
Understanding and Improving Model-Driven
IoT Systems through Accompanying Digital Twins

Jörg Christian Kirchhof
Software Engineering

RWTH Aachen University
Aachen, Germany
https://se-rwth.de

Lukas Malcher
Software Engineering

RWTH Aachen University
Aachen, Germany
https://se-rwth.de

Bernhard Rumpe
Software Engineering

RWTH Aachen University
Aachen, Germany
https://se-rwth.de

Abstract
Developers questioning why their system behaves differ-
ently than expected often have to rely on time-consuming
and error-prone manual analysis of log files. Understand-
ing the behavior of Internet of Things (IoT) applications
is a challenging task because they are not only inherently
hard-to-trace distributed systems, but their integration with
the environment via sensors adds another layer of complex-
ity. Related work proposes to record data during the execu-
tion of the system, which can later be replayed to analyze
the system. We apply the model-driven development ap-
proach to this idea and leverage digital twins to collect the
required data. We enable developers to replay and analyze
the system’s executions by applying model-to-model trans-
formations. These transformations instrument component
and connector (C&C) architecture models with components
that reproduce the system’s environment based on the data
recorded by the system’s digital twin. We validate and evalu-
ate the feasibility of our approach using a heating, ventilation,
and air conditioning (HVAC) case study. By facilitating the
reproduction of the system’s behavior, our method lowers
the barrier to understanding the behavior of model-driven
IoT systems.

CCS Concepts: •Computer systems organization→Dis-
tributed architectures; Embedded and cyber-physical sys-
tems; • Software and its engineering→ Software testing
and debugging; Architecture description languages.

Keywords: Internet of Things, Architecture Description Lan-
guages, Model-Driven Development, Debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9112-2/21/10. . . $15.00
https://doi.org/10.1145/3486609.3487210

ACM Reference Format:
Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. 2021.
Understanding and Improving Model-Driven IoT Systems through
Accompanying Digital Twins. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’21), October 17–18, 2021, Chicago, IL,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3486609.3487210

1 Introduction
Motivation. A major challenge in developing distributed
Internet of Things (IoT) systems is that these systems are of-
ten exposed to harsh environmental conditions. This makes
the development of robust systems more difficult, since envi-
ronmental influences must be taken into account in addition
to software errors [10]. The ways in which a system can be
affected by the environment range from implausible sensor
readings [5, 21], to network failures [22, 34], to hardware
failures [22]. If users notice unexpected behavior of the sys-
tem, the developers are often asked afterwards how this
error could have occurred. The most prominent examples
are those in which the misbehavior of the system leads to
high property damage or loss of life, e.g., in cases in which
autonomous cars are involved in accidents [25]. Even when
analyzing a system purely based on the incomplete system
view of log files is possible, it requires very precise knowl-
edge of the code sections that produce the respective log
messages. Moreover, it is time-consuming and error-prone
due to the often large size of the logs [20] combined with a
low degree of automation.
Approach. To improve this situation, related work sug-

gests to record data during the runtime of the system, which
allows to reproduce the behavior of the system retrospec-
tively [12, 17, 20], e.g., in a simulation. This allows the devel-
opers not only to observe the system behavior again, but also
to examine variables that were not captured by log messages,
e.g., by using debuggers and setting breakpoints. Further-
more, this approach offers the advantage that developers
can retrospectively pose what-if questions to the system by
manipulating variables or environmental influences. Ulti-
mately, complex test cases for future versions of a system
that were not previously considered in development can also
be derived from such records.

197

[KMR21] J. C. Kirchhof, L. Malcher, B. Rumpe:
Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins.
In: E. Tilevich, C. De Roover, editors, Proceedings of the 20th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE ’21), Volume 20, ACM SIGPLAN, Oktober 2021.
https://www.se-rwth.de/publications/

https://doi.org/10.1145/3486609.3487210
https://doi.org/10.1145/3486609.3487210
https://doi.org/10.1145/3486609.3487210

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe

Contribution andOpportunities.Weapply this idea of record-
ing and replaying data to model-driven IoT applications. Due
to the distributed nature of the system and sometimes diffi-
cult to reproduce environmental influences, the behavior of
IoT applications is often complex to understand. There are
several advantages to using model-driven development here.
First, it is possible to capture a lot of relevant data about
a system at clearly defined interfaces of the system, i.e., at
specific model elements. Many model-driven frameworks
for developing IoT applications are based on component
and connector (C&C) architectures, e.g., ThingML [14, 24],
Ericsson’s Calvin [2, 28], Node-RED [1], or CapeCode [6]. Ac-
cordingly, our approach also focuses on C&C architectures.
As described in [15], the data that components exchange via
ports can be captured to create digital twins of the system.
Using the digital twin’s data we extend models through auto-
mated model-to-model transformations to include elements
that represent real-world influences, such as network delays
or sensor values. This automation lowers the barrier of apply-
ing such a technique compared to a manual extension of the
code base. Since agile processes are expected to improve IoT
development [19], we integrate our method into an iterative
process.

Hence, the contributions presented in this work are:
1. a method for replaying and analyzing the behavior of

C&C architecturemodels of theMontiThings architecture
description language (ADL) with information recorded
by digital twins during execution of the system, and

2. a workflow for integrating the reproduction and anal-
ysis of IoT systems in iterative development processes,
and

3. model-to-model transformations that automatically
extend the architecture models with components en-
abling the retrospective reproduction of the system’s
execution.

Structure of the paper. The remainder of this paper is or-
ganized as follows. Sec. 2 introduces the MontiThings ADL
and digital twins. Sec. 3 introduces a motivating example.
Sec. 4 outlines our requirements. Our concept and realization
are detailed in Sec. 5 and Sec. 6. We evaluate our concept
in Sec. 7, followed by a discussion in Sec. 8. Related work is
presented in Sec. 9. Finally, Sec. 10 concludes the paper.

2 Preliminaries
This section introduces the MontiThings ADL, used for the
implementation of our concept, and defines digital twins.

2.1 MontiArc and MontiThings
MontiArc is a C&C-based ADL for the specification, analysis,
and simulation of cyber physical systems [8, 13]. As many
other ADLs, MontiArc describes systems using components
which exchange data via ports. These ports are connected
using explicit connectors. MontiArc’s ports are directed and

LightSensor
light

SmartHome

MontiThings

Camera
doorCam

Microphone
mic

SpeechRecog
speechRec

SmartAssistant
assistant

LightBulb
bedroomLight

DoorLock
lock

LawnWatering

FaceDetection
faceDet

atomic component
(has no subcomponents)

directed
connector

composed component type definition
(contains subcomponents)

port
(directed, typed)

Face

subcomponent
type name

subcomponent
instance name

LightState

Recording

Brightness

Cmd

Bool

Cmd

HVAC

Image

Voice

Cmd

port
(black color = exchanges data with external

system, e.g. sensors / actuators)

Figure 1. Smart home application demonstrating the graph-
ical syntax of the MontiThings ADL (adapted from [15]).

typed. The data types used by the ports can be defined using
class diagrams. Components can either be composed, i.e.,
contain subcomponents defining their behavior, or atomic,
i.e., not contain subcomponents. Atomic components define
their behavior, e.g., using automata [8], a Java-like behav-
ior language [8], or handwritten code. MontiArc is based
on the FOCUS calculus [7, 30]. The FOCUS calculus treats
understands components as stream processing functions. FO-
CUS streams can include ticks that represent time progress.
From a theoretical point of view, MontiArc’s (composed)
components are (composed) stream processing functions.
The MontiThings ADL [16] used in this work is an IoT-

focused extension of MontiArc. MontiThings mainly extends
MontiArc with a C++ generator and an IoT-focussed runtime
that, e.g., utilizes message brokers to implement connectors.
Moreover, MontiThings extends the MontiArc graphical syn-
tax with sensor and actuator ports identified by black fill.
In the textual representation of the model, these sensor and
actuator ports are indistinguishable from regular ports. The
only difference is that developers have provided code that
specifies how these ports can interact with the connected
hardware.

Fig. 1 demonstrates MontiThings’ graphical syntax using a
smart home application, adapted from theMontiArc example
in [15]. At the core of the application is the SmartAssis-
tant component, which processes sensor data to control
the actuators of the smart home. For example, a Microphone
together with a SpeechRecog component can be used to eval-
uate voice commands. These voice commands are input to a
heating, ventilation, and air conditioning (HVAC) component,
which we use as our case study in Sec. 7.1. The LawnWater-
ing component will be discussed in more detail in Sec. 3
as a motivating example for our approach. A more detailed
overview of MontiThings can be found in [16].

198

Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins GPCE ’21, October 17–18, 2021, Chicago, IL, USA

2.2 Digital Twins
Digital twins (DTs) are digital representations of cyber-physical
systems. They monitor systems to offer services to analyze,
control, and optimize the system. Alas, there is no commonly
agreed on definition of DTs [26]. Since many definitions of
DTs do not take into account model-driven development, we
adopt the following definition of DTs from [15]:
“A digital twin (DT) of a system consists of a set of models

of the system, a set of contextual data traces and/or their ag-
gregation and abstraction collected from a system, and a set
of services that allow using the data and models purposefully
with respects to the original system.” [15]
Many definitions relate a DT to simulations of the cyber-

physical system or even understand the simulation itself
as a DT [26]. Some definitions of DTs also address a syn-
chronization between the DT and the cyber-physical system
(e.g., [35]). The most relevant part of the definition for our
approach is that data is collected about the cyber-physical
system, which is then processed for a specific purpose. Apart
from that, it is not mandatory to agree with the definition
chosen here in order to use our approach.

3 Motivating Example
Even if an application is carefully planned and specified, it
may happen that a program generated from the architecture
models behaves differently than desired. Using the example
of a smart lawn watering system, we demonstrate how this
might happen. The architecture of the application is shown
in Fig. 2. The goal of the system is to water the lawn in the
front yard of a house without soaking people on the walkway
to the house.
Overall, the lawn irrigation is controlled by an Irriga-

tionController component that evaluates sensor data to
control the system’s sprinklers. Lawn watering at night can
contribute to disease development [33]. Therefore, the Wa-
teringScheduler component lets the controller knowwhen
it is a good time to water the lawn. An additional Moisture-
Sensor component checks soil moisture. As recommended
by [33], this allows the IrrigationController to make
“smart” decisions instead of controlling sprinklers based on
time of day alone. An undesired side effect of watering the
lawn is that the sprinklers canwet people on the walkway. To
prevent this, a MovementSensor component checks whether
anyone is currently on or approaching the walkway. In addi-
tion, residents of the house can also control the lawn water-
ing via voice commands.

During development, the system was tested and no errors
were found. However, after deploying the system, users re-
ported to the developers. They complain that the lawn was
undesirably watered in the evening. In addition, a person
on the sidewalk was wetted by the sprinklers. Moreover, the
sprinklers do not all behave the same. The developers are
now faced with the task of examining the system to discover

LawnWatering

MontiThings

Moisture

Sensor

Irrigation

Controller

Sprinkler
leftSprinkler

Movement

Sensor

Sprinkler
rightSprinkler

Sprinkler
centerSprinkler

Watering

Scheduler

internal clock is wrong

high network delaysensor failure

network disturbed

Bool

Moisture

Level

Bool

Bool

Cmd

Figure 2. Smart lawn watering application. During the exe-
cution of the application, several problems occurred, which
are shown in red.

possible sources of error. Upon re-testing the system, no
errors can be detected. Without further measures for error
detection, the developers would now have to evaluate any
log data and, if necessary, ask the users to protocol how the
system behaves.

The errors that have occurred are due to imperfections in
the hardware used. The WateringScheduler component has
an incorrectly set time and thus reports to the controller in
the evening that the lawnmay bewatered. Themotion sensor
used by the MovementSensor component is damaged and
detects movements on the walkway only unreliably. Also, the
network connection of two sprinklers is poor. Messages to
the sprinklers arrive with a high delay or are sometimes lost.
Since the errors are not due to modeling or programming
errors, they cannot be detected in the model itself.

Our approach is to utilize the system traces a digital twin
records during the system’s execution. This includes, e.g., the
data provided by the sensors. In the same way, data about the
messages sent between components and non-deterministic
behavior is recorded. If the developers are asked to analyze
an error after the system has been executed, they can use
this data to reproduce the behavior of the system.
For this purpose, we leverage model-to-model transfor-

mations. These transformations add components and con-
nectors to the system that mimic environmental influences
during recording. For this, the transformations utilize the
data recorded during runtime. Developers can analyze the
application generated from the transformed models to dis-
cover that the misbehavior is due to hardware and network
errors. With this knowledge, they can now decide on the
next development steps, such as using more robust hardware
or implementing software-based countermeasures.

4 Requirements
Our overall goal is to understand the behavior of the compo-
nents of the real system. We propose to capture the system
behavior during its execution and then use the captured data
for a reproduction of the execution of the real system while

199

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe

guaranteeing a deterministic environment. To achieve this
we define a set of requirements for our system. First, we
define the intended relationship between the real system
and the reproduction in a high-level requirement:
(R1) Reproduce behavior. Components from the original

model shall behave in the reproduction like they did in
the real world. To understand the original system, it is
indispensable that the behavior in the reproduction is
as close as possible to the behavior in the real system.
Otherwise, the error analysis of the reproduced system
might not reflect the errors of the original system.
Formally, in terms of the FOCUS calculus, this means
that all streams of all ports in the reproduction shall
be equal to those in the real system.

To achieve this requirement, we define more fine-grained
requirements, that together help reaching (R1).
(R2) Nomodifications.Components from the originalmodel

may not be altered. If the components were altered,
they might behave differently in the reproduction than
they did when executing the real system. This would
violate (R1).

Note that the reverse does not hold. Even if a component is
unaltered, it may behave different in a reproduction because
of external influences on the system. Therefore, we need to
capture such influences:
(R3) Reproduce environment. The reproduction shall re-

produce environmental influences on the original system.
This includes all external inputs to the system, such as
measured sensor values. As IoT devices often operate
under harsh environmental conditions, such as vibra-
tions or electromagnetic radiation, this also includes
changes of the system itself. For example, the repro-
duction needs to account for failing components due
to failed hardware.

(R4) Reproduce timing. The reproduction shall reproduce
the time consumed for executing component behavior
and for exchanging messages between components. The
hardware running the real system and the host sys-
tem of the reproduction can have different computing
power. Thus, the execution times of the real system
need to be recorded and reproduced. Also network
delays that influence message exchanges between the
components need to be captured and reproduced. This
requirement ensures that messages exchanged by the
components reach the target component in the original
order.

(R5) Reproduce non-deterministic behavior. The repro-
duction shall reproduce non-deterministic behavior of
the original system. Some components may rely on
non-deterministic effects. We consider anything to be
non-deterministic that could lead to different results
if re-executed on a different device or at later time
(e.g., time accesses or file accesses). For example, a

component may draw a random number to make a
decision. If not captured, such non-deterministic deci-
sions may lead the reproduction to behave differently
than the original system. Hence, we need to capture
non-deterministic behavior.

As for any software project, this list could be extended
with non-functional performance requirements, such as keep-
ing the network overhead low. Since these are not the main
focus of this paper, they are not discussed in detail, although
the performance is evaluated in Sec. 7.2. The following sec-
tions describe how we address the above requirements.

5 Iterative Development Process
Iterative development processes are widely used by devel-
opment teams. Thus, it is crucial for the acceptance of a
new approach to be embeddable in such iterative develop-
ment processes. Fig. 3 provides an overview of our process
for reproducing model-driven systems. Since this process
is also built on the iterative improvement of the system un-
der development, it is easily embeddable into other iterative
methodologies. At its core, the process consists of six steps:

Step (1): First, the developers create a set of architectural
models as they usually do. The goal of these models, in addi-
tion to their potential use for documenting or analyzing the
system at design time, is to be used for code generation. In
addition to architecture models, class diagrams describing
the data structures can also be developed, as usual in Mon-
tiThings. But only the architectural models are relevant for
our process. If handwritten code is used to implement the
behavior of components, non-deterministic function calls
have to be marked to make the recorder aware of their non-
deterministic nature.
Step (2): Next, the models created in step 1 are given to

a code generator. The code generator creates code from the
models in a GPL, in our case C++. In particular, the gener-
ator adds the necessary code to enable the components to
exchange messages. For this, we use OpenDDS1, an open
source implementation of the OMG’s data distribution ser-
vice (DDS) [27] publish-subscribe communication middle-
ware standard. The generated code is compiled to executable
binaries. Optionally, these binaries can be packaged into con-
tainer images for easier distribution. Our implementation
uses Docker for this purpose.
Step (3): The executables created in the previous step

are distributed to the devices on which they are to be exe-
cuted. During the execution of the devices, a recorder collects
the data exchange between the components. Moreover, the
recorder records metadata about the system, e.g., the network
delay between sending and receiving a message. Compo-
nents report non-deterministic behavior to the recorder, e.g.,
random numbers or the current time. The recorder stores

1Project website (last checked 23.09.2021): https://opendds.org/

200

https://opendds.org/

Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins GPCE ’21, October 17–18, 2021, Chicago, IL, USA

S
y

st
e

m
 E

xe
cu

ti
o

n

A
rt

if
a

ct
s

R
o

le
s

a
n

d
 T

o
o

ls

Developer
Generator/

Compiler Device

Transform.

Engine

creates

*

*

generates

Packaged

Executable

Architecture

Model

executes

monitors

System Trace

records

*

Replay

*

*

R
e

p
ro

d
u

ct
io

n

A
rt

if
a

ct
s

Reproduction

Model

Reproduction

Executable

1

analyzes

is based on

generates

*

Recorder

*

executes

1
generates

usesAs

Input

usesAs

Input

usesAsInput

usesAs

Input

Figure 3. Iterative, model-driven process: Developers create models from which packaged executables are generated. These are
executed by devices monitored by a recorder capturing real-world influences and non-deterministic behavior. A transformation
engine generates a reproduction model from the original models and the system traces. Developers can use the reproduction
model to retrospectively analyze the system and refine the architecture models for the next iteration.

the data recorded about the system in files we call system
traces.

Step (4): Using the system traces and the original models,
the transformation engine creates the reproduction mod-
els. These reproduction models are modified versions of the
original models that contain components that mimic the en-
vironmental influences such as sensor data. Sec. 6 describes
the individual transformations in more detail. In summary,
the transformation engine contains transformations to re-
produce certain influences of the real world.

Step (5): The models enriched with the real data in the pre-
vious step can now be used again for code generation. In our
case, we can use the same code generator that we originally
used for this purpose. Depending on the implementation of
the code generator, however, it may be necessary for other
languages to use a different code generator for the reproduc-
tion than for the real execution. For example, if the generated
code relies on libraries that are only available on the IoT de-
vices, it cannot be compiled as-is for a standard computer.
It should be noted that the use of a different code generator
may lead to a change in the behavior of the generated code
and thus to a violation of requirement (R1). Note that the
code generator does not create multiple executables for the
reproduction but only a single reproduction executable. This

is possible since ports define clear communication interfaces
for the components. Thus, the code generator can easily
replace real communication over a network with local func-
tion calls. Having only one reproduction executable makes
it easier to attach debuggers and inspect the application.

Step (6): Developers can use the reproduction executables
created in step 5 to analyze the behavior of the system based
on the recorded execution on the real devices. The reproduc-
tion is executed by a regular computer instead of a distributed
system or a resource-constrained embedded device. Unlike
distributed or embedded systems, using a debugger on a nor-
mal computer is not a problem. Thus, developers can attach
a debugger to the reproduction to observe certain properties
of the system or to influence its behavior.

Step 6 concludes this iteration of the process. The results
of the analysis of step 6 can be used in the next iteration
of the process to improve the models. Agile processes are
often based on continuously making small improvements to
prototypes. Our tooling can also be used in these prototypes
as long as the prototypes are generated from architecture
models. When the finished product is rolled out en masse to
customers, developers might consider turning off our instru-
mentation (step 2) to save compute and network resources.

201

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe

Capturing
traces of

sensor data

Capturing
data traces

of measured
network delay

Reproducing
sensor values

Digital Twin

Reproducing
network delay

Mocking
actuators

Capturing data
traces concerning
computation delays

Further decomposed to
reproduce computation delays

and non-deterministic calls

Sensors Actuators

Figure 4. Our digital twin (top) uses data and metadata cap-
tured from the cyber-physical system (bottom) to reproduce
its behavior with the purpose of finding potential problems
in the system.

Fig. 4 summarizes the relation between cyber-physical
systems and their DTs in our approach. Overall, we use a set
of C&Cmodels of the system to generate the code for a cyber-
physical system. By instrumenting the generated code with
recording modules, we collect system traces. The models and
system traces are then used to reproduce the execution of the
systemwith the goal of analyzing and improving the original
system. Thus, applying the definition of DTs (Sec. 2.2) to our
concept, these parts of our concept constitute a DT.

6 Recording and Reproduction
Our concept is to record data during the runtime of the
system, which can later be used to reproduce the behavior of
the system. As mentioned in Sec. 4, several aspects have to be
taken into account when reproducing the system’s behavior.
This section describes the recording of the system traces and
the transformation of the architecture in more detail (steps
3 and 4 from Sec. 5).

As already indicated by Fig. 3, our systems can operate in
two different modes: Recording and replaying mode. When
the recording mode is enabled, the code generator (step 2
from Sec. 5) will inject a recording module into each port of
each component. The module subscribes to a special topic
where our recorder publishes commands such as starting
or stopping the recording phase. The recorder is a central
entity that captures user data exchanged between compo-
nents, non-deterministic behavior, and metadata such as
network delay. Since recording is not done permanently, a
snapshot including all variable assignments of the internal
system state is taken upon recording and restored before
replaying. The remainder of this section explains how our
framework records and reproduces various aspects of the
original system.

C++1 template <typename A>
2 A nd(A value)
3 {
4 if (isRecording)
5 {
6 storage[index] = value;
7 }
8 else if (isReplaying)
9 {
10 value = storage[index].get <A>();
11 }
12

13 index ++;
14 return value;
15 }

Listing 1. Simplified method which can be used to wrap
non-deterministic calls. In recording mode, the value input
is stored and returned. In replay mode, the function returns
the previously recorded values.

6.1 Record Message Exchange and Timing
MontiThings components are only allowed to communi-
cate with the outside world via ports. This includes both
communication with sensors and actuators as well as com-
munication with other components. As explained in Sec. 2,
sensor and actuator ports are indistinguishable from regular
ports. To capture the communication, the code generator
injects a recording module into each port (step 2 from Sec. 5).
Thereby, non-deterministic external inputs, i.e., sensor val-
ues, are recorded.

When sending or receiving a message, the injected record-
ing module immediately informs the central recorder. When
sending a message, it shares the current vector clock with
the recorder. When receiving a message, it acknowledges
the message and thus enables its communication partner
to calculate the network delay. The partner in turn piggy-
backs the network delay onto subsequent messages to the
recorder. Analogously, recorded data containing computa-
tion durations and system calls is also piggybacked as soon
as possible.

Components instantly notify the recorder about the receiv-
ing or sending of a message. Thus, the recorder calculates
the message’s timestamp by subtracting the current network
delay from the timestamp of the message’s arrival at the
recorder. Therefore, acknowledges are not limited to mes-
sages exchanged by components, but are also used by the
recorder. This way we reduce relying on distributed time
to the minimum. Similar as before, network delay informa-
tion is piggybacked and sent to the recorder in subsequent
messages.

Similarly, injected recording modules capture information
about how long computations take to execute. MontiThings
uses run-to-completion semantics, i.e., the computation of

202

Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Sensor

Consumer

model-to-model transformation

Sensor

Consumer

Sensor

Mock

Replays recorded
sensor data

Port is filled
with raw

sensor data

MontiThings
«real system»

MontiThings
«reproduction»

(a) Inject recorded sensor data from system traces using a mock that
provides it.

Actuator

Controller

model-to-model transformation

Sink
Actuator

Controller

Accepts and ignores
incoming data

Port accesses
actuator

MontiThings
«real system»

MontiThings
«reproduction»

(b) Accept commands to actuators and ignore them. The actuator’s
influence on the environment is represented using system traces.

ReceiverSender

MontiThings

model-to-model transformation

«real system»

ReceiverSender

NetworkChannel

MontiThings
«reproduction»

(c) Reproduce communication channel imperfections (delay, loss, etc.)
using a component reproducing the channel based on recorded

meta-data.

Computation

Delay

MontiThings
«reproduction»

model-to-model transformation

MontiThings
«real system»

ComputationWrapper

Computation
Processes incoming

messages

(d) Reproduce computation delays. The ComputationWrapper has the
same interface as the original Computation component.

Figure 5.Model-to-model transformations used to instrument MontiThings models of a real system with reproduction-specific
model elements. All components from the models of the real system are still present in the transformed models used for
reproduction (R2).

an incoming message is not interrupted by subsequent mes-
sages. Thus, measurements can be done in sequence and are
indexed in ascending order.

6.2 Record and Reproduce Non-deterministic
Behavior (R5)

Capturing non-deterministic effects without knowing the se-
mantics of themodel implementation is difficult. Intercepting
low-level system calls is possible but should be handled with
care, as one cannot assure that all possible system calls are in-
tercepted. Besides that, we aim to stay platform-independent.
Thus, our approach leaves it to developers to inform us

which code statements introduce non-determinism. When
developers inform us of a source of non-determinism, we
record it so that we are able to reproduce its behavior. Devel-
opers have to mark non-deterministic function calls by wrap-
ping them with a method provided by our framework. The
result of the method call is then recorded during recording
phase. During replay, the actual result of the non-deterministic
call is replaced by the recorded data. Executing the non-
deterministic methods in replay mode is safe, as methods
used inside MontiThings components must be side-effect
free. Note, that this approach does not violate (R2), as the
wrapper is present in both the original system and the re-
produced system. Wrapping non-deterministic calls is the
only manual modification required by the developers.
Common non-deterministic calls are, for instance, now()

for retrieving the current time. In our prototypical imple-
mentation, developers can mark now() as non-deterministic

using nd(now()). The wrapping call is implemented as a
single generic-typed method as shown in Listing 1. This way,
the non-deterministic system call is executed as usual before
executing our wrapper. When the recording mode is active,
the wrapper indexes and stores the method’s return value lo-
cally until it is sent to the recorder. During replay phase, the
wrapper replaces the actual result of the non-deterministic
call by the recorded value. Leveraging a simple FIFO queue
for handling internal system calls is sufficient, as all inputs
to the component are deterministic, including the timing,
quantity, and actual values.

6.3 Reproduce Environmental Influences (R3), (R4)
Components use sensor and actuator ports to communicate
with their environment. During reproduction, the sensors
are usually not available. And even if they are, they will
likely produce different values than during the recording.
Thus, we use the system traces captured from these ports
to replay the interaction with them. To this end, a model-
to-model transformation as shown in Fig. 5(a) creates a new
mock component and connects it to the original port. During
reproduction, this new component acts as a black-box that
replays external inputs and their timing based on the system
traces.

Analogously to the sensor ports, actuators are mocked as
well, as illustrated in Fig. 5(b). In contrast to sensors, the im-
plementation details of mocked actuators are irrelevant for
the system execution. Hence, the sinks serving as actuators
do not have any behavior. This is possible since the influence

203

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe

actuators have on the system’s environment is detected by
the system using sensors. By recording sensor values, the
recorder captures if an actuator influences the system’s en-
vironment in a way that is relevant to the software. This, of
course, does not cover cases in which an actuator directly
modifies the system, e.g., by physically destroying parts of
the system.
Finally, (R4) includes the requirement that exchanged

messages must reach the target in the correct order. If two
events occur almost simultaneously (i.e., approx. 1 − 2ms or
less between them), an operating system’s scheduler may
decide to process them in a different order. Since we do not
require a simulation environment where the timing can be
precisely controlled, we need to ensure that the scheduler of
the operating system of the developer’s computer does not
execute events that are very close to each other in a differ-
ent order while replaying. To mitigate this, we put events
that are very close together a little farther apart, making it
less likely that the scheduler will change the order of events.
The recorder uses the vector clock data to make small ad-
justments to the timing, which we refer to as determinism
spacing (DS). DSs are short delays that impose a minimum
delay between two events on the same component. They
affect only the simultaneous events and do not postpone
later events, i.e., DSs do not add up. Overall, DSs trade a less
accurate timing for a more accurate order of the events.

6.4 Reproduce Network and Computation Delay (R4)
A common mistake in developing distributed systems is to
fall for the (wrong) assumption that there is no network de-
lay [34]. To enable developers to identify network-related
errors, our tool must reproduce network delay. As mentioned
above, components communicate only via ports and connec-
tors. Replaying network delay is done by the model-to-model
transformation shown in Fig. 5(c). This transformation re-
places the connector between the sender and receiver by a
new component which applies the recorded network delay.
As explained in Sec. 6.1, this delay is derived based on the
round-trip time of exchanged messages. Since the network
delay is recorded with each exchanged message, this compo-
nent can vary the delay over time should it not be constant.
This also enables us to replay failing network connections,
which cause an infinite delay.

The time consumed for computations is reproduced us-
ing the transformation described in Fig. 5(d). The original
component (Computation) is wrapped by a new component
(ComputationWrapper). The wrapper has the same interface
as the original component, so the wrapper can replace the
original component in all places where it is used. Besides
the original component, the wrapper also includes a Delay
component. Incoming messages are forwarded to both the
original component and the Delay. The Delay component
leverages incoming messages to keep track of the arrival

HVAC

Thermostat

Display

Button

Temperature

VoiceCtrl

SmartHome

Controller

Window

Heater
Radiator

Temperature

Air

Conditioner

VoiceInput

Temperature AirQualityLevel

MontiThings

desired

Temp

cmd

desired

Temp

cmd

statecmd

Weather

Forecast

Opening

State

Opening

State

Figure 6. High level abstraction of the HVAC component
managing the heating, ventilation, and air conditioning of a
smart home (cf. Fig. 1)

times. When the original component finishes its calcula-
tion, the outgoing messages are intercepted by the Delay
component. The actual computation duration is measured,
compared to the recorded computation duration, and, if nec-
essary, a delay is added before sending the computation
result on outgoing ports. To this end we assume that the
computer executing the reproduction will carry out com-
putations faster than the ressource-constraint IoT devices
of the original system. We could, of course, also replay the
recorded computation results should the reproduction take
longer to execute than the recorded execution. However, this
would mean that developers could no longer pose what-if
questions to the system by modifying variables or behav-
ior, since the system would always behave exactly like the
original system.

7 Evaluation
We validate the feasibility of our approach on using a case
study specifically designed to produce difficult to compre-
hend executions in Sec. 7.1. In order to measure the accuracy
of the reconstructed behavior we run predefined sensor input.
This enables us to control the execution flow in the recording
phase. By capturing specific events during the executions we
are able to compare the differences between the original and
the reconstructed behavior. Further, we evaluate the effect of
DSs on the accuracy. Since record and replay approaches are
expected to cause computational overhead, Sec. 7.2 focuses
on the efficiency of our prototypical implementation.

7.1 Validation
The heating, ventilation, and air conditioning (HVAC) appli-
cation (Fig. 6) decides on several actions such as opening the

204

Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins GPCE ’21, October 17–18, 2021, Chicago, IL, USA

00s 05s 10s 15s 20s 25s 30s

Recording

Replaying

(a) Timeline of an equal execution replay.

00s 05s 10s 15s 20s 25s 30s

Recording

Replaying

(b) Timeline of a faulty replay.

Figure 7. Timeline comparisons of two record and replay executions. Each circle marks an event at a specific time. Vertical
connections indicate which event of the original execution corresponds to which event within the replayed execution. In
a 100% accurate reproduction, all connecting lines run perfectly vertically. The more oblique a line is, the less accurate the
reproduction. External input events are marked in blue. In erroneous replays, events might not occur in the time due to the
different execution flow (red circles).

window if the air quality falls below a threshold, or turning
on the heater if the room temperature is lower than desired.
The corresponding decisions result from the environmental
influences which the HVAC consumes over its external ports.
For space reasons, subcomponents of the HVAC’s subcompo-
nents are omitted in Fig. 6. Overall, the case study consisted
of 15 component types. We developed the system iteratively,
using our tool to repeatedly track down errors in the system
and then using these findings to improve the system.
We create deterministic execution flows by reproducing

timed events on the outermost components’ incoming ports,
thus requiring a reaction from the system. We constructed a
specific scenario that triggers a complex execution flow; a
case where a developer would prefer to debug a replayed ver-
sion rather than browse numerous log files. The scenario in-
volves hard-to-trace behavior caused by sensor misreadings,
network delay, and side effects. For instance, the window
state may change, e.g., due to one of the following events:

• the temperature is too far from the desired temperature
• the voice assistant receives a command to open or
close the windows

• the air quality decreases
• the weather sensor forecasts stormy conditions
• a timer automatically closes the window at night

The specific sequence of events that caused the window’s
behavior becomes difficult to trace when multiple, possibly
simultaneous, events or erroneous sensor measurements
could be the cause.

To be able to compare replays with the original executions,
we injected specific context-aware and time-stamped log
entries within the application implementation. These log
entries notify about system state changes, such as receiving
a new voice command or activating the heater. By capturing
these log entries and sorting them on a timeline, an accurate
representation of the execution flow is achieved.

Table 1. Results from 100 runs with different DSs. Disabling
DS led to different replayed executions half of the time.

Det. Spacing (DS) disabled 1ms 3ms 5ms

non-equal replays 49 % 15% 5% 0%
avg. latency error 1.9ms 2.6ms 2.5ms 3.0ms
median latency error 1.2ms 1.5ms 1.5ms 2.0ms
standard deviation 𝜎 2.4ms 3.5ms 3.3ms 3.2ms

During the recording phase, we run the HVAC application
on a single machine2 using separate Docker containers for
each component. This allows us to control network delay
while ensuring that timestamps are generated only by a
single source. After the execution, logs are collected, merged,
and parsed into a timeline. We then can test if the replay was
equal to the original execution. Since components are stream
processing functions in FOCUS, we consider the replay to
be equal to the original execution if all streams of all ports
are equal in the original execution and the replay. Especially,
if the replayed execution is equal to the original one, the
corresponding timelines should be equal as well.

As described above, the scheduler of the operating system
of the developer’s computer can incorrectly change the order
of replayed events that are very close together. For instance,
at the beginning of our scenario the thermostat is configured.
A desired temperature is typed in and the button is pressed to
apply the change. Internally, the user-interface component
receives both inputs nearly simultaneously with a delay of
less than a microsecond. As a consequence, in nearly half
of 100 repetitions, the heater never turns on which can be
observed at about second 24 in Fig. 7(b) where an event is
missing during replay. Table 1 shows how DS can mitigate
this problem by trading a less accurate timing for a more
accurate order of events. Since FOCUS considers components

2The benchmark host was a virtual machine running Ubuntu 20.04 on 8
cores of AMD Ryzen 2600X equipped with 10GB physical memory.

205

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe

0 5 10 15 20 25

Number of hops [1]

0.00

5.00

10.00

N
et
w
or
k
tr
affi

c
[M

B]

With recording
Without recording

Figure 8. Total network overhead increases exponentially
with the number of hops. This is expected, as messages in-
clude a copy of the vector clock.

to be stream processing functions, we consider a replay “non-
equal” if at least one stream of messages at any incoming or
outgoing port is not equal to the recorded stream.

7.2 Evaluation
To identify possible bottlenecks and potential room for opti-
mization, we construct an application as follows that evalu-
ates our approach in terms of worst-case overhead. A source
component sends 100 messages to a sink component. In be-
tween, a certain number of components intercept the commu-
nication. These forwarding components, which we call hops,
simply forward the message. This considerably increases
the size of the vector clocks exchanged and the recorder
must acquire data from all instances. During execution, we
leverage cAdvisor3 to capture resource usage metrics from
all participating Docker containers.

Network Traffic Overhead. Network overhead is shown
in Fig. 8. The additional traffic introduced while recording is
justified as follows. For each message exchanged between
model components, the participating instances have to send
their action to the recorder, together with network delay
information, a list of computation delays which have been
accumulated since the previous message, vector clock in-
formation, and intercepted system call data. Since we have
vector clocks, every node needs to have an entry for every
other node. If we add a new node to the system all nodes need
to get a new entry for the newly added node in their vector
clocks. Additionally, the newly added node also has a vector
clock. Thus, we have a O(𝑛2) total network traffic. Further,
each message is acknowledged, whereas acknowledgments
are not limited only to messages between components but
also include recorded samples which are sent to the recorder.
Since all data is serialized in JSON and the vector clocks

include fully qualified instance names instead of smaller
identifiers, our prototypical implementation has room for

3Project website (last checked 23.09.2021): https://github.com/google/
cadvisor

1 5 9 13 17 21 25

Number of hops [1]

0.5

1.0

1.5

2.0

M
ax

m
em

or
y
us
ag
e
[G

B]

with recording
without recording

Figure 9. Maximum cumulated memory consumption of
participating docker containers. Recording only adds little
overhead and scales proportionally.

1 5 9 13 17 21 25

Number of hops [1]

20

30

40

To
ta
lC

PU
tim

e
[s
] with recording

without recording

Figure 10. Total CPU time spent in the kernel and user space
by the sink component. Recording scales proportionally.

optimization. As a further improvement one could track ac-
knowledgements on the transport layer instead of exchang-
ing additional acknowledgements on a higher level. However,
as such methods require very low level kernel readings and
are bound to a specific transport implementation like TCP,
we decided against doing so to stay platform independent.

Memory Usage and CPU Time. As indicated by Fig. 9
memory consumption during recording increases linearly
with the number of hops. Compared to the execution with-
out recording, our approach causes only low overhead. Part
of this overhead can be attributed to the additional resource
allocations of the recording module. As shown by Fig. 10,
CPU consumption is noticeably increased. This is to be ex-
pected because a lot of expensive JSON parsing is performed
internally instead of using optimized data structures.
Overall, our approach scales linearly. In its prototypical

implementation, it incurs a notable overhead, which we at-
tribute to the factors mentioned above. We expect our ch to
incur limited overhead in optimized implementations.

206

https://github.com/google/cadvisor
https://github.com/google/cadvisor

Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins GPCE ’21, October 17–18, 2021, Chicago, IL, USA

8 Discussion
Overall, our approach enables us to reproduce error situa-
tions in retrospect. Our model transformations cover com-
mon errors such as sensor or network errors. One of the
advantages of our model-driven approach is that there is no
manual work involved when recording or replaying system
traces. Developers only need to toggle a switch that activates
the transformations. We would like to emphasize that we do
not envision our approach as a substitute for conducting ap-
propriate simulation and testing prior to deployment. We see
the approach as an additional opportunity to analyze errors
that were not uncovered by such pre-deployment analysis.
We expect that with the increasing popularity of DTs, the
system traces required by our approach will be available
for more and more IoT systems with less additional effort,
thus reducing the effort required to implement our approach.
Extending our approach, this data could also be used for fur-
ther (automated) artificial intelligence (AI)-based analyses
and improvements. This would allow AI to further support
human developers in iterative development processes. How-
ever, there are a few limitations to our approach that we
would like to discuss.

First of all, any technique used to gather required data for
the reproduction may already influence the behavior of the
system. The unintended but inevitable alteration is known
as probe effect [11]. Thus, our recording infrastructure may
lead to an unintended change in the behavior of the system.

Moreover, since simulations always abstract from the real
world, even when using recorded system traces, some de-
viations from the real world are to be expected. Currently,
the sequence of events with an interval of less than one
millisecond can be recorded but cannot be deterministically
reproduced by our prototypical implementation. We expect
the accuracy of the reproduction could be increased by drop-
ping (R2). This would allow us to force components to pro-
cess specific events in the recorded order. Doing so would,
however, limit the developers’ ability to modify components
for the reproduction. The benefit of (R2) is that it enables
developers to modify the components’ behavior and test out
how the system would have behaved in the same situation if
it was implemented differently. Of course, structural mod-
ifications, e.g., adding new sensor ports, are not supported
because the replayer does not have the necessary data to
reproduce them.

Adding fully simulated components, rather than replayed
components, or a simulation environment that controls time
could potentially fill this gap and further improve timing
accuracy. For example, network simulators such as ns-3 could
simulate appropriate network channels for new connectors.
However, if manual changes to the model are not covered
by system traces, these changes will cause simulations to
deviate further and further from the real world. As a result,
the insights derived from these simulations become less and

less valid. Therefore, we think that limiting the ways in
which developers can modify the system when replaying
system traces will lead to the most useful results. Moreover,
the parameterization of such simulated network channels
would require manual effort.

We are aware that MontiThings is not a widely used frame-
work. Therefore, we have deliberately limited ourselves to
common model elements—ports and components—that are
also found in many other IoT frameworks such as ThingML,
Calvin, or Node-RED. Since the other toolchains are very
similar to MontiThings in terms of core modeling elements,
we think that the concept is well transferable. While our con-
text is the IoT, we think this approach is particularly useful
when a system depends on many external influences and
may be subject to hard-to-reproduce hardware faults.

9 Related Work
Using transformations for adding functionality to architec-
ture models has been previously proposed. In [23], transfor-
mations are used to add loggers to annotated architecture
elements. Thereby, the need for adapting multiple code gen-
erators is avoided. [15] uses transformations in combination
with a tagging language to add model elements that keep an
executed architecture model synchronized with its DT.

The record and replay approach is widely adopted in many
domains, ranging from interprocessor communication to
highly abstracted distributed systems [9]. The most closely
related work is done in the field of actor models which share
some key characteristics of C&C architectures, namely the
isolation of entities and the communication via well defined
interfaces. In Actoverse [32], each time an actor processes
an incoming message, its state is saved as a snapshot. This
allows rollbacks to past states, enabling reverse debugging
capabilities. Message flow causality is ensured by additional
Lamport timestamps which allow to replay the recorded
execution deterministically. Other than Actorverse, the work
of [3] also supports capturing non-deterministic system calls.
It is more focused on the efficiency aspect of keeping the
overhead as small as possible. However, both approaches
replay the execution on the original actors, whereas our
solution generates a local application that reproduces the
original system.
WiDS Checker [20] records traces about distributed sys-

tems built using the WiDS toolkit. Like our approach, WiDS
Checker uses these traces to reproduce executions of the
distributed system in a local application that developers can
use for debugging. In contrast to our approach, the WiDS
Checker does not focus on model-driven systems or on the
environmental influences to which IoT systems are exposed.
A model-driven approach was taken in [4], where traces

of a system generated from an architectural model were
recorded with the goal of replaying these traces. Their ar-
chitecture models relied on state charts for modeling the

207

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe

behavior of the components. This enabled them to find im-
plausible traces that could not have resulted from a correct
execution of the state chart. By resorting the traces to a valid
sequence, these errors could be repaired. Our work is dif-
ferent in that we apply transformations to create the model
used for reproduction. Thereby, we can reproduce external
inputs and meta-data about the system, e.g., network delays,
that is neglected by [4]. As future work, combining both
approaches could improve the reliability of each one.
The robot operating system (ROS) [18, 29] ships a collec-

tion of libraries and tools for the robot automation domain.
Recently, ROS24 emerged as the successor of ROS, integrat-
ing various DDS implementations as its middleware. Their
tool rosbag enables the recording and replaying of ROS top-
ics. The method of recording by subscribing to the available
topics is very similar to our approach, although the network
delay between the components and the recorder is neglected
in rosbag. This, however, can be a crucial aspect in IoT ap-
plications where network delays may exceed the range of a
few milliseconds, especially via 3G or 4G cellular networks.
Replaying is done by sending the recorded data to the cor-
responding topics which differs from our approach where
the replayed data is integrated within the model transforma-
tions. Therefore, the reproduction does not depend on DDS
anymore which is desired, for instance, if the reproduction is
packaged into a single binary. Packaging the application into
a single binary for the replay has many advantages. Most
importantly, this provides developers extended debugging
capabilities. For example, they can set breakpoints, pause
the application, and inspect its state by, e.g., attaching de-
buggers like gdb. In contrast, when debugging a distributed
application, pausing the application as a whole or inspecting
the whole state is usually not possible. As future work, a
more matured version of rosbag for ROS2 could benefit our
recording tool, as they focus on the scalability and efficiency
of collecting data.
The more general problem of debugging distributed sys-

tems is also examined, e.g., in [31]. The network simulator
ns-3 is extended to be able to execute the same code as the
real devices. Thereby, developers can analyze and debug their
software in a controlled environment with popular debug-
gers such as gdb. However, the system in [31] does not rely
on recorded data from a real system. Hence, it can not retro-
spectively answer the question why the system behaved in a
certain way without manually reproducing this situation in
a simulator. Depending on the amount of needed sensor data,
reproducing scenarios is time-consuming and error-prone.

10 Conclusion
The behavior of IoT applications is often difficult to analyze.
It depends not only on the application’s models and code,
but also on external influences such as (errors in) sensor data

4Project website (last checked 23.09.2021): https://github.com/ros2/rosbag2

and network communication. As a result, the behavior is
challenging and error-prone to understand from log files,
and suspected error situations are difficult to recreate. Using
system traces recorded by a DT, the system’s execution can
be replayed later to better understand the system. We use
model-to-model transformations to add reproduction compo-
nents to architecture models. This enables us to recreate the
behavior of the application in the real world retrospectively,
facilitating developer debugging. Future work includes us-
ing this data for deriving test cases for future versions of
a system. Moreover, applying the transformations only to
parts of the system could enable developers to debug their
application in a mixed environment where parts of the sys-
tem operate on live data and other parts operate on replayed
data.

Source Code
The source code for MontiThings is available on GitHub:
https://github.com/MontiCore/montithings

Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strat-
egy – EXC 2023 Internet of Production - 390621612. Website:
https://www.iop.rwth-aachen.de

References
[1] [n.d.]. Node-RED—Low-code programming for event-driven appli-

cations. [Online]. Available: https://nodered.org. Last checked 27.
September 2021.

[2] Ola Angelsmark and Per Persson. 2017. Requirement-Based Deploy-
ment of Applications in Calvin. In Interoperability and Open-Source
Solutions for the Internet of Things, Ivana Podnar Žarko, Arne Broering,
Sergios Soursos, and Martin Serrano (Eds.). Springer International
Publishing, Cham, 72–87.

[3] Dominik Aumayr, Stefan Marr, Clément Béra, Elisa Gonzalez Boix,
and Hanspeter Mössenböck. 2018. Efficient and Deterministic Record
& Replay for Actor Languages. In Proceedings of the 15th International
Conference on Managed Languages & Runtimes (ManLang ’18).
Association for Computing Machinery, New York, NY, USA, Article
15. https://doi.org/10.1145/3237009.3237015

[4] Majid Babaei, Mojtaba Bagherzadeh, and Juergen Dingel. 2020. Effi-
cient Reordering and Replay of Execution Traces of Distributed Reac-
tive Systems in the Context of Model-Driven Development. In Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (Virtual Event, Canada) (MOD-
ELS ’20). Association for Computing Machinery, New York, NY, USA,
285–296. https://doi.org/10.1145/3365438.3410939

[5] U. Barakkath Nisha, N. Uma Maheswari, R. Venkatesh, and R. Yasir
Abdullah. 2014. Robust estimation of incorrect data using relative
correlation clustering technique in wireless sensor networks. In In-
ternational Conference on Communication and Network Technologies.
314–318. https://doi.org/10.1109/CNT.2014.7062776

[6] C. Brooks, C. Jerad, H. Kim, E. A. Lee, M. Lohstroh, V. Nouvelletz, B.
Osyk, and M. Weber. 2018. A Component Architecture for the Internet
of Things. Proc. of the IEEE 106, 9 (September 2018), 1527–1542.

[7] Manfred Broy and Ketil Stølen. 2001. Specification and Development
of Interactive Systems. Focus on Streams, Interfaces and Refinement.

208

https://github.com/ros2/rosbag2
https://github.com/MontiCore/montithings
https://www.iop.rwth-aachen.de
https://nodered.org
https://doi.org/10.1145/3237009.3237015
https://doi.org/10.1145/3365438.3410939
https://doi.org/10.1109/CNT.2014.7062776

Understanding and Improving Model-Driven IoT Systems through Accompanying Digital Twins GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Springer Heidelberg.
[8] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and AndreasWortmann.

2017. Architectural Programming with MontiArcAutomaton. In In
12th International Conference on Software Engineering Advances (ICSEA
2017) (Athens, Greece). IARIA XPS Press, 213–218.

[9] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi
Chen. 2015. Deterministic Replay: A Survey. Comput. Surveys 48, 2
(Nov. 2015), 1–47. https://doi.org/10.1145/2790077

[10] P. Eugster, V. Sundaram, and X. Zhang. 2015. Debugging the Internet
of Things: The Case of Wireless Sensor Networks. IEEE Software 32, 1
(2015), 38–49. https://doi.org/10.1109/MS.2014.132

[11] Jason Gait. 1986. A Probe Effect in Concurrent Programs. Software:
Practice and Experience 16, 3 (March 1986), 225–233. https://doi.org/
10.1002/spe.4380160304

[12] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. 2006.
Replay Debugging for Distributed Applications. In Proceedings of the
Annual Conference on USENIX ’06 Annual Technical Conference (Boston,
MA) (ATEC ’06). USENIX Association, USA, 27.

[13] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. 2012. MontiArc
- Architectural Modeling of Interactive Distributed and Cyber-Physical
Systems. Technical Report AIB-2012-03. RWTH Aachen University.

[14] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
2016. ThingML: A Language and Code Generation Framework for
Heterogeneous Targets. In Proc. of the ACM/IEEE 19th Int. Conf. on
Model Driven Engineering Languages and Systems (Saint-malo, France)
(MODELS ’16). ACM, New York, NY, USA, 125–135.

[15] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon
Varga, and Andreas Wortmann. 2020. Model-driven Digital Twin
Construction: Synthesizing the Integration of Cyber-Physical Systems
with Their Information Systems. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems. ACM, 90–101.

[16] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. 2022. MontiThings: Model-driven Development
and Deployment of Reliable IoT Applications. Journal of Systems and
Software 183 (January 2022), 111087. https://doi.org/10.1016/j.jss.2021.
111087

[17] R. Konuru, H. Srinivasan, and Jong-Deok Choi. 2000. Deterministic
replay of distributed Java applications. In Proceedings 14th International
Parallel and Distributed Processing Symposium. IPDPS 2000. 219–227.
https://doi.org/10.1109/IPDPS.2000.845988

[18] Anis Koubaa. 2016. Robot Operating System (ROS): The Complete Refer-
ence (Volume 1) (1st ed.). Springer Publishing Company, Incorporated.

[19] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja. 2017. Software
Engineering for the Internet of Things. IEEE Software 34, 1 (Jan 2017),
24–28. https://doi.org/10.1109/MS.2017.28

[20] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. 2007. WiDS
Checker: Combating Bugs in Distributed Systems. In Proceedings of the
4th USENIX Conference on Networked Systems Design & Implementation
(Cambridge, MA) (NSDI’07). USENIX Association, USA, 19.

[21] Y. Liu, T. Dillon, W. Yu, W. Rahayu, and F. Mostafa. 2020. Noise
Removal in the Presence of Significant Anomalies for Industrial IoT
Sensor Data in Manufacturing. IEEE Internet of Things Journal 7, 8
(2020), 7084–7096. https://doi.org/10.1109/JIOT.2020.2981476

[22] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. 2012. Internet of things: Vision, applications and research
challenges. Ad Hoc Networks 10, 7 (2012), 1497 – 1516.

[23] B. Morin and N. Ferry. 2019. Model-Based, Platform-Independent
Logging for Heterogeneous Targets. In ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS). 172–182. https://doi.org/10.1109/MODELS.2019.000-4

[24] B. Morin, N. Harrand, and F. Fleurey. 2017. Model-Based Software
Engineering to Tame the IoT Jungle. IEEE Software 34, 1 (January
2017), 30–36.

[25] National Transportation Safety Board, Public Meeting of February 25,
2020. [n.d.]. Collision Between a Sport Utility Vehicle Operating With
Partial Driving Automation and a Crash Attenuator. Mountain View,
California, March 23, 2018, HWY18FH011.

[26] Elisa Negri, Luca Fumagalli, and Marco Macchi. 2017. A Review of
the Roles of Digital Twin in CPS-based Production Systems. Procedia
Manufacturing 11 (2017), 939–948. 27th International Conference on
Flexible Automation and Intelligent Manufacturing, FAIM2017, 27-30
June 2017, Modena, Italy.

[27] Object Management Group (OMG). 2015. Data Distri-
bution Service (DDS), Version 1.4. [Online]. Available:
https://www.omg.org/spec/DDS/1.4/PDF (Last checked 21.03.2021).

[28] Per Persson and Ola Angelsmark. 2015. Calvin – Merging Cloud and
IoT. Procedia Computer Science 52 (2015), 210 – 217. 6th Int. Conf. on
Ambient Systems, Networks and Technologies (ANT).

[29] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-
source Robot Operating System. In ICRA workshop on open source
software, Vol. 3. Kobe, Japan, 5.

[30] Jan Oliver Ringert and Bernhard Rumpe. 2011. A Little Synopsis
on Streams, Stream Processing Functions, and State-Based Stream
Processing. International Journal of Software and Informatics (2011).

[31] Martin Serror, Jörg Christian Kirchhof, Mirko Stoffers, Klaus Wehrle,
and James Gross. 2017. Code-transparent Discrete Event Simulation
for Time-accurate Wireless Prototyping. In Conference on Principles
of Advanced Discrete Simulation (Singapore, Republic of Singapore)
(SIGSIM-PADS ’17). ACM, New York, NY, USA, 161–172. https://doi.
org/10.1145/3064911.3064913

[32] Kazuhiro Shibanai and TakuoWatanabe. 2017. Actoverse: A Reversible
Debugger for Actors. In Proceedings of the 7th ACM SIGPLAN Inter-
national Workshop on Programming Based on Actors, Agents, and De-
centralized Control - AGERE 2017. ACM Press, Vancouver, BC, Canada,
50–57. https://doi.org/10.1145/3141834.3141840

[33] Doug Soldat and John Stier. 2011. Watering your lawn. Bulletin. A3950.
University of Wisconsin-Extension, Cooperative Extension. [Online]
http://learningstore.uwex.edu/Assets/pdfs/A3950.pdf (Last checked
23.09.2021).

[34] A. Taivalsaari and T.Mikkonen. 2017. A Roadmap to the Programmable
World: Software Challenges in the IoT Era. IEEE Software 34, 1 (Jan
2017), 72–80. https://doi.org/10.1109/MS.2017.26

[35] Behrang Ashtari Talkhestani, Nasser Jazdi, Wolfgang Schlögl, and
MichaelWeyrich. 2018. A concept in synchronization of virtual produc-
tion system with real factory based on anchor-point method. Procedia
CIRP 67 (2018), 13–17.

209

https://doi.org/10.1145/2790077
https://doi.org/10.1109/MS.2014.132
https://doi.org/10.1002/spe.4380160304
https://doi.org/10.1002/spe.4380160304
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1109/IPDPS.2000.845988
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1109/JIOT.2020.2981476
https://doi.org/10.1109/MODELS.2019.000-4
https://doi.org/10.1145/3064911.3064913
https://doi.org/10.1145/3064911.3064913
https://doi.org/10.1145/3141834.3141840
https://doi.org/10.1109/MS.2017.26

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 MontiArc and MontiThings
	2.2 Digital Twins

	3 Motivating Example
	4 Requirements
	5 Iterative Development Process
	6 Recording and Reproduction
	6.1 Record Message Exchange and Timing
	6.2 Record and Reproduce Non-deterministic Behavior (R5)
	6.3 Reproduce Environmental Influences (R3), (R4)
	6.4 Reproduce Network and Computation Delay (R4)

	7 Evaluation
	7.1 Validation
	7.2 Evaluation

	8 Discussion
	9 Related Work
	10 Conclusion
	References

