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ABSTRACT

In software engineering reference models are used as a guidance for implementing potential solutions to recurring problems,
e.g., as reference architecture models or reference data models. Despite the broad use of reference models in practice, there is
no clear definition for what it means that a concrete model conforms to a reference model. This prevents us from developing
automated tools for conformance checking. In this paper, we provide a semantically useful definition of conformance of concrete
models to reference models. We then present concepts and tools for concrete automated conformance checks for (1) class
diagrams, (2) feature diagrams, and (3) state charts, which we developed based on that definition. Finally, we discuss (1) the
commonalities and differences of the presented automated conformance checks and (2) general design considerations for
developing reference model conformance checkers in the context of model-driven engineering. Key findings are that reference
models should use the same language as their concrete models, conformance checks require conformance mappings between
reference and concrete model elements, and conformance rules must be based on formally defined language semantics.

KEYWORDS Reference Models, Conformance, Model-Driven Engineering, Semantic Refinement, UML.

ows for smart manufacturing (Michael et al. 2023), business
processes2 (Kirchmer & Franz 2020) or the famous ISO OSI
Layer reference model (ITU-T 1994). However, interpretations
of reference models are quite diverse (Arora et al. 2022).

In Model Driven Engineering (MDE) we utilize models as
first-class citizens to formally specify systems, using automated
methods that take these models as input, e.g., for analysis or
code generation (Holldobler et al. 2021). In contrast, reference
models are mostly used informally (Gray & Rumpe 2021).

Reference models specify properties that must hold for con-
crete models, e.g., which model elements may or must exist and
how they interrelate. However, what existing reference models

1. Introduction

Reference models (Fettke & Loos 2006) are broadly used in
practice, e.g., for creating standards (ITU-T 1994), employing
best-practices (Gamma et al. 1997), education, and communica-
tion. A typical way of employing reference models in software
engineering is to develop and communicate a reference model
informally with a diagram and accompanying text (e.g., Gamma
et al. 1997), sometimes accompanied by an implementation
(e.g., Lu et al. 2020), and to expect that developers build mod-
els, components, or applications, which resemble the reference
model. In the existing literature we find reference models, e.g.,

for cloud! or IoT architectures (Bauer et al. 2013), digital shad-
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specify for their concrete models and how they do that varies
considerably in practice. While a lot of research has already
been put into reference modeling (e.g., Fettke & Loos 2006;
Frank 2006; Becker & Delfmann 2007), and especially refer-
ence architectures (e.g., Garcés et al. 2021; Bucaioni et al. 2022;
Cloutier et al. 2009), the use of reference models in MDE has
not been received the same attention.

2 e.g., https://orwiki.org
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A major benefit of using reference models is that concrete
models can be compared to them. However, currently no generic
conceptualization of conformance to a reference model exists.
At the moment, conformance is simply an informal notion that
has to be checked manually. This leads to ambiguous under-
standing and manual effort. A formal definition of reference
model unifies the understanding and enables automatic tooling.
This paper’s objective is to lay the foundations for automated
conformance checks of reference models in the context of MDE.
We investigate the research question “How can automated con-
formance checks be implemented for reference models in model-
driven engineering?”.

As a motivating example, Figure 1 shows a simple reference
model and a concrete model alongside two so-called incarnation
mappings which map concrete model elements or incarnations
to their corresponding reference model elements. The refer-
ence model shows a Class Diagram (CD) of the adapter pattern
(Gamma et al. 1997). The concrete model shows a CD of a
graphics library, which implements the pattern twice. The two
incarnation mappings are visualized by edges from the concrete
to the reference models that are labeled with an ID accord-
ing to the mappings they belong to Figure 1. Concerning the
incarnations: First, the GraphicalEditor takes the role of
the Client and the GraphicalObject interface takes that of
the Target interface. The EdgeAdapter takes the role of the
Adapter to adapt the Edge. Analogously, the concrete model
implements the adapter pattern by adapting the Node via the
NodeAdapter.

To enable an automated conformance check, the meaning of
conformance needs to be well-defined. While the specifics
might differ from language to language, any conformance
checker must be able to decide whether a concrete model cap-
tures the essence or meaning of a reference model and thus re-
quires some formal notion of model semantics (Harel & Rumpe
2004).

To make automated conformance checks available for MDE,
we require a formal understanding of reference models, their
notation, their semantics, and the mapping of concrete models
to their reference model. The contributions of this paper are as
follows:

1. We formally define reference models and conformance
relations (section 3),

2. We present the concept and tools of three concrete au-
tomated conformance checks, for CDs (subsection 4.1),
Feature Diagrams (FDs) (subsection 4.2) and statecharts
(subsection 4.3),

3. We discuss general aspects of conformance as well as
language-specific considerations, and examine commonal-
ities and differences of our approaches (section 5).

In further sections we comment on related work (section 2) and
conclude in section 6.

2. Related Work

Conformance checking—sometimes also called compliance
checking—of concrete models and reference models can be
found for reference architecture models. E.g., Herold et al.
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(2013) present a rule-based architecture conformance checking
approach with an industrial case study. They use an explicit
meta-model for reference architectures and a set of rules to au-
tomatically evaluate whether an architecture model conforms
to the meta-model. Similarly, Bucaioni et al. (2022) use meta-
models for specifying reference architectures. Weinreich &
Buchgeher (2014) extract the architecture from source code
and check the conformance to rules, that specify the reference
architecture. Caracciolo et al. (2015) employ a DSL for refer-
ence architecture conformance rules. In our approach we model
reference models in the same language as the concrete model.
This allows us to specify reference models for each modeling
language without developing a new language for rules, although
we still need to develop concrete rules for each language.

Kim & Shen (2007) evaluate the structural conformance of
CDs to design patterns. Their design patterns are specified using
extended UML CDs. They decompose the model for efficient
conformance checks and variants. Our work is not limited to
CDs or predefined design patterns.

Conformance checking techniques are also used between
models and their meta-models. E.g., Egea & Rusu (2009) vali-
date the conformance of models to meta-models by including
context conditions. These approaches use OCL or programming
languages to define context conditions. In contrast, we check
the conformance relation of two models (reference model and
conformance model) in the same language.

Other approaches to conformance checking include the com-
pliance of models to policies. E.g., Tran et al. (2012) check
whether a model complies to regulatory policies, as stated, e.g.,
by legislation. They describe a model-based approach, which
is tailored for non-developers, using an OCL-like, extensible
DSL. The DSL core can be extended for different domains. We
follow a different approach as we have a different target group:
Our users are modelers and language developers. Therefore, ref-
erence models in our approach are models in the same language
as the concrete models.

We have previously discussed notions of a conformance
relation between concrete and reference models as well as in-
carnation mappings, focusing primarily on CDs (Konersmann
et al. 2024). Now we expand upon and revise some of those no-
tions to craft a more formal definition better suited for enabling
automatic conformance checking and further tool-support.

Our work on semantic differencing of class diagrams (Maoz
et al. 2011b; Nachmann et al. 2022; Ringert et al. 2023), feature
diagrams (Drave, Kautz, et al. 2019), component-and-connector
architectures (Butting et al. 2017), activity diagrams (Maoz
et al. 2011a; Kautz & Rumpe 2018), and statecharts (Drave,
Eikermann, et al. 2019) can be seen as preliminary work for
this paper. In our approach, we compare two models regarding
their semantics and if possible, compute diff witnesses, which
are legal instances of the first model that are not permitted by
the second. If no such witnesses exist, we can conclude that the
first model semantically refines the second.

Conformance checking is a form of comparative model anal-
ysis. In software engineering, we usually distinguish between
two types of analyses: static and dynamic. For computer pro-
grams, the former analyzes the program’s code to reason over
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Figure 1 The adapter patterns as reference Class Diagram (CD) model (left) and a concrete model (right) with two incarnation
mappings (arrows). The first and second incarnation mappings mark the NodeAdapter, respectively the EdgeAdapter and adja-
cent elements as incarnation of the reference model. Both share mapped elements (GraphicalEditor and GraphicalObject).

all possible behaviors at runtime, while the later executes the
program and observes the executions. Analogously, models can
be analyzed by considering the semantic implications of their
abstract syntax or by executing/instantiating them. Ernst (2003)
argues that while these two types of analyses are traditionally
viewed as separate domains with different use-cases, they are
in fact complementary and can be used in tandem. Parsons
& Murphy (2004) combine dynamic and static analysis to in
a framework that automatically detects performance antipat-
terns in a component-based systems. Richner & Ducasse (1999)
present an approach for reverse engineering object-oriented ap-
plications by utilizing a logic programming language to query
both static and dynamic information, and then using that in-
formation to create high-level views. Similarly, (Systa 1999)
discusses reverse engineering of Java-based software and fo-
cuses in particular on the use of static and dynamic analysis to
create both static and dynamic views of the software-system and
how these views can be connected. In the context of automatic
conformance checking, the extraction of views from concrete
software-system is useful when no concrete model of a system
exists or if it is outdated. The extracted view could then be
checked against a given reference model to ensure compliance
to software requirements and specifications.

3. Concept and Definition

The concept of a reference model is contingent on its relation
to other more concrete models. By itself a reference model is
simply a model within a given modeling language that is used
to describe domain concepts and their domain-specific relations
in an exemplary manner. A reference model may be a solution
to a concrete problem that is now used in a different context as
a reference for a set of similar, related problems. Alternatively,

a reference model may be specifically constructed as a design
pattern. Regardless of its origin, its contextual purpose defines
a reference model. (Konersmann et al. 2024)

A reference model must in some manner be more abstract
than the concrete models derived from it, which we refer to as
concretizations: While the latter each describe a specific solu-
tion to a problem within some application domain, the former,
at least in this context, represents a solution approach for a class
of similar problems. Conversely, we might say that a concretiza-
tion is in some manner a refinement of the reference model,
as its domain concepts and domain-specific relations should
translate to the derived concrete model. Therefore, in order to
develop tools that can automatically check for conformance of
a concrete model to a reference model, we must consider some
formal notion of model-semantics. Moreover, to ensure that
a semantic comparison is always possible, we require that the
concrete model is of the same language, as the reference model.

As a general requirement for conformance, we state that the
essence or meaning of the reference model must be preserved
in the concrete model, or more formally the concrete model
must semantically refine the reference model when we consider
translated instances of incarnations within the semantic domain.
Here, the term incarnation refers to an element of the concrete
model that represents, or we say incarnates, a corresponding
element of the reference model. In order to translate instances of
incarnations correctly, they need to be mapped to their respective
reference elements. Accordingly, such mappings are referred to
as incarnation mappings.

Note the difference between instance and incarnation: An
incarnation is usually the same kind of element as its corre-
sponding reference element, an instance, however, is an element
within the semantics and therefore not of the same kind, e.g.,
the incarnation of a class is usually also a class, but the instance
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of a class is an object (see Figure 2 for reference).
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Figure 2 The class NodeAdapter incarnates the class
Adapter. Both are instantiated by corresponding objects.

The general semantic requirement for conformance is visu-
alized in Figure 3. Accordingly, we assume that there is some
semantic mapping sem that relates models of a given modeling
language to corresponding instances within a semantic domain
as described by Harel & Rumpe (2004). Since the elements of
the concrete model might have different names than the elements
of the reference model, a direct comparison of semantics is often
not helpful. Instead, we require an incarnation mapping M of
concrete elements to reference elements, which then allows us
to translate the instances of incarnations. As this translation
depends on both the semantic mapping sem and the incarna-
tion mapping M, we denote it as tr37". Analogous to semantic
refinement which requires that sem(A) includes sem(B), we
require for conformance that sem(A) includes tr3" (B). This
semantic refinement check is possible using semantic-difference
analysis, as discussed in section 2.

3.1. Incarnation Mapping
An incarnation mapping is used to map incarnations in a con-
crete model to corresponding elements in a reference model.
The kinds of elements that can be mapped must be determined
when constructing the conformance relation and depend both on
the modeling language and the use-case. The granularity of this
classification into element-kinds should at least be fine enough
to correspond to the different kinds of element-instances within
the semantic domain of the modeling language. It is usually
advisable to only permit mapping elements of the same kind.
However, for certain languages it might be sensible to allow
for composition and decomposition of elements when deriving
a concretization from a reference models. Here, multiple ele-
ments of different kinds might be mapped to one element, and
vice versa. This occurs, e.g., when incarnating a class from a
reference CD via multiple classes and connecting associations.
To allow for (de-)composition, we define an incarnation
mapping as a partial function that maps sets of elements from a
concrete model to sets of elements from a reference model. As
such, let ELEM(L) be a universe of elements for the language
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L and let elem : £ — 2ELEM(L) be a function that returns the
set of elements from a given model in the language. We define
an incarnation mapping as follows:

Definition 3.1 (Incarnation Mapping: M). Given a modeling
language £ and two models A, B € L, an incarnation mapping
from B to A is a partial function M : elemp(B) _ pelemp(A)
such that for all sets of concrete elements I C elem,(B) we
have [ # Q@ = M(I) # @ and M(®) = L.

3.2. Conformance Relation

A conformance relation relates concretizations to their corre-
sponding reference models in a reflexive and transitive manner.
Any conformance relation must adhere to the general seman-
tic requirements for conformance, but is otherwise specific to
a modeling language and use-case / application domain. It
also requires an incarnation mapping as an additional parameter.
While we could simply consider the existence of some mapping
that induces conformance, such a mapping might not always
be sensible. For tooling purposes, it is therefore also generally
preferable to have a mapping encoded by a domain expert to
ensure practical relevance.

Let us now present a more formal definition for a confor-
mance relation of a given modeling language £. We start by
defining a simple notion of conformance that takes as input only
a single incarnation mapping and then extend the definition to a
non-empty set of incarnation mappings.

Definition 3.2 (Conformance Relation: c¢f). Let £ be a mod-
eling language with a corresponding semantic domain D and
a semantic mapping sem : £ — D. Furthermore, for any in-
carnation mapping M, let tr\]" : D — D be a transformation
that renames instances within the semantic domain according to
M.

Given a universe of incarnation mappings MAP(L) over the
language £, we say that ¢f C L x MAP(L) x L is a confor-
mance relation if and only if for all models A, B,C € L with
corresponding incarnation mappings Mj from B to A and M
from C to B the following properties hold:

1. ¢f(B, My, A) = tryj'(sem(B)) C sem(A)
(semantic refinement),

2. ¢f(A,idy, A) for the identity mapping id4 on A
(reflexivity),

3. ¢f(C,My,B) Acf(B,My,A) < ¢f(C,Mpo My, A)
(transitivity).

If the conformance relation is clear from context, we may
also write B — ) A instead of ¢f(B, M, A). Moreover, we
can extend the relation to sets of incarnation mappings such that
for any M C MAP(L) we define:

B—pmA:i<= VM e M:B—p A

Note that the first property in this definition corresponds to
the general semantic requirements as depicted in Figure 3, while
the second and third property in the definition ensure reflexivity
and transitivity, respectively. Choosing equivalence for the first
property, would have rendered the second and third redundant.
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Figure 3 Given a reference model A, a concrete model B, and an incarnation mapping M, as well as a corresponding translation
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of semantic elements t737", the semantic requirement for conformance is that: tr3}" (sem(B)) C sem(A).

However, we chose an implication for the first property, to allow
for custom conformance relations that fit additional require-
ments regarding the language and use-case. Alternatively, we
could have required a more use-case specific definition of for-
mal semantics, but from our experience (Lindt et al. 2023), this
has several disadvantages:
1. We sacrifice a more general notion of semantics for a given
language, reducing comparability across use-cases.
2. It is rather difficult to construct a precise semantics that
encompasses all relevant aspects of a given use-case.
3. The resulting semantics would usually be fairly complex
and cumbersome to deal with.
4. It would also put an unnecessarily heavy burden of proof
on the developers of conformance checking tools.
For the sake of completeness, we also provide a formal defini-
tion of a reference model and a concretization:

Definition 3.3 (Reference Model). Given models A,B € L
with an incarnation mapping M from B to A such that
B —— 1 A, the model A is called a reference model.

Definition 3.4 (Concretization). Given models A, B € £ with
an incarnation mapping M from B to A such that B — s A,
the model B is called a concretization of A.

4. Application of Conformance Checking

In this section we apply the general concept of conformance
from section 3 to three modeling languages and demonstrate the
developed tools. As modeling languages we have chosen CDs,
FDs, and statecharts. For one, these modeling languages are
widely known and used in practice. Furthermore, they describe
different concepts and are used to demonstrate different cases
of conformance checking. (1) CDs describe data-structures.
Mapping and conformance check are directly implemented in
Java. (2) FDs model product-lines and configuration options.

The conformance checker utilizes a translation to logic formu-
las and employs a custom mapping language that allows for
(de-)composition of features during incarnation. (3) Statecharts
model the behavior of systems. The approach uses an encoding
for incarnations that permits the mapping of complex expres-
sions such as string-comparison. An SMT-Solver is then used
to check conformance for statecharts.

4.1. Class Diagram (CD)

CDs are the most widely employed Unified Modeling Language
(UML) models in industry and research (Dobing & Parsons
2006; Langer et al. 2014; Hutchinson et al. 2011). They are used
to model data-structures and object-oriented software-systems.
A CD contains type-declarations and defines associations be-
tween types. For our purposes, we consider the UML/P variant
of CDs (Rumpe 2016). As such, we differentiate between three
kinds of types: classes, interfaces, and enumerations. A type al-
ways has a name. Classes may contain members, i.e., attributes
and method-signatures, and each enumeration defines a set of
constants. An association always connects two types. It can
have a name and a direction. Each side of an association has a
role-name, and may also have a cardinality. Compositions exist
as a special form of associations. For our purposes, we consider
the formal semantics of a CD to be the set of its valid instances,
i.e., the object structures it permits (Maoz et al. 2011b).
Well-known examples for reference CDs are the design pat-
terns introduced in the eponymous book by Gamma et al. (1997).
Concretizations of these patterns are usually integrated into
larger systems. We require that each concretization conforms
independently to its corresponding reference CD.

Example Consider the example CDs in Figure 1. The
adapter pattern modeled in the reference CD on the left is
incarnated twice within the CD on the right. For this pur-
pose we use two injective incarnation mappings. Note that
the class GraphicalObject incarnates the reference class

Towards a Semantically Useful Definition of Conformance with a Reference Model 5



Target in the context of both mappings. On the other hand,
the class Adapter is incarnated by both NodeAdapter and
EdgeAdapter, each having a directed association with the role-
name adapts to an incarnation of the reference class Adaptee,
named Node and Edge respectively. Note that NodeAdapter
and Node are mapped to their respective reference classes within
the same incarnation mapping. Thus, incarnation mapping I by
itself produces a valid concretization of the reference diagram.
The same goes for incarnation mapping II.

Approach As opposed to a closed-world assumption on se-
mantics which forbids instances of elements that are not ex-
plicitly modeled in the CD, our approach necessitates an open-
world assumption that considers the reference CD to be under-
specified (Nachmann et al. 2022; Ringert et al. 2023). This is
because the concrete model should be permitted to contain addi-
tional elements that are not incarnations of reference elements
within the context of an incarnation mapping.

This assumption complicates the semantic comparison some-
what, as we now have to consider instances of elements not
modeled in the CD as part of its semantics. However, to ensure
semantic refinement after translation, it is sufficient to check for
each mapping if the concrete CD is an expansion (or syntactic
refinement) of the reference CD when translated (Fahrenberg et
al. 2014; Lindt et al. 2023).

In this manner, conformance checking for CDs can be re-
duced to a structural analysis: We first check for each element
of the reference CD if there is a corresponding element of the
same kind in the concrete CD that claims to be its incarnation.
Then we check conformance by ensuring that its properties are
preserved or “syntactically refined”, and related elements in
the reference CD have corresponding incarnations in the con-
crete CD. A class in the reference CD must be incarnated by
a class in the concrete CD, such that its incarnation contains
incarnation of all of its members, extends/implements incar-
nations of all of its super-types, and connects to incarnations
of all of its associations. By default inherited incarnations of
attributes and associations are considered, as well. Interfaces
and enumerations are checked analogously. The incarnation
of an association must connect incarnations of its types, but
also preserve navigability and defined cardinalities. For each
attribute in the reference CD, we require that its incarnation
must be contained in or inherited by the incarnation of its class.
Furthermore, the type of the incarnation has to be compatible
with the type of the reference attribute.

Implementation  We have implemented this approach as part
of the CD4Analysis project which is publicly available on
GitHub?. In order to map reference elements to their correspond-
ing incarnations, we use the stereotype feature (Holldobler et al.
2021; Gogolla & Henderson-Sellers 2002) which is included in
the CD4Analysis grammar. Additionally, we also allow map-
ping by name as a fall-back. More specifically, when searching
for incarnations of a specific kind, we use a combined match-
ing strategy that is composed of individual matching strategies
which all implement the same interface. The interface is dis-
played in Listing 1.

3 https://github.com/MontiCore/cd4analysis
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public interface MatchingStrategy<T> {
List<T> getMatchedElements (T srcElem);
boolean isMatched(T srcElem, T tgtElem);
}

Listing 1 Matching strategy interface

The combined strategy for classes and attributes first searches
for a concrete element with a corresponding stereotype and after-
ward considers its name. The combined strategy for associations
additionally considers the source type and target role-name of
directed associations, when no concrete association with a cor-
responding stereotype or name was found. In summary the
implementation works as follows:
1. Check if each reference element is incarnated:
(a) Check if a concrete element has a corresponding
stereotype,
(b) else, check if a concrete element has the same name
(c) else, check for associations if a concrete element has
a matching source type and target role-name in a
navigable direction
2. Check each incarnation for conformance:
(a) Check if the properties of the reference element are
preserved or refined.
(b) Check if related elements include necessary incarna-
tions.
After building the project, the CD conformance check can be
performed by executing the MCCD. jar as seen in Listing 2.

java -jar cdtool/target/libs/MCCD.jar \
-i "doc/GraphAdapter.cd" \
--reference "doc/Adapter.cd" \
__map "ml mw "m2 n

Listing 2 Executing the CD conformance checker

Evaluation To evaluate our implementation, we translated the
example from Figure 1 into the textual format of CD4Analysis
using stereotypes to encode the two mappings. Here, we only
need to map the types and methods explicitly, as the tool is
able to match the associations of the reference CD to their
incarnations based on the source type and target role-name. In a
second test, we mapped Node to Adaptee in both mappings:

<<ml="Adaptee", m2="Adaptee">> class Node {
<<ml="myOperation", m2="myOperation">>
void getLabel () ;

}

Listing 3 Modified mapping: Node is now mapped to
Adaptee in both incarnation mappings.

Check if GraphAdapterF conforms to Adapter
with respect to ml
CONFORM
Check if GraphAdapterF conforms to Adapter
with respect to m2
Node is not a valid incarnation of Adaptee
Incarnations of associations are missing or
incorrect!
[1]EdgeAdapter—> (adapts) Edge
is not a valid incarnation of
[1]Adapter—> (adapts)Adaptee
NOT CONFORM

association [11;

association [11;

Listing 4 Tool output for non-conformance
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Shown in Listing 4 is the tool’s output on the console inform-
ing us that Node is not a valid incarnation concerning the second
mapping, as the incoming association is missing or incorrect.
This happens because the source-class NodeAdapter is now no
longer mapped to Adapter by the second mapping.

Note that concerning this example it is possible to use a
single non-injective incarnation mapping as seen in Listing 5.

classdiagram Concrete {
<<m="Client">> class GraphicalEditor;

<<m="Target">> interface GraphicalObject {
<<m="operation">> void display();
}
association GraphicalEditor
—> (uses) GraphicalObiject;
<<m="Adapter">> class NodeAdapter
implements GraphicalObject;

<<m="Adaptee">> class Node{
<<m="myOperation">> void getLabel () ;
}
association [1l] NodeAdapter -> (adapts) Node [1];
<<m="Adapter">> class EdgeAdapter

implements GraphicalObject;

<<m="Adaptee">> class Edge{
<<m="myOperation">> void getLabel () ;

}

association [1l] EdgeAdapter -> (adapts) Edge [1];

}

Listing 5 Concrete CD with one incarnation mapping

‘While this is more convenient, it also somewhat reduces the
strictness of the conformance check, as we only require that
each incarnation of a reference element must also contain or
connect to at least one incarnations of each related element in the
reference CD. Still, we found it necessary to include this option
for the sake of practicality, as the number of needed injective
mappings might potentially increase exponentially with size of
the concrete CD.

Outlook It is currently not possible for a concrete element
to be an incarnation of multiple reference elements within the
same mapping. However, we might consider composition and
decomposition of reference elements during incarnation, in the
future. For instance, an attribute in the reference CD might
be split into multiple concrete attributes or multiple reference
classes might be incarnated by one concrete class. Based on the
concept of 150% models (Gronniger et al. 2008), we might also
consider conformance to 150% reference CDs from which only
a subset of elements need to be instantiated. Note that we would
still operate under an open-world assumption with respect to
the semantics of the reference model. However, we would need
to consider the semantics of the concrete model under a closed-
world assumption. This is because the optional elements of the
reference CD must not be permitted to be instantiated within
the semantics of the concrete CD unless they were incarnated.
A similar approach for a mixed assumption on semantics was
introduced in Ringert et al. (2023) for the purpose of semantic
differencing.

4.2. Feature Diagram (FD)

FDs are used to model product-lines and configuration options
(Gronniger et al. 2008). An FD is a directed tree that describes
the dependency between individual features. A child feature
always depends on the parent feature. The potential sets of
child-features depends on the kind of edge used. An edge
can be mandatory or optional, and edges can be bundled into
an inclusive or exclusive selection. Furthermore, features can
require or exclude other features. The semantics of an FD is the
set of possible feature configurations (Schobbens et al. 2006).

Example An FD might be used to, e.g., model the product-
line for a car. When designing a new product-line for a different
model of car, the original FD can be used as a reference. To
conform to the reference FD, we have to ensure that for each
valid feature configuration of the new model, the set of incar-
nated reference features corresponds to a valid configuration
in the old model, i.e., the inter-dependency of the reference
features must be preserved by their incarnations. Consider,
e.g., the root feature CoolCar2 of the concrete FD on the right
side of Figure 4. It is mapped to the root feature CoolCar1 of
the reference FD on the left. The reference features Engine
and Gasoline are mapped to incarnations of the same name.
Moreover, we can see that the features NavigationsSystem
and Radio compose an incarnation of the optional reference
feature InfotainmentSystem. Note that the concrete FD con-
tains additional features that are not incarnations of any fea-
tures in the reference FD. This includes the added features
ComfortFunctionalities and AirConditioning, and the
Engine of CoolCar2, that can also be Electric or Hybrid as
opposed to the Engine of CoolCar1, which is only available
in the variant Gasoline.

Approach FDs can be translated into propositional formu-
las with each feature corresponding to a Boolean variable
(Durédn Toro et al. 2017). A child feature always implies its
parent feature. A parent feature also implies mandatory child
features. Inclusive and exclusive selections of child features
are translated using corresponding disjunctions. Similarly, a
requires-relations is translated into an implication, and an ex-
cludes-relations implies the negation of the targeted feature.
Now conformance checking can be reduced to a SAT-
problem in the following manner: First, translate the concrete
FD into a logical formula, then do the same for the reference
FD and negate the resulting formula. Next, translate the incarna-
tion mapping into a set of implications, where each incarnation
implies its reference feature. If we conjugate all the resulting
formulas, any valid variable assignment corresponds to a feature
configuration in the semantics of the concrete FD with an in-
valid set of incarnations, i.e., a diff-witness (Drave, Kautz, et al.
2019) that demonstrates non-conformance. On the other hand,
if no valid assignment exists, then the concrete model conforms.

Implementation For our implementation, we have utilized
the Java-library of the SMT-solver Z3*. We use the tex-
tual feature-diagram language of the MontiCore language-
family, as well as a custom mapping language, also developed

4 https://github.com/Z3Prover/z3
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Figure 4 Feature Diagram conformance example

using MontiCore, that allows for composing and decomposing
incarnations of reference features. Similar to our approach for
CDs, we match features by name as a fall-back option. The tool
has been integrated into the feature-diagram project which
is publicly available on GitHub’. After building the project,
the FD conformance check can be performed by executing the
FDConf . jar as seen in Listing 6.

java -jar fd-conformance/target/libs/FDConf.jar \
—--reference "doc/Reference.fd" \
-—concrete "doc/Concrete.fd" \

—--map "doc/Mapping.map"

Listing 6 Executing the FD conformance checker

Evaluation We evaluated the tool using the example from
Figure 4. The FDs were translated to the textual syntax of
MontiCore’s feature-diagram language and the mapping
encoded in our custom mapping language:

mapping Mapping {
CoolCar2 ==> CoolCarl;
NavigationSystem ++ Radio ==> InfotainmentSystem;

}

Listing 7 Textual version of the mapping in Figure 4

When checking for conformance, the tool informs us that
the concrete FD does in fact not conform to the reference FD
concerning the provided incarnation mapping, as can seen from
the console output displayed in Listing 8.

To fix this issue it is necessary to also map the features

Hybrid and Electric to the reference feature Gasoline.

5 https://github.com/MontiCore/feature-diagram
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This is sensible as the reference FD models the previous product-
line with the reference feature Gasoline being the only avail-
able engine type. Our new product-line, however, has access
to alternative engine types: Hybrid and Electric. Since they
also represent engine types, we can map them as incarnations of
the engine type Gasoline from the reference FD. Note that we
now also have to explicitly map the concrete feature Gasoline.
The updated mapping is displayed in Listing 9.

Check if Concrete conforms to Reference with
respect to MapVl
NOT CONFORM

Concrete Configuration: [ComfortFunctions, Hybrid,
CoolCar2, Radio, Engine] is wvalid.
Reference Configuration: [CoolCarl, Engine] is NOT
allowed!
Listing 8 Tool output for non-conformance
mapping MappingV2 {
CoolCar2 ==> CoolCarl;
NavigationSystem ++ Radio ==> InfotainmentSystem;
Gasoline ==> Gasoline;
Electric ==> Gasoline;
Hybrid ==> Gasoline;

}

Listing 9 Updated mapping for the FDs in Figure 4

Outlook One feature of the feature-diagram language we
do not yet support is cardinalities for inclusive disjunction. This
is because they are not a standard feature of FDs and the con-
cept of allowing a specific range of multiplicities is not easily
translated to SMT. Additionally, our current notion of FD-
conformance is also agnostic to the structure of the FDs and
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only concerned with the formal semantics, i.e., the set of permit-
ted feature configuration. However, a structural check is worth
considering for the future as it could prohibit nonsensically-
structured concretization of well-structured reference FDs

4.3. Statechart

As our final application example, we present a conformance
checker for statecharts (Harel 1987; OMG 2017). Statecharts
are widely used to describe behavior in an accessible form. They
are applied in various domains, from rocket-science (Harris &
Patterson-Hine 2013; Alves et al. 2011) to interactions of the
stock market (Borshchev 2014; Dumas et al. 2002).

Statechart differ from the languages in the previous two
sections as they describe behavior. For the textual notation of a
statechart we use MontiArcAutomaton (Haber 2016; Ringert et
al. 2013) and for its semantics we refer to I/O automata (Drave,
Eikermann, et al. 2019; Rumpe 1996).

Example As arunning example to demonstrate the statechart
conformance checker, we use a login system. The reference
model is shown on the left side of Figure 5. This abstract model
shows an exemplary system with a simple login handling. Only
when a user is LoggedIn the input Actions lead to a Response.
When a user is LoggedOut, the input Action leads to an Error.
This statechart contains enough information to prove properties
over the behavior. Mainly that the system only responds after
login.

Using this statechart as a reference, we now develop a con-
crete system with more information, as seen on the right side
of Figure 5. In the concrete system the Login is performed
with a password of type String. The internal state contains a
number named counter. This counter can be increased with
the input-action incCounter. With getCounter the current
value of the counter is returned as response.

Refinement The transition function of a statechart X can be
mathematically described as a predicate

transy : state — input — state — output — B

The first parameter is the state from which the transition starts,
the next parameter is the input message. The third parameter is
the target-state of the transition and the fourth parameter is the
output produced. The predicate returns true iff the transition is
possible in the statechart. We omit partiality considerations in
this paper and instead refer to Rumpe (1996).

For refinement of statecharts, it is sufficient to show that
(Rumpe 1996):

Vstate input nextState output .
IransRefined state, input, nextState, output)

= 1ransoyiginal(state, input, nextState, output)

Every transition possible in the refined statechart is also allowed
in the original statechart. Semantic refinement of statecharts al-
lows proving properties over the more abstract statechart which
directly hold over the refined statechart. This general concept is
described in more detail in Broy & Stglen (2001).

Mapping To check conformance we additionally define map-
pings between concrete and reference statechart. Since there are
the three data types input, output and state, we use three
mappings instead of one.
1. maplnput: conclnput — reflnput Map from concrete in-
put to reference input.
2. mapOutput: concOutput — refOutput Map from concrete
output to reference output.
3. mapState: concState — refState Map from concrete state
to reference state.
These three mapping can also be combined into one mapping
using a sum-type @ (also called tagged union). For example
with unionMap: (conclnput ® concOutput & concState) —
(reflnput @ refOutput @ refState). However, for clarity we use
the three separate definitions instead of the unified definition.
Textually, the mapping is defined using a similar mapping
language as used for FDs. However, the expression language
is more powerful, e.g., supporting string comparison such as
password == "correct". Other operators like s&, !, +, -, %
are also allowed. For the example from above, we define the
mapping as shown in Listing 10.

stateMap ({ // Definition of State Mapping
Concrete.state == Known

==> Reference.state == LoggedIn;
Concrete.state == Anon

==> Reference.state == LoggedOut;

}

inputMap { // Definition of Input Mapping

Concrete.input == Input.GET_VALUE

==> Reference.input == Input.ACTION;
Concrete.password == "correct"

==> Reference.input == Input.LOGIN;

foool

Listing 10 Textual mapping for the statechart in Figure 5

Conformance Combining the mapping with semantic refine-
ment leads to the following formula:

Vstate input output nextState.
[rans Conerese (State, input, nextState, output)
= [ranSgeference (mapState state, maplnput input,
mapState nextState, mapQOutput output)

When this formula holds, the mappings are correct and the
two statecharts are in a conformance relation. To check this
property we use the Java API of the SMT-Solver Z3. To get
more detailed output and increase performance the formula from
above is split up into multiple SMT-checks. For each transition
in the reference model, e.g., the transition from Logged-In
to Logged-In with input Action and output Response (see
Figure 5), a separate SMT problem is created. This way each
SMT problem is smaller and thus more easily solvable, and we
get more information which can be used in the output.

The tool is part of the MontiArc project which is publicly
available on Github®. After building the project, the check can
be performed by executing the SCConformance. jar as seen
in Listing 11.

6 https://github.com/MontiCore/montiarc

Towards a Semantically Useful Definition of Conformance with a Reference Model 9



https://github.com/MontiCore/montiarc

SC Reference

Logged-Out

Action / Error

_____________________________

Actionsl Response

_ GetValue / counter

SC Concrete

Increase / Error

Anon

GetValue / Error (int counter)

Logir; ﬁ)assword==“correct"] / Logout /

Known
(int counter)

Increase / counter++

Figure 5 Statechart conformance example

java —-jar SCConformance. jar \
—-reference "Reference.arc" "Reference.cd" \
—-—-concrete "Concrete.arc" "Concrete.cd" \

—-map "Mapping.map"

Listing 11 Executing the statechart conformance checker

Output When the models conform, the output of the tool
is a single line confirming this. However, in case of non-
conformance, the tool provides sufficient information to the
developer on why they do not conform. As the problem is split
into multiple SMT-calls, we know which transition in the ref-
erence model is responsible. An example for input, state, and
output which lead to non-conformance are displayed.

To demonstrate this, the concrete model from Figure 5 is
modified. We add a transition from the state Anon to the state
Known with the action GetValue. This behavior is forbidden in
the reference statechart, since every action in the Logged-0ut
state leads again to the Logged-0ut state. Applying the confor-
mance checker now leads to the following output:

2f Concrete.arc:<28,2>:

Transition is *NOTx conform!
Anon->Known [input==Input.

[WARN]

GET_VALUE]/{};

Possible Transition in Concrete Model (Concrete) :
Anon{counter=2}
input=GET_VALUE

Known {counter=2}

output=[ ] value=[ ]

From State:
With Input:
To State:
Output:

Impossible Transition in Reference Model (Reference) :

From State: NotLoggedIn
With Input: input=ACTION
To State: LoggedIn
Output: output=[ ]

Listing 12 Tool output for non-conformance

In the first lines the file (Concrete. arc) and position (<28,2>)
of the non-conform concrete transition are shown. Furthermore,
the transition definition is printed so that the developer does not
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need to open the file. After that, example input for a possible
transition in the concrete model are printed. Such a transition is
not possible in the reference model.

This verbose output helps the developer to quickly under-
stand and fix the source of non-conformance. However, there
are certain assumptions. Firstly, the error is assumed to be in the
concrete model and not the reference model. This is compatible
with the normal process, where the reference model is developed
before the concrete model. However, there are cases where non-
conformance would be fixed by changing the reference model.
For example, when new corner-cases are discovered while using
the reference model on concrete use-cases. This case is the
reason why the “Impossible Transition in Reference Model” is
part of the output. The fix might be to add such a transition
to the reference model. Secondly, the mapping may be wrong.
This can be especially hard to find out, since the mapping is
only visible in the combination of all printed values.

Outlook The tool can currently only check conformance be-
tween two statecharts. Additionally, MontiArc supports the
composition of components. The behavior of this composi-
tion is defined using FOCUS (Broy & Stglen 2001). Checking
conformance of a network of components is left as future work.

5. Discussion

In the following we discuss both the general aspects of con-
formance as well as the language-specific considerations for
CDs, FDs, and statecharts. We examine commonalities and
differences found in our conformance checking approaches as
well as further utilization of reference models and conformance
checking in MDE.

5.1. General Aspects of Conformance

Our definition of reference models and conformance might be
more restrictive than similar notions found in existing literature.
However, we thereby guarantee semantic refinement of the



reference model in its concretization and thus preservation of
desired properties. Furthermore, this approach enables better
tool-support and comparability across different languages and
domains. While conformance across different languages could
be permitted as long as their semantics are comparable, a simple
translation of the reference model should then also be possible.

Nonetheless, we still allow for a great degree of flexibility:
Our notion of an incarnation mapping maps sets of reference
elements to sets of concrete elements and thus permits (de-
)composition during incarnation. Of course conformance might
be trivialized if a nonsensical mapping is chosen, but we do
not consider this to be a major issue, as these mappings should
always be constructed by someone with appropriate domain
expertise. The conformance relation itself is also customizable
as long as it still adheres to the basic requirement of seman-
tic refinement. This not only permits adjusting a conformance
relation to fit domain- or language-specific requirements not
easily captured by a formal semantics definition but often allows
these stricter conformance checks to scale better than standard
semantic difference analysis. As our application case for CDs
has demonstrated, it might be both sufficient and prudent to
only check for specific syntactic properties which then imply a
formal semantic refinement. We believe that this aspect is espe-
cially useful when considering more complex and semantically
richer modeling languages, as we might be able to reduce the
complexity of conformance checking by relying on sufficient
and easy-to-check criteria for semantic refinement.

5.2. Language-Specific Considerations

We now compare the three conformance checking approaches
and consider their commonalities and differences. Let us first
review the most distinctive characteristics of each approach:

Conformance checking for CDs reduces the problem to a
syntactic analysis that compares the elements in the concrete CD
with its mapped counterparts in the reference CD, determining
whether they are valid incarnations based on their properties and
related elements. Incarnation mappings for CDs are encoded
using stereotypes. This is sufficient, as we currently do not
consider (de-)composition during incarnation. Matching by
name is used as a fall-back. Our approach operates under an
open-world assumption regarding CD semantics and exploits a
notion of expansion or syntactic refinement in order to guarantee
semantic refinement. As it enables refinement checking, albeit
with some degree of incompleteness, it is complementary to
the semantic differencing operator by Ringert et al. (2023): the
former checking a sufficient condition for refinement, the latter
detecting diff-witnesses within a given scope that serve as a
conclusive counter-example.

Conformance checking for FDs is translated to a SAT-
problem and can be considered an extension of the open-world
semantic differencing operator introduced by Drave, Kautz, et
al. (2019). Incarnation mappings for FDs use a custom mapping
language that allows for (de-)composition of features during
incarnation. Matching by name is used as fall-back.

Conformance checking for statecharts utilizes an SMT-solver
to translate expressions that map states, input, and output from
the concrete to the reference model. Incarnation mappings for

statecharts use a custom mapping language similar to that used
for FDs, although more powerful, as it can map a variety of ex-
pressions that are then interpreted by an SMT-solver. However,
(de-)composition and a name-based matching as a fall-back
are currently not supported. Our notion of conformance is
considerably stricter than the semantic requirement outlined in
Definition 3.2, as we not only consider the automaton’s behavior
as a whole (black box view), but also each individual transition
(glass box view). This both simplifies the check and at the same
time allows for handling a more expressive subset of statecharts
than previous semantic differencing operators (Butting et al.
2017; Drave, Eikermann, et al. 2019). For example, infinite
state and message spaces are allowed. This was demonstrated
in the example use case (see Figure 5) with the natural number
counter and the string password.

We observe that currently only the conformance checker
for FDs permits (de-)composition of incarnations, owing to
the simplicity of the language. Moreover, the conformance
relation is equivalent to the semantic requirement, thus allowing
for complete refinement checking. However, as mentioned
before, this permits the modeling of structurally-nonsensical
concretizations. To mitigate this issue, it might be reasonable to
add additional structural requirements to conformance even if
they do not affect the formal semantics, e.g., requiring a partial
ordering of incarnations within the tree structure of the concrete
FD that corresponds to the tree-structure of the reference FD.

Next in terms of complexity is the conformance checker for
CDs. By making the conformance relation slightly stricter than
the formal semantics, we are able to avoid bounded model check-
ing and additionally consider aspects of CDs not captured by the
semantics that are relevant for code-generation and dynamic as-
pects of programs (Lindt et al. 2023). (De-)composition is more
difficult to handle here, as (1) a CD element can have multiple
instances within an individual object-structure and (2) different
kinds of elements would need to be combined to or derived
from a single element. For example, if a class is split into two
classes during incarnation these classes need to be connected
via association or an inheritance relation. Finally, statecharts
are arguably the most complex and expressive out of the three
languages. Accordingly, we use the most complex form of map-
ping and consider a comparatively strict glass-box view for the
purpose of conformance. Since we can map complex expres-
sions, name-based matching as a fall-back is not straightforward
to implement and would require dedicated effort.

A general commonality found among our approaches for
conformance checking is a notion of under-specification or
open-world assumption regarding the semantics of the reference
model. The examples that we chose all provide reference models
that constitute the minimal requirements for a concrete system,
which the concrete model may extend/expand. While it is also
possible for reference models to describe more than the strictly
necessary aspects of a system, concrete models might still con-
tain yet more elements describing additional functionalities or
structures. The observed necessity of an open-world assump-
tion fits well with our understanding of semantic refinement of
models in the early design phases of development (Ringert et al.
2023), as the concretization of reference models is ultimately
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a variant of such refinement. As such, we argue that an open-
world approach would also be appropriate for other kinds of
reference models not discussed in this paper, such as reference
architecture model: e.g., a three-layered reference architecture
model for business information systems requires at least three
layers (UI, business logic, persistence) in its concretizations.
However, other layers may also exist.

In general, we found that despite the commonalities regard-
ing semantics, the conformance relations and conformance
checking approach need to be defined and implemented in a
language-specific manner. This language and use-case specific
customization of the conformance relation often simplifies the
operation when compared to traditional refinement checks and
semantic differencing, and thus allows handling more expressive
variants of modeling languages without sacrificing the general-
ity of the underlying semantics definition. We therefore believe
that designing conformance checkers in a modular and extensi-
ble manner is vital, as it allows for better configuration of the
conformance relation to fit a specific use-case. This can be done
by, e.g.,, utilizing the strategy pattern (Gamma et al. 1997).

5.3. Automatically Deriving Concrete Models and Arte-
facts

In this paper, we have focused mostly on the design and com-
pliance aspects of concrete systems. However, the aspect of
implementation is also of interest to us. If a reference model
additionally provides a handwritten reference implementation,
we believe that it should be possible, at least in some cases,
to automatically adapt this code for a concrete system given
a corresponding concrete model with appropriate incarnation
mappings that then conforms to the reference model. Of particu-
lar interest are CDs, as they are well-suited for code generation
(Rumpe 2017) and extension by handwritten code artifacts .
Given a concrete model, a reference model and corresponding
incarnation mappings, a conformance checker should then be
able to decide whether the handwritten reference code can be
adapted for the concrete system or not. To adapt the reference
code, any tool would then need to compute the inverse of the
incarnation mappings in order to translate the reference code to
a concrete context. If the inverse mappings are known and the
translation rules well-defined, existing code refactoring tools
or transformation languages can then be used to execute that
code adaption. This necessitates that the conformance relation
is designed with additional implementation-specific aspects in
mind, as static semantics—such as the one we employ for CDs—
cannot capture dynamic aspects of software systems. But even
in the case of modeling languages with behavioral semantics
such as MontiArc Statecharts, certain aspects of the target pro-
gramming language must be taken into consideration to define
a use-case appropriate conformance relation. Again, this is why
we recommend designing modular and extensible conformance
checkers to allow for use-case specific configuration. Note that
this adaptation need not be limited to code, but could also be
used for other types of related artifacts or attached information,
e.g., OCL-constraints. Moreover, adaptation and merging (Lindt
et al. 2023) can be applied to the reference model itself in order
to complete a concrete model.
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6. Conclusion

While reference models are broadly used in practice, they are
mostly used informally. This informal usage may lead to misun-
derstandings when trying to determine the meaning of a refer-
ence model and its implication on concrete systems, as well as
manual errors when checking conformance. To avoid these is-
sues and enable better tool support, we propose a formal concept
of a conformance relation that is based on semantic refinement
but otherwise language and use-case specific. In this paper,
we presented concepts and tools for automated conformance
checking of concrete models against reference models for CDs,
FDs, and statecharts. Moreover, we discussed the commonal-
ities and differences of the implemented conformance checks
and their implications on conformance checking in general. We
argue that our approach lays the foundation for automated, tool-
based checking of conformance relations and efficient reuse of
information attached to reference models.

For the future, we plan to develop conformance checking
approaches for process and architectural models, and explore
the assisted derivation of concrete models from reference mod-
els combined with reuse and automated adaptation of reference
implementations as well as other types of related artifacts. Ad-
ditionally, we will apply the general conformance-notion to
anti-patterns, which forbid certain concrete elements.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - 250902306

References

Alves, M. C. B., Drusinsky, D., Michael, J. B., & Shing, M.-t.
(2011). Formal validation and verification of space flight
software using statechart-assertions and runtime execution
monitoring. In 2011 6th International Conference on System
of Systems Engineering (pp. 155-160).

Arora, S.-J., Ceccolini, C., & Rabe, M. (2022). Approach
to Reference Models for Building Performance Simula-
tion. In Proceedings of the 10th International Conference
on Model-Driven Engineering and Software Development.
SCITEPRESS - Science and Technology Publications. doi:
10.5220/0010888800003119

Bauer, M., Bui, N., De Loof, J., Magerkurth, C., Nettstriter, A.,
Stefa, J., & Walewski, J. W. (2013). IoT Reference Model.
In A. Bassi et al. (Eds.), Enabling Things to Talk: Designing
10T solutions with the loT Architectural Reference Model (pp.
113-162). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-40403-0_7

Becker, J., & Delfmann, P. (Eds.). (2007). Reference Modeling.
Physica-Verlag HD. doi: 10.1007/978-3-7908-1966-3

Borshchev, A. (2014). Multi-method modelling: AnyLogic.
Discrete-Event Simulation and System Dynamics for Manage-
ment Decision Making, 248-279.

Broy, M., & Stglen, K. (2001). Specification and Development
of Interactive Systems. Focus on Streams, Interfaces and
Refinement. Springer Verlag Heidelberg.



Bucaioni, A., Di Salle, A., Iovino, L., Malavolta, 1., & Pellic-
cione, P. (2022, August). Reference architectures modelling
and compliance checking. Software and Systems Modeling,
22(3), 891-917. doi: 10.1007/s10270-022-01022-z

Butting, A., Kautz, O., Rumpe, B., & Wortmann, A. (2017,
April). Semantic Differencing for Message-Driven Compo-
nent & Connector Architectures. In International conference
on software architecture (icsa’17) (p. 145-154). 1EEE.

Caracciolo, A., Lungu, M. F.,, & Nierstrasz, O. (2015, May).
A Unified Approach to Architecture Conformance Checking.
In 2015 12th Working IEEE/IFIP Conference on Software
Architecture. IEEE. doi: 10.1109/wicsa.2015.11

Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E.,
& Bone, M. (2009, January). The Concept of Reference
Architectures. Systems Engineering, 13(1), 14-27. doi: 10
.1002/sys.20129

Dobing, B., & Parsons, J. (2006). How UML is used. Commu-
nications of the ACM, 49(5), 109-113.

Drave, 1., Eikermann, R., Kautz, O., & Rumpe, B. (2019,
February). Semantic Differencing of Statecharts for Object-
oriented Systems. In S. Hammoudi, L. F. Pires, & B. Seli¢
(Eds.), Proceedings of the 7th international conference on
model-driven engineering and software development (model-
sward’19) (p. 274-282). SciTePress.

Drave, 1., Kautz, O., Michael, J., & Rumpe, B. (2019, Septem-
ber). Semantic Evolution Analysis of Feature Models. In
T. Berger et al. (Eds.), International Systems and Software
Product Line Conference (SPLC’19) (p. 245-255). ACM.

Dumas, M., Governatori, G., ter Hofstede, A. H., & Oaks, P.
(2002). A formal approach to negotiating agents development.
Electronic commerce research and applications, 1(2), 193—
207.

Duran Toro, A., Benavides, D., Segura, S., Trinidad, P., & Ruiz-
Cortés, A. (2017, 10). FLAME: a formal framework for
the automated analysis of software product lines validated
by automated specification testing. Software and Systems
Modeling, 16. doi: 10.1007/s10270-015-0503-z

Egea, M., & Rusu, V. (2009, December). Formal executable
semantics for conformance in the MDE framework. Innova-
tions in Systems and Software Engineering, 6(1-2), 73-81.
doi: 10.1007/s11334-009-0108-1

Ernst, M. D. (2003). Static and dynamic analysis: Synergy and
duality. In Woda 2003: Icse workshop on dynamic analysis
(pp- 24-27).

Fahrenberg, U., Acher, M., Legay, A., & Wasowski, A. (2014).
Sound Merging and Differencing for Class Diagrams. In
Fundamental Approaches to Software Engineering.

Fettke, P, & Loos, P. (2006, 01). Perspectives on Refer-
ence Modeling. In Reference Modeling for Business Sys-
tems Analysis (pp. 1-21). 1GI Global. doi: 10.4018/
9781599040547.ch001

Frank, U. (2006). Evaluation of Reference Models. In Reference
Modeling for Business Systems Analysis (pp. 118-140). IGI
Global. doi: 10.4018/978-1-59904-054-7.ch006

Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1997).
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Prentice Hall.

Garcés, L., Martinez-Fernandez, S., Oliveira, L., Valle, P., Ay-
ala, C., Franch, X., & Nakagawa, E. Y. (2021, September).
Three decades of software reference architectures: A system-
atic mapping study. Journal of Systems and Software, 179,
111004. doi: 10.1016/j.jss.2021.111004

Gogolla, M., & Henderson-Sellers, B. (2002). Analysis of UML
Stereotypes within the UML Metamodel. In Lecture Notes in
Computer Science (pp. 84-99). Springer Berlin Heidelberg.
doi: 10.1007/3-540-45800-x_8

Gray, J., & Rumpe, B. (2021). Reference models: how can
we leverage them? Journal Software and Systems Modeling
(SoSyM), 20(6), 1775-1776.

Gronniger, H., Krahn, H., Pinkernell, C., & Rumpe, B. (2008).
Modeling Variants of Automotive Systems using Views. In
Modellbasierte Entwicklung von eingebetteten Fahrzeugfunk-
tionen (p. 76-89). TU Braunschweig.

Haber, A. (2016). MontiArc - Architectural Modeling and
Simulation of Interactive Distributed Systems. Shaker Verlag.

Harel, D. (1987). Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8(3), 231-274.
doi: https://doi.org/10.1016/0167-6423(87)90035-9

Harel, D., & Rumpe, B. (2004, October). Meaningful Modeling:
What’s the Semantics of “Semantics”? IEEE Computer
Journal, 37(10), 64-72.

Harris, J. A., & Patterson-Hine, A. (2013). State machine
modeling of the space launch system solid rocket boosters
(Tech. Rep.).

Herold, S., Mair, M., Rausch, A., & Schindler, I. (2013,
September). Checking Conformance with Reference Archi-
tectures: A Case Study. In 2013 17th IEEE International
Enterprise Distributed Object Computing Conference. IEEE.
doi: 10.1109/edoc.2013.17

Holldobler, K., Kautz, O., & Rumpe, B. (2021). MontiCore
Language Workbench and Library Handbook: Edition 2021.
Shaker Verlag.

Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen,
S. (2011). Empirical assessment of MDE in industry. In
Proceedings of the 33rd International Conference on Software
Engineering (pp. 471-480).

ITU-T. (1994, July). Information technology — Open Systems
Interconnection — Basic Reference Model: The basic model
(ITU-T No. X.200). International Tecommunication Union.
ITU-T Recommendations.

Kautz, O., & Rumpe, B. (2018, October). Semantic Differ-
encing of Activity Diagrams by a Translation into Finite
Automata. In Proceedings of models 2018. workshop me.

Kim, D.-K., & Shen, W. (2007, March). An approach to
evaluating structural pattern conformance of UML models.
In Proceedings of the 2007 ACM symposium on Applied
computing. ACM. doi: 10.1145/1244002.1244305

Kirchmer, M., & Franz, P. (2020). Process Reference Models:
Accelerator for Digital Transformation. In Business Modeling
and Software Design (pp. 20-37). Springer International
Publishing. doi: 10.1007/978-3-030-52306-0_2

Konersmann, M., Michael, J., & Rumpe, B. (2024,
March). Towards Reference Models with Confor-
mance Relations for Structure. In Informing possi-

Towards a Semantically Useful Definition of Conformance with a Reference Model 13



ble future worlds. essays in honour of ulrich frank
(p. 247-269). Logos Verlag Berlin. Retrieved
from http://www.se-rwth.de/publications/Towards-Reference
-Models-with-Conformance-Relations-for-Structure.pdf

Langer, P., Mayerhofer, T., Wimmer, M., & Kappel, G. (2014).
On the usage of UML.: Initial results of analyzing open UML
models. Modellierung 2014.

Lindt, A., Rumpe, B., Stachon, M., & Stiiber, S. (2023, July).
Cdmerge: Semantically sound merging of class diagrams for
software component integration. Journal of Object Technol-
0gy, 22(2), 2:1-14. doi: 10.5381/j0t.2023.22.2.al

Lu, Y, Liu, C., Wang, K. I.-K., Huang, H., & Xu, X. (2020,
feb). Digital Twin-Driven Smart Manufacturing: Conno-
tation, Reference Model, Applications and Research Is-
sues. Robot. Comput.-Integr. Manuf., 61(C). doi: 10.1016/
jrcim.2019.101837

Maoz, S., Ringert, J. O., & Rumpe, B. (2011a). ADDiff:
Semantic Differencing for Activity Diagrams. In Conference
on foundations of software engineering (esec/fse '11) (p. 179-
189). ACM.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011b). CDDiff:
Semantic Differencing for Class Diagrams. In M. Mezini
(Ed.), Ecoop 2011 - object-oriented programming (p. 230-
254). Springer Berlin Heidelberg.

Michael, J., Koren, 1., Dimitriadis, 1., Fulterer, J., Gannouni,
A., Heithoff, M., ... Schuh, G. (2023, June). A Digital
Shadow Reference Model for Worldwide Production Labs.
In C. Brecher, G. Schuh, W. van der Aalst, M. Jarke, F. Piller,
& M. Padberg (Eds.), Internet of production: Fundamentals,
applications and proceedings (pp. 1-28). Springer. doi:
10.1007/978-3-030-98062-7_3-2

Nachmann, I., Rumpe, B., Stachon, M., & Stiiber, S. (2022,
June). Open-World Loose Semantics of Class Diagrams
as Basis for Semantic Differences. In Modellierung 2022
(p. 111-127). Gesellschaft fiir Informatik.

OMG. (2017). Unified Modeling Language, Version 2.5.1.

Parsons, T., & Murphy, J. (2004). Data mining for performance
antipatterns in component based systems using run-time and
static analysis. Trans. on Automatic Control and Computer
Science, 49(63), 49-63.

Richner, T., & Ducasse, S. (1999). Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In Proceedings ieee international conference on
software maintenance - 1999 (icsm’99). ’software mainte-
nance for business change’ (cat. no.99cb36360) (p. 13-22).
doi: 10.1109/ICSM.1999.792487

Ringert, J. O., Rumpe, B., & Stachon, M. (2023, July). On
implementing open world semantic differencing for class
diagrams. Journal of Object Technology, 22(2), 2:1-14. doi:
10.5381/j0t.2023.22.2.al 1

Ringert, J. O., Rumpe, B., & Wortmann, A. (2013). Mon-
tiArcAutomaton: Modeling Architecture and Behavior of
Robotic Systems. In Conference on Robotics and Automation
(ICRA’13) (p. 10-12). IEEE.

Rumpe, B. (1996). Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. Miinchen, Deutschland: Herbert
Utz Verlag Wissenschaft.

14 Konersmann et al.

Rumpe, B. (2016). Modeling with UML: Language, Concepts,
Methods. Springer International.

Rumpe, B. (2017). Agile Modeling with UML: Code Generation,
Testing, Refactoring. Springer International.

Schobbens, P.-Y., Heymans, P., & Trigaux, J.-C. (2006). Feature
Diagrams: A Survey and a Formal Semantics. In /4th IEEE
International Requirements Engineering Conference (RE’06)
(p- 139-148). doi: 10.1109/RE.2006.23

Systa, T. (1999). On the relationships between static and
dynamic models in reverse engineering java software. In Sixth
working conference on reverse engineering (cat. no.pr00303)
(p- 304-313). doi: 10.1109/WCRE.1999.806969

Tran, H., Zdun, U., Holmes, T., Oberortner, E., Mulo, E., &
Dustdar, S. (2012, June). Compliance in service-oriented
architectures: A model-driven and view-based approach. In-
formation and Software Technology, 54(6), 531-552. doi:
10.1016/j.infsof.2012.01.001

Weinreich, R., & Buchgeher, G. (2014, April). Automatic
Reference Architecture Conformance Checking for SOA-
Based Software Systems. In 2014 IEEE/IFIP Conference on
Software Architecture. IEEE. doi: 10.1109/wicsa.2014.22

About the authors

Marco Konersmann is a postdoctoral researcher at the chair
of software engineering of the RWTH Aachen University in
Germany. His recent research focuses on software architecture,
software modeling, and continuous software engineering, in
the application domains of information systems, cyber-physical
software systems and automotive. You can contact the author at
konersmann(at)se-rwth.de or visit www.se-rwth.de.

Bernhard Rumpe is Professor at RWTH Aachen University,
Germany and head of the Chair of Software Engineering. His
main interests are rigorous and practical software and system
development methods based on adequate modeling techniques.
This includes agile development methods as well as model
engineering based on UML/SysML-like notations and domain-
specific languages. You can contact the author at rumpe(at)se-
rwth.de or visit www.se-rwth.de.

Max Stachon is a research assistant and Ph.D. candidate at
the Chair of Software Engineering at RWTH Aachen Univer-
sity. His research focuses on model semantics, refinement and
difference analysis. You can contact the author at stachon(at)se-
rwth.de or visit www.se-rwth.de.

Sebastian Stiiber is a research assistant and Ph.D. candidate at
the Chair of Software Engineering at RWTH Aachen University.
His research focuses on model semantics, refinement, formal
verification and compositional analysis of systems. You can con-
tact the author at stueber(at)se-rwth.de or visit www.se-rwth.de.

Valdes Voufo is a student assistant at the Chair of Software
Engineering at RWTH Aachen. You can contact the author at
valdes.voufo(at)rwth-aachen.de.


http://www.se-rwth.de/publications/Towards-Reference-Models-with-Conformance-Relations-for-Structure.pdf
http://www.se-rwth.de/publications/Towards-Reference-Models-with-Conformance-Relations-for-Structure.pdf



