
Towards Compositional Domain Specific Languages

Andreas Horst, Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

1 Introduction

The deployment of Domain Specific Languages (DSL) and in particular Domain Spe-
cific Modeling Languages (DSML) is becoming more and more prominent in various
domains. In order to cope with the complexity of the realization of DSLs, common and
well-established methods of software engineering such as modularization and reuse
need to be adapted and applied for DSLs. This has already been noted in [2] when the
emerging DSL era was still closely akin to compiler theory.

As stated in this work, compositionality of DSLs can take place at several dimen-
sions. Various contributions in this field of ongoing research reflect this and only a brief
overview is given below. One form of DSL composition is the syntactic embedding
such as embedding DSLs in GPLs as described in [3, 4]. In [5] a family of DSMLs are
used for the generation of web information systems. There the composition is carried
out via the joint usage of several languages each with their own artifacts and hence no
syntactic embedding. Other contributions in the area consider the composition of the
models expressed in DSLs as a constructive model transformation [1] and examine the
effects of DSL composition at the infrastructure level [9] (e.g., syntax aware editors
etc.). The DSL framework and workbench MontiCore [7, 8, 10, 11] was designed and
realized particularly with respect to compositionality at various dimensions [6, 12].

Compositionality is of special interest if models of different modeling paradigms
- and hence expressed in different languages - need to be combined while at the same
time retaining their specific semantics. Whenever the different modeling paradigms are
integrated, it can be observed that each paradigm is equipped with its own modeling
language and that therefore such a paradigm integration is always also a model language
composition. This holds for the composition of structural and behavioral languages as
well as for the composition of languages with synchronous or real-time communication
and event triggered asynchronous models, etc. In the following the dimensions of such
compositions are discussed in more detail.

2 Compositional Language Definition

The major rationale of a DSL is its specificity. One could argue that therefore each DSL
has to be defined for the specific use case, i.e., the target domain. However, there usually
exist common parts being used in various DSLs. This also holds for DSLs serving
different paradigms as usually names, types, variables and often signatures are shared.

Proceedings of MPM 2013 1

[HR13] A. Horst, B. Rumpe: 
Towards Compositional Domain Specific Languages. 
In: Proceedings of the 7th Workshop on Multi-Paradigm Modeling (MPM 2013), 
Miami, Florida (USA), Volume 1112 of CEUR Workshop Proceedings, 
Eds.: C. Jacquet, D. Balasubramanian, E. Jones, T. Mészáros, pages 1-5, CEUR-WS.org, 2013. 
www.se-rwth.de/publications



Thus the DSL development process benefits from a library based approach. Common
language fragments can be provided as a library. The definition of concrete DSL then
imports, inherits or embeds the required common language definition components (e.g.,
in form of grammar nonterminals).

Furthermore, features such as checking of context conditions and especially type
correctness (i.e. semantic analysis) and other language infrastructure components (e.g.,
parser, abstract syntax tree (AST)) of a DSL need to be reusable in a reasonable manner.
This requires a thoughtful design of the Application Programming Interface (API) the
DSL infrastructure is based upon particularly with respect to compositionality.

3 Compositional Modeling

Often it is necessary or at least helpful to decompose a larger description into several
artifacts. This capability is the foundation of modularity and reusability and requires the
DSL infrastructure to feature processing of models distributed over individual artifacts
just as most GPL compilers can process source files in a rather independent and incre-
mental manner. DSL infrastructures hence have to support model artifact dependencies
and thus some sort of model path. This mechanism should also allow to incorporate
libraries.

For a simple DSL, this compositional modeling can basically be achieved by split-
ting models and distributing the resulting fragments over several artifacts. Typically the
resulting artifacts each encapsulate a specific part of the overall model and respectively
exhibit an explicit interface other artifacts can depend on. Therefore DSLs supporting
compositional models necessarily have to provide encapsulation, interfaces and im-
ports. This of course greatly impacts the design of the DSLs.

Apart from this rather straightforward case, the composition encompassing models
expressed in various DSLs - potentially even with differing modeling paradigms - yields
more complex requirements. For this to work, the aforementioned infrastructure (i.e.,
context conditions, AST, editors) needs to be capable of being glued together to perform
all desired and required tasks. The particular challenges of this complex scenario of
compositional modeling across language - and potentially even modeling paradigm -
boundaries is based on the following dimensions of composition:

– Syntactic: The syntactic dimension describes how the composition of models - in
particular expressed in different DSLs - looks like (e.g., textually embedding, split
among artifacts, graphical vs. textual etc.).

– Context Conditions: particularly complicated is the dimension of context condi-
tions that spread across the various languages being deployed together; where e.g.
types are shared.

– Semantic: The semantic dimension is about the meaning of the individual model
fragments and the meaning of their composition. As an example consider the com-
position of behavioral models (e.g., Statecharts) with structural models (e.g. object
diagrams); what does such a composed model express?

– Technical: The technical dimension deals with the tooling infrastructure of the com-
position. This for instance determines whether the different models can be pro-
cessed incrementally and/or individually.

Proceedings of MPM 2013 2

Towards Compositional Domain Specific Languages



– Methodical: Compositionality provides the ability to decompose a problem and to
solve it in parts. A good method can and must take decomposition into considera-
tion.

– Organizational: The decomposition of the problem also yields the possibility to
have developers solve particular sub-problems in parallel. This allows to organize
the team according to the particular composition of the models. Indeed in conven-
tional software engineering - especially for large projects - the organization of the
development team is typically based on the problem/product architecture and com-
ponent structure.

These considerations show that the possibility to decompose a model into several frag-
ments potentially spread across different artifacts and expressed in different languages
with clearly defined interfaces greatly influences the development process.

Typically the model composition boils down to the transport of names and related
information in the interfaces between the artifacts each encapsulating a part of the com-
posed model. Names are the primary mechanism to refer to when importing some con-
cept from another artifact. Names come with a lot of related information which includes
types, method signatures, etc. But most importantly a name needs to be equipped with
the kind of model element it represents, e.g., a method, an attribute, a state, an activity;
i.e., the respective concept of the DSL. In behavioral languages it is usually necessary
to provide some knowledge about behavioral dependencies, such as order dependen-
cies of messages, maximal waiting time before a timeout is executed within the answer
awaiting sender, etc. A different example is the composition two models, one being a
class diagram and the other an OCL invariant. There the name of a class used in the
invariant determines which attributes are valid to be used in the OCL invariant. This
name based dependency is independent from the actual form of syntactic composition,
i.e., it does not matter whether the two models are expressed in separated artifacts or
combined in one artifact using language embedding.

4 Compositional Generators

In practice it is of interest to defer the actual execution of model composition to a later
phase of the development or respectively compilation process. This means that while
the semantic composition is well known during the creation of the models, the actual
composition takes place in a later phase. This deferring of the composition is a major
achievement of modern programming languages. Taking the GPL Java as an example, it
is well known how classes are combined together, but the actual technical composition
- namely the linking - is conducted later on (i.e., there is no source code being copied
into a single monolithic source artifact). Instead each source artifact containing a class
definition is being compiled independently and only when starting the program these
compiled classes are then linked together.

Transferring this idea to the field of compositional modeling and in particular code
generators, this means that models are not composed together directly, but the individ-
ually generated code will later be linked together. Especially in the case of heteroge-
neous modeling languages, it is an obvious consequence that a compiler infrastructure is
needed which provides a modular compilation unit for each of the individual languages.

Proceedings of MPM 2013 3

Towards Compositional Domain Specific Languages



The implementation of such compilation units should be independent of other genera-
tors, because only then the composition of DSLs and their paradigms can be carried out
in a rather flexible way with respect to code generation.

As an example consider a generator for JPA compatible Java implementations of a
class diagram. A second generator creates a graphical web information system out of
class diagrams which enables users to explore data structures. A third generator adds
state to the objects described by Statecharts. All generators should be usable indepen-
dently but also easily be composable. Now consider that for example the JPA generator
creates Java classes with a specific constructor with parameters while hiding the default
constructor. If all three generators are to be used together the two other generators have
to take the JPA generator’s behavior into account in order to produce valid Java code;
i.e., they need to use the JPA classes with the correct constructor and in particular can-
not assume the availability of the default constructor. Ideally this dependency is handled
in a transparent way not obstructing the independence of each generator individually.

Although partially solved for certain instances, a general solution for the problem of
a flexible composition of generators is an ongoing research task. It is to be examined in
which way generators can be combined using a suitable interface. In the example above,
it would be desirable to have the JPA generator provide the information necessary to
use the generated domain model classes which in turn can then be correctly used by the
Statecharts and the web information system generators (i.e., by the code generated by
these generators).

Of course when composing generators, it is not only necessary to have composable
interfaces on the generator level, but also to ensure that the generated results are seman-
tically consistent and thus compositional too. Therefore it absolutely makes sense to
first solve composition of multi-paradigm models respectively their languages semanti-
cally, before this is implemented in generator tools.

References

1. Bezivin, J., Bouzitouna, S., Fabro, M.D.D., Gervais, M.P., Jouault, F., Kolovos, D.S., Kurtev,
I., Paige, R.F.: A Canonical Scheme for Model Composition. In: Verlag, S. (ed.) Proceedings
of the Second European Conference on Model-Driven Architecture (EC-MDA) 2006. Bilbao,
Spain (July 2006)

2. Bosch, J.: Delegating Compiler Objects: Modularity and Reusability in Language Engineer-
ing. Nordic J. of Computing 4, 66–92 (1997)

3. Bravenboer, M., de Groot, R., Visser, E.: MetaBorg in Action: Examples of Domain-specific
Language Embedding and Assimilation using Stratego/XT. In: Summer School on Genera-
tive and Transformational Techniques in Software Engineering (GTTSE’05). Braga, Portugal
(July 2005), http://www.cs.uu.nl/

˜

visser/ftp/BGV05.pdf

4. Bravenboer, M., Visser, E.: Designing Syntax Embeddings and Assimilations for Language
Libraries. In: 4th International Workshop on Software Language Engineering (2007)

5. Dukaczewski, M., Reiss, D., Rumpe, B., Stein, M.: MontiWeb - Modular Development of
Web Information Systems. In: Rossi, M., Sprinkle, J., Gray, J., Tolvanen, J.P. (eds.) Proceed-
ings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09) (2009)

6. Grönniger, H., Rumpe, B.: Modeling Language Variability. In: Calinescu, R., Jackson, E.
(eds.) Foundations of Computer Software. No. 6662 in LNCS, Springer, Redmond, Microsoft
Research, Mar. 31- Apr. 2 (2011)

Proceedings of MPM 2013 4

Towards Compositional Domain Specific Languages



7. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore 1.0 - Ein
Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen. Tech. Rep.
Informatik-Bericht 2006-04, Software Systems Engineering Institute, Braunschweig Uni-
versity of Technology (2006)

8. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore: a Framework for
the Development of Textual Domain Specific Languages. In: 30th International Conference
on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion
Volume. pp. 925–926 (2008)

9. Kats, L.C.L., Kalleberg, K.T., Visser, E.: Domain-Specific Languages for Composable Ed-
itor Plugins. In: Proceedings of the Ninth Workshop on Language Descriptions, Tools, and
Applications (LDTA 2009) (April 2009)

10. Krahn, H.: MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im Software-
Engineering. Ph.D. thesis, RWTH Aachen University (2010)

11. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a Framework for Compositional Develop-
ment of Domain Specific Languages. International Journal on Software Tools for Technology
Transfer (STTT) 12(5), 353–372 (September 2010)

12. Völkel, S.: Kompositionale Entwicklung domänenspezifischer Sprachen. Ph.D. thesis, TU
Braunschweig (2011)

Proceedings of MPM 2013 5

Towards Compositional Domain Specific Languages




