain experts in system modelling [2]. Domain-Specific

Languages (DSLs), on the other hand, reduce the gaps in

a particular domain by allowing support for more domain-

specific abstractions [3]. As the technological spaces for DSLs

are heterogeneous in nature, meaning they can be either

textual, graphical, or projectional [4], [5], [6], various domain-

specific modelling languages (DSMLs) have been engineered.

However, the complexity rise in DSMLs leads to users, who

may or may not be modelling experts, struggling to use the

DSMLs effectively and with little guidance and support for

effective methods to achieve their modelling goals.

Modelling is beneficial in making key decisions at every

stage of the software or systems engineering lifecycle. A

DSML should be defined such that it covers all aspects needed

to represent the constructs of the domain in consideration.

Thus, the language engineering process should not only in-

volve the definition of a complete modelling language but

also be supported with reliable methods that assist users in

effectively reaching their modelling goals. In an industrial

context, this can be achieved by combining the modelling

language, the method, and an appropriate tooling mecha-

nism [7] (section III). The modelling concepts utilised should

be beneficial for both novice and advanced users, as well as for

small and medium enterprises that usually have various project

and resource constraints [8]. Therefore, with the increasing

complexity in the syntax and semantics of a language [9],

there is a need to guide and assist users actively in creating

effective models in their domains. Over the years, methods to

support and guide users have been overlooked, as language

engineers and domain experts only provide certain guides

and documents that do not necessarily cover every modelling

aspect during the various stages of designing models. This

is especially true for novice users who lack the know-how

in modelling, as there is not enough guidance when they are

introduced to a DSML or to modelling tools. Challenges of

such methods for graphical DSMLs include: (1) providing a

sufficient overview that describes a summary of the currently

designed models; (2) providing training material including

ample documentation of modelling language constructs [10];

(3) displaying frequently encountered questions by modellers

in the past that provides quick answers to model-specific ques-

tions; (4) providing specific recommendations that suggests

useful advise for a modelling language construct, such as a

model diagram or a model element [11]; and (5) identifying

different tasks, activities, or processes using process models

that are beneficial in describing a course of action to model a

particular scenario [12] for enhancing a modeller’s experience.

Thus, we tackle the research question: How to establish a mod-

330

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00064

20
23

 A
CM

/I
EE

E
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
od

el
 D

riv
en

 E
ng

in
ee

rin
g

La
ng

ua
ge

s a
nd

 S
ys

te
m

s C
om

pa
ni

on
 (M

O
DE

LS
-C

) |
 9

79
-8

-3
50

3-
24

98
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
O

DE
LS

-C
59

19
8.

20
23

.0
00

64

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

[GJRR23] R. Gupta, N. Jansen, N. Regnat, B. Rumpe:
User-Centric Model-Aware Recommendations for Industrial Domain-Specific Modelling Languages.
In: 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C),
pp. 330-341, IEEE, Oct. 2023.

elling methodology for providing integrated recommendations
and guidance to modellers considering multiple viewpoints in
heterogeneous DSMLs?

A framework integrated with the DSML that is able to

capture these methods and actively provide recommendations

to users is the primary aim of this research. To this end, we

have developed a framework integrated with a widely used

commercial modelling tool to combine aspects of methods

within industrial DSMLs, and aim to provide ample support,

guidance, methods, and recommendations for a more holistic

modelling experience for users of various domains. Given

our years of language engineering experience in industrial

DSMLs for a wide variety of users in various domains

using commercial graphical modelling tools such as Enterprise

Architect [13], Rational Rhapsody [14], and MagicDraw [15],

the main contributions of this paper are:

• We provide an architectural overview of the integration

of various methods for a modelling language within a

graphical modelling tool using the example of Magic-

Draw (section IV).

• We discuss various techniques to demonstrate active

model-aware recommendations to users with the help of

configurable business rules.

• We illustrate the applicability of our implementation

using a real industrial use case of a function model

designed in the healthcare industry to model functions

in an X-ray collimator (section V).

Finally, we discuss the benefits of our approach (section VI),

consider related work (section VII), and conclude the paper

(section VIII).

II. BACKGROUND

DSLs and DSMLs are subject to the usual challenges of

maintenance and evolution, common in software engineering,

as they are considered software themselves [16]. In general, a

software language consists of [17], [3]: (1) an abstract syntax

that contains the essential information of a model, e.g., in the

form of context-free grammars or class diagrams [18]; (2) a

concrete syntax used to describe the concrete representation

of the models, e.g., graphical formats like tabular, box-and-

line, or tree-based [4], [17], textual [5], or projectional [19];

(3) semantics, in the sense of meaning [20]; and (4) context

conditions, to check the well-formedness of a language.

Industrial DSMLs require well integrated methods within

the modelling environment that users can benefit from. Method

engineering is the discipline of designing, constructing and

adapting methods, techniques, and tools for the development of

information systems [21]. Methods provide a structure needed

to achieve a specific goal [22] and are therefore beneficial to

any kind of user. Although method engineering for DSMLs

has been discussed in the literature [23], [10], the research

needs further validation in real industrial contexts. While it is

often assumed that industrial users of DSMLs are modelling

experts, the reality is that appropriate guidance and assistance

are still needed for either using the DSML or gaining more

domain expertise. Therefore, if users are provided with model

information for their current modelling situation in the form

of training materials, suggestions, proposals, or actionable

items, it would make their modelling much more efficient. By

providing a set of tasks, activities, or processes in the form of

process models [24] that are aligned to their modelling, users

can identify the accomplished processes and those parts of the

models that are incomplete and needs further consideration.

Techniques to deploy methods and recommendations to

users have been proposed in the literature to solve these

challenges [25], [26]. However, these are either overly generic

or often tied to their specific technological space. It is nearly

impossible for language engineers to consider every single

aspect of the language, including standards or guidelines,

which are always specific to a domain. In contrast to a

static or passive source of information, such as documents or

webpages, where users must search for relevant information

proactively, methods integrated within the DSML that analyse

model information can be more beneficial in actively assisting

modellers directly during modelling.

The benefits of integrating a method within the DSML and

the modelling tool means the entire modelling experience is

centred in a single modelling environment, which means users

can model more effectively. Thus, there is a need to start the

discussion towards defining such model-aware recommenda-

tions for industrial DSMLs that is ultimately independent of

a specific implementation or a graphical modelling tool and

benefits all kinds of users, novice or advanced.

III. MODELLING TOOL: MAGICDRAW

In large organisations such as Siemens AG, the meth-

ods, tools, and concepts for the development of graphical

DSMLs are often tied to specific research departments. This

introduces challenges in combining the modelling language,

methodologies for the language, and an appropriate graphical

modelling tool. Over the years, we have worked with commer-

cial graphical modelling tools such as MagicDraw, Enterprise

Architect, and Rational Rhapsody to develop and maintain

graphical DSMLs across many domains. These DSMLs are

used to model devices such as magnetic resonance imaging

(MRI), X-ray equipments, electric motors, IT processes, and

gas turbines. We have also worked with academic and industry

partners to build a DSML for modelling heterogeneous view-

points of a system in the SpesML project [27]. In this paper,

we focus on MagicDraw as the choice of modelling tool in

the development of graphical DSMLs.

MagicDraw is primarily based on the Unified Modelling

Language (UML), provides extensions for the Systems Mod-

elling Language (SysML), and customisations for DSML en-

gineering. To this end, [7] describes a systematic engineering

approach to develop graphical industrial DSMLs using the

concept of modularised reusable DSL building blocks. These

building blocks consist of reusable language components,

integrated methods that describe how to use a DSML, and user

experience design (UXD) considerations that help language

engineers develop widely accepted industrial DSMLs. The

reusable language components, completely or in part, define

331

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

the language [28]. The methods describe methodologies for

the DSML that ultimately intends to help users in their mod-

elling with training material, methodical steps, documentation,

recommendations, and guidance to DSML users, which is

the focus of this paper. The UXD part defines standards and

usability heuristics for language engineers [29] for enhancing

the user experience in designing models. These heterogeneous

building blocks compose together to create the DSML. While

the methods and UXD parts are conceptually independent of

the language definition, we consider them as important as the

language itself for improving a DSML’s usability.

MagicDraw stores the language definition and its customi-

sation in a DSML plugin artefact that is deployed in a

modelling environment. This plugin consists of a MagicDraw

project containing the language definition as a language pro-

file, predefined templates for easily creating novel models,

perspectives that limit or add functionalities of the modelling

tool, and additional Java extensions to support customisations

that enhance the default capabilities of the DSML. Some of

the possible customisations are modifying the appearance of

a model element, which model elements can be created on

a specific model diagram, and so on. In our methodology,

we utilise the customisation capabilities of MagicDraw to

enhance DSMLs by dynamically providing recommendations

and methods for users tailored to models at different stages

during their modelling.

IV. METHODOLOGY AND REALISATION

This section gives a high-level overview of the architecture,

configuration, and implementation of our plugin.

A. Architecture Overview

Figure 1 shows the classical three-tiered architecture [30]

we use to show the applicability of providing user-centric

model-aware recommendations for users. The presentation tier

is the graphical user interface (UI) where users interact directly

with the application and displays information relevant for the

users. The UI is developed using Java Swing that gathers and

displays information from the tiers underneath. The logic tier,

written in Java, collects and processes information from the

UI, makes the relevant requests to the data tier using business

logic, i.e., a specific set of business rules, and returns specific

recommendations to the presentation tier. These business rules

are a set of conditions for defining specific actions in a

business context. Finally, the data or the database tier is where

model information including training material, documentation,

and recommendations related to the models is stored. The

application communicates between tiers using application pro-

gramming interface (API) calls. The application data is stored

in MongoDB, a NoSQL database [31], using JSON documents

as it does not require a schema and is distributed, providing

scalability, availability, and reliability of data.

B. MagicDraw Plugin

We use the MagicDraw Open Java API to build the

customisation capabilities that provide model information at

different modelling stages to their users. To our knowledge,

Users

Presentation Tier
(User Interface)

Logic Tier
(Java Code)

Data Tier
(MongoDB)

Fig. 1. Three-tier architecture for generating model-aware recommendations.

while such graphical modelling tools, per default, provide

an extensive set of validation rules [32], there is still a

lack of an integrated DSML-centric recommendations view

in MagicDraw as proposed in this paper. The reason lies in

the nature of DSMLs being highly tailored for a specific

domain and, thus, a particular modelling scenario cannot

be predetermined at a general-purpose level. We create a

MagicDraw plugin using Java that is eventually bundled as

the DSML in the form of an archived file and provided to

users. The MagicDraw Open Java API capabilities allows

us to develop a UI for the plugin that adds to the already

existing MagicDraw functionalities. MagicDraw also provides

plugin development support in Eclipse, so we combine the

UI development using WindowBuilder [33], an easy-to-use

bi-directional Java UI designer, with the plugin development

in the same integrated development environment (IDE). The

plugin requests and retrieves relevant recommendation data

from a database using API calls. Finally, we check the model

data against the configurable business rules in the logic tier.

C. Database Configuration

As models grow complex in nature, so does the respective

data and the relevant recommendations related to such mod-

els. We organise the data in the MongoDB database using

document stores, in the form of JSON documents. This is

important to our implementation, as we can serialise and

deserialise these JSON documents into Java objects during

application runtime and work effectively in the logic tier.

Language engineers can therefore separate out the concerns of

the business logic from the rest of the application. Henceforth,

we refer to the pre-configured MongoDB as the database. In

principle, the database can be configured to run locally on the

same environment where the DSML is configured or remotely,

i.e., the database is hosted on an external server. We configure

MagicDraw’s environment variables to provide the database

server and port details for the plugin to connect.

Structure. The database consists of collections that store

different kinds of information. For each collection, a tags field

exists, containing a list of keywords assigned to models for

which recommendations are provided. This ensures consis-

tency between a DSML and the database, as only the tags

332

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

in the database need to be updated. For example, a tags such

as “Collimator-V1” and “Collimator-V2” points to the same

DSML element “Collimator” in different DSML versions.

Each collection, listed in Table I, consists of fields that

contain values specific to that field. For example, internally,

we have DSML-specific information stored in various training

documents in the form of Microsoft Word documents. We

extract the necessary information from such documents, create

the collection textFromDocs in the database, and populate the

fields docName and docDescription. Another example is the

storage of data related to training videos in the hyperlinks
collection. These collections are managed by language engi-

neers and the data can also be updated by domain experts

without making any changes to the DSML itself. The data

stored in these collections provide DSML-specific training

materials, including training videos, general documentation,

process models and their processes relevant to the models in

consideration, frequently asked questions, and model-aware

recommendations to assist users in effective modelling. The

dataset consists of information collected over the years on

various domains and specific topics within those domains, thus

also reusing existing material and employing it in a model-

aware fashion. Individual datasets can be created for each

DSML project by understanding the domain-specific problems

that modellers face frequently.

D. User-Centric Modelling Recommendations

To recommend modelling hints and suggestions to users, the

logic tier must consider the current situation of a model and

query the database against the configured business rules. Such

model awareness is used to characterise the current context of

the models or model elements and provide assumptions about

the current situation of modelling constructs. To provide user-

centric model-aware recommendations, the MagicDraw plugin

UI is separated into three distinct parts. The UI observes,

analyses, and provides recommendations related to DSML

diagrams, matrices, tables, and model elements that belong

to such diagrams. The first part displays the general overview

of these diagrams in the form of static data that is stored in

the database. The second part provides model-specific recom-

mendations, either specific to the diagram or the elements that

are configured on the diagram. The third part of the UI shows

prescriptive process models relevant to the current models.

Figure 2 shows an example of the UI with the Overview,

Recommendations, and Process Models tabs shown to the user.

1) Overview: As part of the UI, the first tab that the user

sees when they open a model diagram is the Overview tab. As

the name suggests, this tab provides the necessary overview

related to the language applied to the made diagram, i.e., the

currently open diagram. Our implementation covers standard

UML diagrams, such as class diagrams, sequence diagrams,

and state machine diagrams, as well as customised diagrams

specific to the DSML, such as a feature model diagram in a

DSML that supports feature models. The logic tier processes

the type of the diagram and sends a request to the concerned

database collection to perform a text search on the tags

Fig. 2. An example of the UI with the Overview, Recommendations, and
Process Models tabs. Here, a general overview, such as training information
and links is shown as part of the Overview tab.

field of the collection. An example of such a search is to

return documents from a database collection, where the type

of a diagram is “Feature Model Diagram” and the tags in

the collection contain “Feature Model” and “Feature Model

Diagram” keywords. The JSON documents returned from the

database based on the search are processed by the logic tier,

translated into a hypertext markup language (HTML) format,

and sent to the UI for display. The following sections of the

Overview tab are populated:

General Overview. The first section displays static data

pertaining to the currently open diagram. It returns a descrip-

tion of the diagram stored in the textFromDocs collection in

the form of training material, handbooks, or tutorials. As the

content is configured to be in HTML format, the use of styling

is allowed to make the content presentable, such as with the

use of icons, colours, item lists, size, and so on.

Links. The second section displays hyperlinks that link to

internal company webpages or external websites that detail

more information about the currently open diagram. It returns

a list of hyperlinks that are stored in the hyperlinks database

collection and is configured with Java MouseListeners [34]

that, on click, redirect to the respective webpages.

Training Videos. The third section displays links to training

videos for the currently open diagram. The logic tier pulls

information from the hyperlinks database collection that it

identifies as training videos. Complex DSMLs require training

videos both for novice and advanced users. Often, these

training videos are created towards the end or even after the

deployment of the DSMLs to users. Frequent updates to such

training videos ensures that users can see the most up-to-date

content in such videos.

Frequently Asked Questions. The final section displays a

list of frequently asked questions and their respective solu-

tions for the currently open diagram. Language engineers and

333

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MONGODB COLLECTIONS AND THEIR DESCRIPTION FOR STORING TRAINING MATERIALS, BUSINESS RULES, RECOMMENDATIONS, AND SO ON.

Collection Fields Description

elementsInDiagram
diagramName: String
diagramElements: Array

Stores a list of DSML diagram elements that can be created as part of a DSML diagram.

faqs
question: String
solution: String

Stores frequently asked questions and their possible solutions for a DSML model or model element.

hyperlinks
title: String
link: String

Stores internal and external webpage links to training material, and links to videos for a
DSML model or model element.

processModels
processName: String
data: Base64 String

Stores prescriptive process models and processes as images encoded in base64 format.

recommendations
elementName: String
recommendation: String

Stores recommendations for a DSML model or model element.

rules
rule: String
recommendation: String

Stores pre-configured business rules and their recommendations for DSML models or model elements.

textFromDocs
docName: String
docDescription: String

Stores documentation related to a DSML model or model element.

modelling experts are often asked about specific modelling

techniques, such as how to build a specific model or the

constructs of a DSML. Over the years, we have collected

questions that are frequently asked to language engineers,

domain experts, or to modellers in various domains. These

questions, and their possible solutions, are stored in the faqs
database collection. Solutions to these problems can also be

modified directly in the database, therefore eliminating the

need to update documentation within the DSML itself.

2) Recommendations: The second tab of the UI that the

user sees when they open a model diagram is the Rec-
ommendations tab. This tab provides recommendations for

the currently open diagram based on certain pre-configured

business rules. These recommendations are dynamic in nature,

meaning the recommendations shown to the user vary based

on the current state of the models in the model diagram.

These recommendations are stored in the database in the

recommendations and rules collections and are presented to

the users on the UI against the pre-configured rules. The rec-

ommendations are provided for the currently open diagram, the

visible model elements on the diagram, or on a combination

of model elements that are part of the diagram. The logic

tier processes the type of the diagram and performs a text

search on the tags field of the respective collections. The JSON

documents returned from the database are then processed by

the logic tier, translated into an HTML format, and finally, the

recommendations are displayed to the users.

Rules. The recommendations that are provided to the users

are based on certain pre-configured business rules. We build a

simple rules engine that is part of the DSML plugin [35]. We

create such a rules engine in the MagicDraw Java plugin and

store them along with their recommendations in the database

collection. Each rule is supported with a rationale that provides

reasoning as to why the rule is required and what its benefits

are. The rules are checked against the current state of the

diagram, so the plugin is aware of the currently designed

modelling constructs. The following rules are configured by

a language engineer for a DSML model diagram:

• Rule 1 (R1): If model elements that are displayed as

part of the legend items in the diagram are not present

on the diagram, provide a specific recommendation for

the missing model element.

Rationale: Standard UML diagrams or DSML-specific

diagrams in MagicDraw can be configured with legend

items that are model elements used to define different

styles and visually group symbols in a diagram, therefore

identifying model elements using visualisations. Such

legend items are a good indicator of the visible and

missing elements in a diagram, therefore helping in

identifying missing parts of a model diagram.

• Rule 2 (R2): If model elements configurable from the

diagram elements toolbar are not present on the diagram,

provide a recommendation on the missing elements.

Rationale: MagicDraw’s configurable model element

toolbar can help users easily design model elements

on a diagram. Users often forget to utilise the DSML

functionalities that are provided as part of the toolbar

but only model specific elements. This rule encourages

users to double-check if their models utilise the DSML

functionalities provided by the model element toolbar.

• Rule 3 (R3): Provide specific recommendations for

model elements visible on the currently open diagram.

Rationale: Over the years we have collected feedback

from users on what specific values a model element

should consist of, or properties that need to be configured

for each model element. We build a dataset of recommen-

dations for such model elements and provide these rec-

ommendations to users. These recommendations change

automatically as the users progress in their modelling.

• Rule 4 (R4): Provide recommendations based on logical

and relational operators on a single or a combination of

model elements for the currently open diagram.

Rationale: We provide recommendations for a single

model element on a diagram based on relational oper-

ators. Conditions such as <, >, <=, >=, ==, and ! =
are checked for such model elements. An example of a

simple relational condition could be if a model element

of type energy is electrical, then provide a specific rec-

334

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

ommendation. We also configure logical operators for a

combination of model elements on a diagram. Conditions

such as AND, OR, and NOT are checked against a

combination of model elements. An example could be

if a data sink exists in the diagram but not a data source,

providing a specific recommendation to the users.

Model-Aware Recommendations. The recommendations

that are displayed on this tab of the UI are based on the rules

that are checked against the models and the respective database

collections described earlier. These active recommendations

are based on the analysis of the current models and then

populated in the UI in two sections. In the first section,

recommendations that are specific to the DSML diagram are

displayed. The logic tier analyses the currently open diagram,

checks the rules configured for this diagram, and retrieves a list

of recommendations from the database. By analysing the cur-

rent state of the diagram, the plugin detects any changes made

to the currently configured modelling constructs and adjusts

the recommendations displayed to the users accordingly. This

means the plugin is aware of the model constructs and provides

dynamic recommendations based on the current modelling

stage. A key benefit of providing recommendations to only

the visible parts of the diagram is that the recommendations

targets the user-specific view that a user creates to express only

a certain aspect of a whole system. To view recommendations

for other parts of the system, a user should navigate to the

respective models. Certain constructs that may never be used

will also be recommended, as users have often requested for

such possibilities during their modelling. Following is a list

of recommendations (non-exhaustive) that are specific to the

currently open DSML diagram:

• Displaying missing parts in the model diagram.

• Suggesting the use of a certain model element (or a

combination of model elements) in the model diagram.

• Specifying which constructs of the model diagram should

be modified.

• Suggesting layout changes for certain diagram elements.

The second section of the Recommendations tab populates

recommendations that are specific to the model elements

visible on the DSML diagram. The plugin analyses the model

elements that have been configured as part of the model

diagram and provides dynamic recommendations based on the

currently selected model element, its properties, and values.

The following is a non-exhaustive list of recommendations that

can be provided to users for the model elements configured in

a DSML diagram:

• Configure specific properties of a model element.

• Checking the type of a model element and suggesting

additional information related to the type.

• Setting specific values for a certain model element based

on previous feedback from users or domain-experts.

• Redirecting users to the Overview tab of the UI to access

training material specific to the model element.

3) Process Models: The third and final tab of the UI

that the user sees when they open a DSML diagram is the

Process Models tab. This tab displays prescriptive process

models in the form of activity diagrams that are relevant to

the currently open diagram. These process models describe

the processes, tasks, and activities that need to be performed

for achieving the desired modelling for this diagram and

its constructs. In addition, these process models can also

indicate the current state for modelling the constructs of the

diagram. The processModels database collection stores various

processes and process models, as images, in a base64 encoded

format [36] that are relevant to a particular diagram with the

relevant tags. The logic tier performs a search on the collection

based on the tags field and retrieves a list of processes and

process models that are stored by language engineers. Data

in this collection is stored in the order in which they were

inserted into the database and is therefore retrieved in the same

order. The logic tier translates this information into a series

of graphics using Java 2D™ API to decode the base64 data,

paints the graphics into specific colours by checking against

any pre-configured rules, and prints the sequence of created

2D graphics as process models on the tab. An advantage of

translating the process model information in the logic tier is

to analyse the diagram and adjust the graphics if there are

changes in the diagram. Such changes can be accounted for

displaying specific styles, such as colouring and icons. These

styling options help users identify which processes, tasks, or

activities of the process models are complete or incomplete,

and elevates the overall user experience of modellers [29].

V. INDUSTRIAL CASE STUDY

Motivation. We demonstrate the applicability of our re-

search in a real industrial context. Our colleagues at Siemens

Healthineers have adopted MBSE techniques to foster their

modelling situation by using a variety of concepts, methods,

and tools that span from requirements engineering to product

structure modelling involving bill of materials. To this extent,

they have collaborated with Siemens AG and a number of

academic and industrial partners on a public funded project,

SpesML, that ensures a seamless exchange of models with

the respective module suppliers and allows for the integration

of entire systems. As part of this project, we have worked

closely with all partners to deliver a DSML in MagicDraw that

integrates the requirements, functional, logical, and technical

views defined in the Software Platform Embedded Systems

(SPES) [37] methodology as well as modelling specific con-

structs in the healthcare industry that support product line

engineering. Ultimately, Siemens Healthineers want to achieve

effective modular reuse of model elements with active mod-

elling support and guidance. As an industrial use case, let us

take a look at a Siemens Healthineers model example used in

the context of describing decomposed functions in a system.

Precondition and Scope. We consider the following med-

ical case. A patient is admitted to a hospital with a suspected

forearm fracture. Once the patient is admitted, the on-duty

treating clinician decides that they need to perform a 2D X-

ray of the patient’s forearm for further diagnosis. The clinician

refers the patient to the hospital’s radiology department for this

335

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example of an X-ray collimator function context diagram designed using the Siemens Healthineers DSML containing (1) the containment tree, (2)
the diagram toolbar with configurable model elements, and (3) the main function context model.

reason. Once the patient arrives in the hospital’s radiology

department, the patient is received by the medical technical

assistant (MTA). The MTA has already prepared the X-ray

system and has already entered the necessary patient data into

the X-ray system. The MTA then positions the patient correctly

on the X-ray system and leaves the room to start the process of

taking an X-ray. The final result is that a 2D digital radiograph

of the patient’s forearm was generated and stored digitally.

Model. As part of the X-ray system, there exists many

physical (technical view) elements and interfaces between

these physical elements. A very specific part of the X-

ray system is the collimator, which collimates precisely the

radiation beam emerging from the X-ray system onto the

patient’s forearm. From a modelling perspective, this part

can be decomposed into a set of functions that must be

performed for the collimator to work properly. Figure 3 shows

a function context model (functional view) for this collimator

that has been modelled using the DSML in MagicDraw. On

the left side of the figure, in the containment tree, DSML

users can utilise the individual building blocks of the DSML

to construct their models. On the right side of the figure

is the function context model, which provides an external

functional view of the entire collimator system on a functional

level, as well as its interactions with actors, environmental

effects, and other specific functions that are needed to fully

understand the functional aspects of the system. As seen

in the function context diagram, the user has been able to

decompose various parts of the collimator. The central part

of the function context model diagram describes the main

function, the collimator itself, that receives (Rx) certain inputs

and transmits (Tx) certain outputs from other smaller sub-

systems such as a collimator controller, a power supply source,

or accessories that are attached to the patient’s forearm. There

are also two actors, the MTA and the patient configured in

the diagram performing interactions with the collimator. The

input and output ports are configured with their respective

functional signals that are listed in the legend items on the

bottom left, with the colours of the ports signifying the type

of functional signal it carries. These legend items represent

various input and outputs of the functional elements such

as “SteerCollimation” which is a human-machine interface

(green), Xray a type of energy (yellow), and so on.

Methods and Recommendations. To build the collimator

function context model diagram using the DSML provided,

a user performs a series of steps. A user with an experience

in modelling X-ray systems will be able to easily model the

parts of the collimator without much hassle. However, in the

case of a novice user, or for modelling advanced functionality,

or for being guided appropriately in their modelling, they

often encounter various challenges, including endless amount

of time and resources spent going through passive information

sources. To solve this, we understand the current modelling

situation on the diagram, and display methods and recommen-

dations on the right side of the DSML.

Figure 2, described earlier, shows a general overview of

the currently open modelling diagram, the function context

model diagram. By understanding that this diagram will be

used by Siemens Healthineers to model a medical device such

as an X-ray, or more specifically a collimator, we can use an

appropriate dataset for providing an overview that caters to

the individual modellers and their modelling goals. The first

part of the overview tab identifies the type of the diagram,

and provides static documentation related to a function context

that is stored in the database. Subsequently, any additional

hyperlinks are displayed as clickable links that redirect users to

a more relevant page that further describes information about

the function context and its interactions with system interfaces.

Hyperlinks to training or general videos are also provided that

336

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. An example of providing frequently asked questions in the Overview
tab for the collimator function context diagram.

Fig. 5. The Recommendations tab showing recommendations for the diagram
and its elements for the collimator example.

maybe useful in modelling a collimator, its functions, or its

decomposed functions.

Figure 4 is also part of the Overview tab, and provides users

with a list of questions and possible solutions that may be

beneficial. Over the years, we have collected commonly asked

questions to language engineers and domain-experts on either

the use of DSMLs, on general domain-specific questions such

as “What is a Collimator?”, or in particular, how to model

a specific scenario with the DSML. Here, the information

is retrieved from a database that is populated with questions

related to the function model, a collimator, or a set of method-

ical steps that users can follow. The displayed information

is aware of the currently displayed models, for example, a

specific question and answer related to the collimator.

Figure 5 shows the second tab, the Recommendations tab, of

the UI. In this figure, dynamic recommendations are provided

for the function context diagram, based on the current state of

Fig. 6. The Process Models tab of the UI shows process models for the
collimator function context diagram.

the models and their properties. This tab is divided into two

parts, the first for providing recommendations specific to the

collimator function context diagram itself, and the second to

provide recommendations that are specific to model elements

of the collimator function context. The figure shows the first

recommendation as listing model elements, the functional

signal material, the sink, and the environmental effect, that

are currently missing from the function context diagram. This

recommendation follows rule R1, where the current model

items in the function context diagram are checked against the

legend items, Functional Context Elements and the Functional

Signals. This recommendation is provided because for the

collimator example, it may be of importance to model a

sink which collects the final 2D digital radiograph. Rule R2
is also checked against, but since the external connection

element, configurable from the diagram toolbar already exists

in the actual model, there is no further recommendation on

missing elements. The second recommendation provided in

this figure analyses the function context diagram, and applies

the logical rule R4 on it. The rule condition stored in the

database is “Source NOT Sink”, meaning the rule checks

if a source exists, but not a sink. In our experience, we have

very frequently found that models generally are configured

with both a source and a sink. The second part of the

recommendations are checked against rule R3 and are specific

to the visible model elements on the function context diagram.

The third recommendation indicates that the power supply

source is electrical, but is without a measurement value. Based

on historical data, a recommended value can be recommended

for the electrical power supply. Once the measurement value is

set in the model, the recommendation would be automatically

removed. The fourth and the fifth recommendations follow rule

R4 and are based on relational operators. As an example, for

the fourth recommendation, the rule condition stored in the

database is “Function == Collimator”.

Figure 6 shows the third and final tab, Process Models
tab, of the UI. In this figure, we display two process models

337

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

generated from a list of processes retrieved from the database.

The first process model details a sequence of steps needed to

create functions in a function context diagram. While some

individual processes can overlap with the information in other

tabs, the processes listed here are checked against the current

function context model and rules for this model, and sub-

sequently assigned appropriate styling options. For example,

the green processes indicate that the process is complete, the

fading blue processes indicate partially completed processes,

and the white processes indicate they are currently incomplete.

The final process model is generated with legend items,

that describes and identifies the processes as “Completed”,

“Partially Completed”, and “Incomplete”. The second process

model describes the current state of the function context

diagram. In particular, it identifies if all the model elements in

the function context diagram have been created or not. This

can be checked against the rules for the diagram, such as

if two actors are created (rule R4), the process “Create the

actors.” is marked as complete. In this example, a sink and

a source is configurable for the function context, but only a

source exists, so the respective process is partially complete,

meaning modellers do not necessarily follow the order of the

processes. As an environment effect is still missing from the

collimator example, it is marked as incomplete.

Evaluation. A focus group consisting of experienced practi-

tioners and researchers, with 8-15 years of experience in soft-

ware and systems modelling, to understand current challenges

in modelling, discussing possible solutions, and describing the

functionalities was set up. They reasoned that an integrated

DSML infrastructure should not only provide methodologi-

cal guidance, but also be model-aware, context-specific, and

evolve dynamically as the DSMLs grow in complexity. Data

from past Siemens Healthineers projects was reused, that

provided the basis of this case study. Further, the participants

often fine-tuned the business rules and recommendations for

practitioners. Previously such practitioners navigated through

pages of static training data, handbooks, and overly generic

technical documents, as no alternative solutions existed pro-

viding a more complete guidance infrastructure directly on

the modelling tool along with the DSML. The focus group

discussed the research and development of such an infras-

tructure from a conceptual and an implementation viewpoint.

In the end, the participants concluded that developing such

a guidance infrastructure should be active and synchronised

with the ongoing modelling work, as current solutions provide

a rather plain technical view without any continuous support.

VI. DISCUSSION

The methodology presented in this paper enables language

engineers to directly integrate aspects of providing effective

model-specific methods, techniques, and recommendations to

users. Understanding the current state of their models, the

methodology described can suggest specific processes, ac-

tivities, or tasks that are needed to be performed to further

assist modellers. Even when the meaning of individual model

elements is explicit, establishing or communicating a par-

ticular modelling method is often challenging. By providing

recommendations based on a set of predefined configurable

rules, language engineers can introduce a more holistic way

of integrating a method within the DSML itself.

Generally, context conditions, defined as part of the DSML,

can be used to check the well-formedness of a model but

essentially do not tell the modeller anything about the seman-

tics (in terms of the meaning) and behaviour of the models.

While such validation rules in the DSMLs generate warnings

or errors, they provide a rather strict constraint to the syntax.

On the other hand, methods and recommendations focus on

supporting users in their modelling activity, giving them the

confidence to model effectively in their domains without

endlessly searching through pages of tedious documentation.

To demonstrate the applicability of the general methodology

described in the paper, we developed a three-tiered architecture

consisting of a presentation tier (UI), a logic tier (business

logic and rules), and a data tier (NoSQL database). We

used MagicDraw, a commercial modelling tool with vast

customisation capabilities, such as for providing additional UI

capabilities to improve a model’s aesthetics. We utilise these

customisation capabilities of MagicDraw to assist users with

a UI, built using MagicDraw’s Open Java API, by provid-

ing information about the general overview of the currently

open diagram. This comprises hyperlinks that redirect them

to sources of information, including webpages and videos,

commonly asked questions for the models in consideration,

and recommendations for the DSML diagram and its elements.

Additionally, we provide a set of process models that detail

activities already performed or currently missing from the

diagram. For each domain, our dataset consists of configurable

rules that provide active domain-specific information based on

the current context of the models and the specific modelling

situation the users are currently in. Due to their external

disposal in a database, we constantly update the rules and their

recommendations to include more complex modelling scenar-

ios, meaning, these rules can be reused across other domains

as well. While updating a DSML can be a time-consuming

process, editing data externally is relatively straightforward

and intuitive even for non-experts, but should be left to the

domain experts. This way, conflicts between a modeller’s and

a domain expert’s description of a model can be avoided.

As part of our ongoing work, we aim to also provide actions

for the recommendations that the users can directly perform,

e.g., to set a specific measurement value to a model, such as

assigning a recommended wattage to a power supply unit, or

complex rules that checks links between models in different

diagrams and allows navigation between recommendations.

Further, we are also developing techniques to make the process

models navigable for users to look at the individual processes

in detail. Additionally, we are also looking at ways to provide

modelling predictions with machine learning algorithms.

The validity of this study is the extent to which the

methodology described in this paper, both in concept and in

implementation, is free from systematic errors or bias. While

the methodology is described generally, our study has been

338

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

researched using a commercial modelling tool, MagicDraw,

and thus, underlies its characteristic technical details and

introduces a vendor-locked scenario. MagicDraw, Rational

Rhapsody, or Enterprise Architect do not represent the only

tools to build DSMLs and ongoing work to identify and

evaluate other approaches is underway. However, as the UI

and logic tier is developed using Open Java API, and the

data tier is configured outside of MagicDraw, the actual

implementation can be developed independent of a modelling

tool, thus mitigating this threat. Yet, for implementing this

methodology in a specific modelling tool, it should expose an

API that can retrieve information about the models, such as

various properties of a diagram. Another threat arises from

the nature of guidelines potentially being too restrictive, such

that modellers might be tempted to merely ”fill out” a model

without thinking of novel solutions. However, as our proposed

methodology only provides lightweight suggestions without

imposing restrictions, we deem that threat low. In fact, as the

recommendations not only guide users based on historical data

but also provide a general overview, they foster novel thinking.

We validate our study using a real-world industrial context

example of decomposing various functions of a collimator in

an X-ray system modelled by experts at Siemens Healthi-

neers. Implementing this methodology resulted in increased

interaction between language engineers and domain experts to

capture various aspects of the domain in detail. We observed

that for the X-ray collimator function context example, around

12 rules and their recommendations were configured. As other

model diagrams, e.g., feature models of the DSML, contain

a similar number of rules and since the recommendations

are calculated only for the displayed diagrams, we have not

observed scalability issues. This means that users are not

burdened with a plethora of recommendations and configuring

a simple rule engine by language engineers suffices. Defining

process models for a model diagram is rather straightforward

for language engineers as they can identify during DSML

development the different parts that can be modelled. Efforts in

integrating methods within the DSML and the modelling tool

have resulted in positive feedback from practitioners that use

our DSMLs to improve the overall modelling experience. One

key takeaway in providing an integrated methodology within

the DSML is that both novice and advanced users can better

understand the DSML constructs and can model with more

confidence. To this end, we consider this research a good

reference point in future discussions towards improving the

development of industrial DSMLs that is more aware of the

modelling situation of users.

VII. RELATED WORK

Domain-specific knowledge is required for a deeper un-

derstanding in providing users with comprehensive modelling

recommendations related to their DSMLs and its constructs.

Environments that provide methods supporting computer-aided

method engineering [38], [39], [40] has been studied for

method engineers, but they do not largely consider domain-

specific aspects or the modelling tool itself [10]. While MBSE

methods such as MagicGrid [41], allows for a comprehensive

modelling of technical systems in SysML, it is overly generic

and challenging to implement as a rather independent method

framework, thereby forcing profile-based tools to extract the

methodological part away from a DSML definition. Recently,

commercial content providers have built recommender systems

that gather and understands the users’ preferences and make

recommendations [25], [42]. This is also extended to model-

driven engineering by building user profiles and ranking

algorithms [43]. In contrast, we do not store preferences of

users, rather make modelling recommendations based on their

current state of their models along with feedback from domain-

experts and modellers in the past. While certain studies

look specifically at algorithms such as a nearest-neighbour

approach [44] or mutually reinforcing methods [45] to clas-

sify recommendations, we employ a simple rule engine in

Java [35], that checks against the current modelling constructs

and the relevant database entries, and is integrated directly

within the modelling tool. In their study [46], the authors

suggest a service oriented architecture for linking MBSE tools

to the services they offer such as the creation of a composite

service comprised of smaller services. Studies pertaining to

context-aware methods have also been discussed in the liter-

ature [47], [48]. While they discuss techniques to represent

domain-specific modelling through business rules, the context

of use, they are primarily used for modelling domain-specific

business, and do not provide any methods or recommendations

to users based on this information. Process-aware, process

models, and their verification in DSMLs have been researched

in the literature [49], [50]. In our implementation, we suggest

process models based on the current models that provide

a more holistic view of the current state of the modelling

scenario. While large domain-specific textual databases require

techniques to improve document retrieval [51], our database

configurations are specific to each DSML project, therefore a

simple document retrieval is sufficient.

VIII. CONCLUSIONS

As systems in various domains become heterogeneous and

more complex, so does the challenge of developing efficient

methods, guidance, and support for users of industrial DSMLs.

To this end, various graphical modelling tools provide capa-

bilities that support displaying prescriptive information, such

as documentation, activity diagrams, etc. However, there still

exists the challenge of integrating better support and guidance

for users that also considers the current modelling situation.

To address this challenge, we provide a methodology for

augmenting modelling languages with proactive recommen-

dations based on a user’s modelling situation directly on the

modelling tool. Although our results constitute a promising

step towards aligning methods within the DSML, there is a lot

of further work to be done on this topic, such as integrating

machine learning algorithms that predict models. Embedding

proactive recommendations in DSMLs alleviates modellers’

effectiveness and facilitates an immediate understanding and

solving of complex modelling scenarios.

339

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. France and B. Rumpe, “Model-driven Development of Complex Soft-
ware: A Research Roadmap,” Future of Software Engineering (FOSE
’07), pp. 37–54, May 2007.

[2] H. A. Proper and M. Bjekovic, “Fundamental challenges in systems
modelling,” EMISA Forum, vol. 39, no. 1, pp. 13–28, 2019.

[3] T. Clark, M. v. d. Brand, B. Combemale, and B. Rumpe, “Conceptual
Model of the Globalization for Domain-Specific Languages,” in Glob-
alizing Domain-Specific Languages, ser. LNCS 9400. Springer, 2015,
pp. 7–20.

[4] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel,
“Melange: A Meta-language for Modular and Reusable Development
of DSLs,” in 8th International Conference on Software Language
Engineering (SLE), Pittsburgh, United States, 2015.

[5] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[6] J.-P. Tolvanen, “MetaEdit+ integrated modeling and metamodeling en-
vironment for domain-specific languages,” in Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, 2006, pp. 690–691.

[7] R. Gupta, S. Kranz, N. Regnat, B. Rumpe, and A. Wortmann, “Towards
a Systematic Engineering of Industrial Domain-Specific Languages,” in
2021 IEEE/ACM 8th International Workshop on Software Engineering
Research and Industrial Practice (SE&IP). IEEE, May 2021, pp. 49–
56.

[8] N. Regnat, “Why SysML does often fail - and possible solutions,”
in Modellierung 2018, 21.-23. Februar 2018, Braunschweig, Germany,
2018, pp. 17–20.

[9] M. V. Cengarle, H. Grönniger, and B. Rumpe, “Variability within Model-
ing Language Definitions,” in Conference on Model Driven Engineering
Languages and Systems (MODELS’09), ser. LNCS 5795. Springer,
2009, pp. 670–684.

[10] B. Honke, “Situational Method Engineering for the Enactment of
Method-Centric Domain-Specific Languages,” Doctoral Thesis, Univer-
sität Augsburg, 2013.

[11] H. Agt-Rickauer, R.-D. Kutsche, and H. Sack, “Automated recommen-
dation of related model elements for domain models,” in Model-Driven
Engineering and Software Development: 6th International Conference,
MODELSWARD 2018, Funchal, Madeira, Portugal, January 22-24,
2018, Revised Selected Papers 6. Springer, 2019, pp. 134–158.

[12] U. Frank, “Outline of a method for designing domain-specific modelling
languages,” ICB-research report, Tech. Rep., 2010.

[13] (2022) Enterprise Architect. [Online]. Available: https://sparxsystems.
com/

[14] (2022) IBM Rhapsody. [Online]. Available: https://www.ibm.com/
products/systems-design-rhapsody/

[15] (2022) MagicDraw Enterprise. [Online]. Available: https://www.3ds.
com/products-services/catia/products/no-magic/magicdraw/

[16] J.-M. Favre, D. Gasevic, R. Lämmel, and E. Pek, “Empirical language
analysis in software linguistics,” in Software Language Engineering:
Third International Conference, SLE 2010, Eindhoven, The Netherlands,
October 12-13, 2010, Revised Selected Papers 3. Springer, 2011, pp.
316–326.

[17] B. Combemale, R. France, J.-M. Jézéquel, B. Rumpe, J. Steel, and
D. Vojtisek, Engineering Modeling Languages: Turning Domain Knowl-
edge into Tools. Chapman & Hall/CRC Innovations in Software
Engineering and Software Development Series, November 2016.

[18] K. Hölldobler, O. Kautz, and B. Rumpe, MontiCore Language Work-
bench and Library Handbook: Edition 2021, ser. Aachener Informatik-
Berichte, Software Engineering, Band 48. Shaker Verlag, May 2021.

[19] F. Campagne, The MPS language workbench: volume I. Fabien
Campagne, 2014, vol. 1.

[20] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of ”Semantics”?” IEEE Computer, vol. 37, no. 10, pp. 64–72, October
2004.

[21] S. Brinkkemper, “Method engineering: engineering of information sys-
tems development methods and tools,” Information and software tech-
nology, vol. 38, no. 4, pp. 275–280, 1996.

[22] R. A. de Oliveira, M. Cortes-Cornax, A. Front, and A. Demeure, “A low-
code approach to support method engineering,” in Proceedings of the
25th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, 2022, pp. 793–797.

[23] Q. Ma, M. Kaczmarek-Heß, and S. de Kinderen, “Validation and veri-
fication in domain-specific modeling method engineering: an integrated
life-cycle view,” Software and Systems Modeling, pp. 1–21, 2022.

[24] H. Scholta, “Similarity of Activities in Process Models: towards a
Metric for Domain-Specific Business Process Modeling Languages,” in
European Conference on Information Systems, 2016.

[25] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, and T. Ishida,
“Recommendations over domain specific user graphs,” in ECAI 2010.
IOS Press, 2010, pp. 607–612.

[26] P. Roques, “MBSE with the ARCADIA Method and the Capella Tool,”
in 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), 2016.

[27] R. Gupta, N. Jansen, N. Regnat, and B. Rumpe, “Implementation of
the SpesML Workbench in MagicDraw,” in Modellierung 2022 Satellite
Events. Gesellschaft für Informatik, June 2022, pp. 61–76.

[28] B. Rumpe, Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[29] R. Gupta, N. Jansen, N. Regnat, and B. Rumpe, “Design Guidelines
for Improving User Experience in Industrial Domain-Specific Modelling
Languages,” in Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion Pro-
ceedings. Association for Computing Machinery, October 2022.

[30] A. Aarsten, D. Brugali, and G. Menga, “Patterns for three-tier
client/server applications,” Proceedings of Pattern Languages of Pro-
grams (PLoP’96), vol. 4, no. 6, 1996.

[31] P. Membrey, E. Plugge, T. Hawkins, and D. Hawkins, The definitive
guide to MongoDB: the noSQL database for cloud and desktop com-
puting. Springer, 2010.

[32] S. Erdweg, T. v. d. Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “The state
of the art in language workbenches,” in International Conference on
Software Language Engineering. Springer, 2013, pp. 197–217.

[33] D. Rubel, J. Wren, and E. Clayberg, The Eclipse Graphical Editing
Framework (GEF). Addison-Wesley Professional, 2011.

[34] (2023) Java™ Platform, Standard Edition 8 API Specification.
[Online]. Available: https://docs.oracle.com/javase/8/docs/api/index.
html?javax/swing/package-summary.html

[35] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[36] S. Josefsson, “The base16, base32, and base64 data encodings,” Tech.

Rep., 2006.
[37] W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe, and S. Schröck,

Eds., Model-Based Engineering of Collaborative Embedded Systems.
Springer, January 2021.

[38] S. Brinkkemper, K. Lyytinen, and R. Welke, Method engineering:
Principles of method construction and tool support. Springer Science
& Business Media, 1996.

[39] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich, “Kestrel
Institute: REPORT ON A KNOWLEDGE-BASED SOFTWARE ASSIS-
TANT,” in Readings in Artificial Intelligence and Software Engineering.
Elsevier, 1986, pp. 377–428.

[40] A. Niknafs and R. Ramsin, “Computer-aided method engineering: an
analysis of existing environments,” in Advanced Information Systems
Engineering: 20th International Conference, CAiSE 2008 Montpellier,
France, June 16-20, 2008 Proceedings 20. Springer Berlin Heidelberg,
2008, pp. 525–540.

[41] A. Aleksandraviciene and A. Morkevicius, “MagicGrid® Book of
Knowledge-A Practical Guide to Systems Modeling using MagicGrid
from No Magic,” Inc, Allen Texas, USA, 2018.

[42] S. Nadschläger, H. Kosorus, A. Boegl, and J. Kueng, “Content-based
recommendations within a QA system using the hierarchical structure
of a domain-specific taxonomy,” in 2012 23rd International Workshop
on Database and Expert Systems Applications. IEEE, 2012, pp. 88–92.

[43] L. Almonte, E. Guerra, I. Cantador, and J. De Lara, “Recommender
systems in model-driven engineering: A systematic mapping review,”
Software and Systems Modeling, pp. 1–32, 2021.

[44] S. Sippel, “Domain-specific recommendation based on deep understand-
ing of text,” Informatik 2016, 2016.

[45] J. Wang, J. Xiang, and K. Uchino, “Domain-specific recommendation
by matching real authors to social media users,” in Advances in Web-
Based Learning–ICWL 2016: 15th International Conference, Rome,
Italy, October 26–29, 2016, Proceedings 15. Springer, 2016, pp. 246–
252.

[46] A. Aldazabal, T. Baily, F. Nanclares, A. Sadovykh, C. Hein, and T. Ritter,
“Automated model driven development processes,” in Proceedings of

340

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

the ECMDA workshop on Model Driven Tool and Process Integration.
Citeseer, 2008, pp. 361–375.

[47] J. R. Hoyos, J. Garcı́a-Molina, and J. A. Botı́a, “A domain-specific
language for context modeling in context-aware systems,” Journal of
Systems and Software, vol. 86, no. 11, pp. 2890–2905, 2013.

[48] M. Lethrech, I. Elmagrouni, M. Nassar, A. Kriouile, and A. Kenzi,
“Domain Specific Modeling approach for context-aware service oriented
systems,” in 2014 International Conference on Multimedia Computing
and Systems (ICMCS). IEEE, 2014, pp. 575–581.

[49] J. C. Kirchhof, A. Kleiss, B. Rumpe, D. Schmalzing, P. Schneider,
and A. Wortmann, “Model-driven Self-adaptive Deployment of Internet
of Things Applications with Automated Modification Proposals,” ACM
Transactions on Internet of Things, November 2022.

[50] B. Combemale, X. Crégut, P.-L. Garoche, X. Thirioux, and F. Vernadat,
“A property-driven approach to formal verification of process models,”
in Enterprise Information Systems: 9th International Conference, ICEIS
2007, Funchal, Madeira, June 12-16, 2007, Revised Selected Papers 9.
Springer, 2008, pp. 286–300.

[51] R. Stanković, C. Krstev, I. Obradović, and O. Kitanović, “Improving
document retrieval in large domain specific textual databases using lexi-
cal resources,” in Transactions on Computational Collective Intelligence
XXVI. Springer, 2017, pp. 162–185.

341

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on February 22,2024 at 19:48:22 UTC from IEEE Xplore. Restrictions apply.

