
Gregor Hoepfner1

Institute for Machine Elements
and Systems Engineering,
RWTH Aachen University,

Schinkelstraße 10,
52062 Aachen, Germany

e-mail: gregor.hoepfner@imse.rwth-aachen.de

Imke Nachmann
Software Engineering,

RWTH Aachen University,
Ahornstraße 55,

52062 Aachen, Germany
e-mail: nachmann@se-rwth.de

Thilo Zerwas
Institute for Machine Elements

and Systems Engineering,
RWTH Aachen University,

Schinkelstraße 10,
52062 Aachen, Germany

e-mail: thilo.zerwas@imse.rwth-aachen.de

Joerg K. Berroth
Institute for Machine Elements and Systems

Engineering,
RWTH Aachen University,

Schinkelstraße 10,
52062 Aachen, Germany

e-mail: joerg.berroth@imse.rwth-aachen.de

Jens Kohl
BMW Group AG,
Knorrstraße 147,

80788 Munich, Germany
e-mail: jens.kohl@bmw.de

Christian Guist
BMW Group AG,
Knorrstraße 147,

80788 Munich, Germany
e-mail: christian.guist@bmw.de

Bernhard Rumpe
Chair of Software Engineering,

RWTH Aachen University,
Ahornstraße 55,

52062 Aachen, Germany
e-mail: rumpe@se-rwth.de

Georg Jacobs
Institute for Machine Elements and Systems

Engineering,
RWTH Aachen University,

Schinkelstraße 10,
52062 Aachen, Germany

e-mail: georg.jacobs@imse.rwth-aachen.de

Towards a Holistic and Functional
Model-Based Design Method for
Mechatronic Cyber-Physical
Systems
Engineering cyber-physical systems (CPS) is complex and time-consuming due to the het-
erogeneity of the involved engineering domains and the high number of physical and logical
interactions of their subsystems. Model-based systems engineering (MBSE) approaches
tackle the complexity of developing CPS by formally and explicitly modeling subsystems
and their interactions. Newer approaches also integrate domain-specific models and mod-
eling languages to cover different aspects of CPS. However, MBSE approaches are cur-
rently not fully applicable for CPS development since they do not integrate formal
models for physical and mechanical behavior to an extent that allows to seamlessly link
mechanical models to the digital models and reuse them. In this paper, we discuss the chal-
lenges arising from the missing integration of physics into MBSE and introduce a model-
based methodology capable of integrating physical functions and effects into an MBSE
approach on a level where detailed physical effects are considered. Our approach offers
a fully virtual, model-based development methodology covering the whole development
process for the development of CPS. Evaluating this methodology on a real automotive
use case demonstrates benefits regarding virtual development and functional testing of
CPS. It shows potentials regarding automated development and continuous integration of
the whole CPS including all domains. As an outlook of this paper, we discuss potential
further research topics extending our development workflow. [DOI: 10.1115/1.4056807]

Keywords: cyber-physical system design and operation, functional modeling, information
management, knowledge engineering, model-based systems engineering

Introduction
Missing Cross-Domain Collaboration Makes Cyber-Physical

Systems Development Complex and Time-Consuming. In
various areas of industry, such as automotive or aerospace, nowa-
days more and more cyber-physical systems (CPS) are developed.
CPS consist of mechanical, electrical, electronic, and software com-
ponents leading to a large net of both physical and logical

1Corresponding author.
Contributed by the Computers and Information Division of ASME for publication

in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received April 14, 2022; final manuscript received January 23, 2023; published
online March 29, 2023. Assoc. Editor: Chris Paredis.

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-1
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

[HNZ+23] G. Hoepfner, I. Nachmann, T. Zerwas,J. K. Berroth,
J.Kohl, C. Guist, B. Rumpe, G. Jacobs:
Towards a Holistic and Functional Model-Based DesignMethod
for Mechatronic Cyber-Physical Systems.
In: Journal of Computing and Information Science in Engineering (JCISE),
Volume 23(5), Mar. 2023.
www.se-rwth.de/publications/

mailto:gregor.hoepfner@imse.rwth-aachen.de
mailto:nachmann@se-rwth.de
mailto:thilo.zerwas@imse.rwth-aachen.de
mailto:joerg.berroth@imse.rwth-aachen.de
mailto:jens.kohl@bmw.de
mailto:christian.guist@bmw.de
mailto:rumpe@se-rwth.de
mailto:georg.jacobs@imse.rwth-aachen.de
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4056807&domain=pdf&date_stamp=2023-03-29

interdependencies between the components and domains. Hence,
systems are getting more and more complex, while a shorter time
to market demands faster development of CPS [1].
The general complexity of CPS and their cross-domain character

makes engineering CPS challenging. In addition, CPS often take
over safety-relevant tasks. Therefore, possible faulty behavior has
to be detected, the fault’s root cause has to be inferred and failures
have to be prevented or mitigated [2]. Failures often result from
missing consideration of interactions between subsystems. This is
especially critical in CPS due to the high amount of cross-domain
interdependencies. Hence, guaranteeing function fulfillment for
CPS without failures of single subsystems or the overall system
results in cost- and time-intensive development processes.
A major reason for missing consideration of interactions is differ-

ent development processes in the domains. Historically, each
domain has developed its systems in a different manner and on dif-
ferent platforms. Due to the different character of the domain
systems—e.g., high lead times in mechanics or the possibility to
update in software—different development processes have
evolved. Systems engineering (SE) is an approach to overcome
these domain processes and identify interdependencies in
complex systems. SE faces many challenges ranging from the
need for collaboration of experts from different backgrounds to
the assurance of function fulfillment at the system level with high
efficiency and quality [3].
Complex systems require digital SE approaches supported by

automation to provide verification and validation of systems
while remaining efficient. Due to the heterogeneous character of
CPS, experts from various domains need to collaborate to provide
functional verification and validation at the system level.
However, validation of mechanical components and systems is
done predominantly on physical prototypes since current virtual
methods do not cover all relevant domains. A virtual verification
and validation of the full CPS including mechanics is thus not pos-
sible and a common collaboration platform to describe the entire
CPS including all domains in a formal, i.e., mathematical and
thereby machine-interpretable, manner is not given. As virtual val-
idation is often faster than using physical prototypes, using formal
models in all domains can accelerate development.
One reason for missing formality in mechanics is a conceptual

gap between the problem domain and the solution domain that
has to be overcome [4,5]. The conceptual gap is especially high
for mechanical engineering, as the product is geometry-centric,
while CPS requirements are functional.

Model-Based Systems Engineering Including Mechanical
Functions Offers a Facilitation of the Cyber-Physical Systems
Development Process. Overcoming the conceptual gap in mechan-
ical engineering has been investigated in the past centuries. The ideas
of mechanical design theory [6,7] provide a foundation for systems
engineering. Especially, Ref. [6] comprises the concept of functional
decomposition and the reuse of mechanical solutions, to realize
mechanical functions. Elementary mechanical solutions are structured
based on physical effects, which act between components’ active sur-
faces and are called principle solutions.
Software engineering has successfully overcome the conceptual

gap using model-based software engineering approaches [5,8].
Several studies have investigated the benefits of model-based soft-
ware development [9,10] and show that considering systems as net-
works of interacting encapsulated subsystems leads to enhanced
system quality especially when utilized at the early stages of
development.
Model-based systems engineering (MBSE) has developed to be a

cross-domain approach, in which models instead of documents
become the primary development artifacts for the entire system and
all domains. Formal models of systems enable automatic verification,
validation, and testing and also analyses and transformations [11].
However, mechanical functions are not yet well integrated into

MBSE. Encapsulation of functions in software engineering can be

done without the consideration of physical and geometric boundar-
ies, as only information is transferred between functions. In mechan-
ical systems, one function is realized by multiple physical
components and additional flows, i.e., energy and material, are
transferred. Hence, functional cutting requires the consideration of
physical and geometric restrictions from components. Thus, the
link between component and function is not directly given. So far,
this has kept mechanical engineering from formal functional model-
ing. Integrating mechanics into formal modeling is the next step in
providing a cross-domain description of CPS and their
interdependencies.
The proposed methodology of [6] has the potential to overcome

this challenge. It is compatible with the idea of MBSE and has the
potential to provide—to the far of our knowledge—the first
approach for fully formalizing mechanical functions and integrating
mechanics in common CPS development. However, it is not yet for-
malized fully.
Still, a gap arises in mechanical systems from restrictions set by

laws of nature and suitable formal modeling techniques to integrate
physical models to an extent that they can be reused, and tested con-
tinuously within development processes. To consider the interplay
of physical effects and geometric components inherent to mechan-
ical systems, the existing methods, concepts, and languages of
MBSE need extensions.
The methodological weaknesses in holistic CPS engineering give

rise to challenges in all phases of the product lifecycle, increasing
problems arising from the enlarging complexity of today’s CPS.
This contribution aims to present a novel approach that formal-

izes mechanical development to overcome the conceptual gap in
mechanical engineering and to integrate mechanics into MBSE,
with a focus on the specific challenges in the design phase.

Overview of the Contribution. In Sec. 2, an
automotive-industry-specific review identifies current challenges for
product development arising from MBSE approaches missing the
mechanical domain. Section 3 presents the state of research regarding
model-based development methods showing that mechanical func-
tions are not properly integrated into current MBSE approaches. In
Sec. 4, we present our approach. Section 5 discusses the potentials
of the approach and in Sec. 6 open points towards an industrialized
approach are given before Sec. 7 concludes.

Challenges in Mechatronic Cyber-Physical Systems
Development
The complexity of engineering CPS increases by the need for col-

laborative and distributed development [12,13]. This demands for

Fig. 1 Steps of the product life cycle

051001-2 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

adapting the methods established in each of the domains to cross-
domain collaboration. Especially, integrating the mechanical
domain reveals several challenges that affect the entire product
life cycle. These challenges are discussed in the following section.

The Product Lifecycle From a Mechanical Perspective. The
product lifecycle includes all phases that a product experiences:
Product planning and development, production, use, as well as recy-
cling (cf. Fig. 1). Product development significantly determines
how a product can be manufactured, used, and recycled as well as
to which degree it meets the customer’s requirements [7].
In mechanical engineering, product development includes five

steps that can be run in parallel and iteratively. Requirements are
modified throughout development based on findings and changing
constraints and serve as a reference for all development decisions.
Function development is concerned with specifying the system
as a hierarchical network of functions that interact through function
flows. In concept development, engineers seek solutions for each
(sub-)function while satisfying requirements. In geometric
design, engineers evolve the selected solutions into components
and assemblies. The activities during validation integrate all ele-
ments of the system and ensure that the whole system meets all cus-
tomer requirements [7].

Challenges in Today’s Development Process. The increasing
complexity of modern systems on the one hand and strict require-
ments on legislation, functional safety, sustainability, and economic
constraints on the other hand pose new, fundamental challenges for
the product lifecycle [7]. Within an interdisciplinary research
project involving experts from the automotive industry, we have
identified three major challenges the automotive industry faces
throughout the product lifecycle:

Challenge 1: Nowadays, innovation is driven more by functions and
features than physical components

Current technological developments often extend well-
established systems with new, additional functionalities, e.g., inter-
connectivity or autonomous driving in automotive systems. The
new functions are often not enabled by a specific mechanical com-
ponent, but by the interaction of multiple, heterogeneous subsys-
tems [7]. While in other domains there are approaches to describe
interfaces in a sufficient manner [14], especially in mechanical engi-
neering, development teams are usually organized according to geo-
metric modules and distinguished by geometric interfaces. These
geometry-specific development teams can improve functions of
the individual module incrementally but enabling innovative
system functions and features requires a function-oriented, system-
wide approach. The authors in Ref. [15] state that systems designed
in organizations are usually a copy of the organizations structure.
Therefore, in geometrically organized teams, systems may be
often designed with a focus on geometry.

Challenge 2: A holistic workflow throughout product development
linking the development artifacts is missing

Increasing system complexity has led to an increased number of
development artifacts, i.e., documents and models that are created
throughout the product lifecycle to provide descriptions of the
system under development from various viewpoints. Due to the
large number and varying formats of these artifacts, it is an effortful
and time-consuming process for humans to maintain consistency.
Further, updates to one artifact require updating depending artifacts
manually. However, changes in artifacts often cannot be tracked
and propagated automatically, as documents are not available in a
machine-interpretable format. As artifacts continue to proliferate
and become more complex, traditional document-based lifecycle
management approaches reach their limits and the time to keep
overall consistency and non-redundancy of the product data
increases significantly, decelerating product development.

Challenge 3: Demand on accelerated development and increasing
product quality

Globalized competition forces companies to offer new products
with more functionality in a shorter time span, creating the need
to decrease the development time significantly. At the same time,
the quality demands of customers and legislators increase [7]. The
high-quality demands challenge to identify and correct as many fail-
ures as possible, creating iterations in product development, which
are time-consuming. Hence, to reduce development time, failures
have to be identified early on to prevent such iterations.

Consequences of the Challenges Throughout the
Development Process. The challenges listed above impact the
entire product lifecycle. To outline all the manifestations of each
challenge on the mechanical domain at the respective stages of
the lifecycle in more detail, we have aggregated them in Table 1.
Three major manifestations can be identified.
The conceptual gap between functions and components is a

major obstacle in mechanics that has not yet been fully overcome.
On the one hand, the functional view of mechanical products is
often too weakly developed: there is a lack of a systematic descrip-
tion of functional requirements, from which an architecture of
product functions can be derived and function-oriented solution
concepts can be identified. On the other hand, a strong, formal
linkage of this functional view with the existing architecture of
physical components is still missing.
In addition to the linking of functions and physical components,

the fundamental and consistent connection of all relevant data and
development artifacts is missing. A wide variety of models and data
sets are generated in all lifecycle phases from development through
production to use. To ensure consistency as well as efficient change
and further development cycles, all relevant dependencies between
the artifacts must be formally mapped and usable.
A major use case for linked artifacts is virtual verification and val-

idation. On the one hand, this lacks a functionally testable description
of the subsystems including their functional interfaces, and on the
other hand, there is a lack of completeness on the part of the func-
tional requirements against which testing is performed. Due to this
deficit, full virtual validation is not possible up to now, and instead
performed by time-consuming and cost-intensive field tests.

State of Research
To solve the three identified challenges described in Sec. 2 for

modern product development, we identify three major fields of
research.
Regarding a holistic workflow linking artifacts in product devel-

opment (challenge 2), explicit modeling of interdependencies
between development artifacts of different domains is key. Software
engineering has developed model-based software engineering
methodologies to master the complexity of their respective
systems [16,17].
To improve function development for mechanics (challenge 1), a

function-oriented development method for mechanics helps to close
the gap between functional requirements and components.
Accelerated product development with increasing product quality

(challenge 3) requires virtual identification of errors and holistic
virtual validation using simulations before using physical proto-
types, as iteration processes are faster in a virtual way. Thus,
formal modeling also including mechanics is an enabler, as the
system description becomes machine-readable and thereby opens
for (semi-)automated verification and validation.
We describe the research fields model-based approaches,

function-oriented development, and formal modeling in mechanics
in the following subsections.

Key Concepts of Model-Based Approaches in the Software
Domain. Software engineering has developed model-based

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

approaches to specify software systems. The following summarizes
the key techniques they apply [8,18,19]:
Abstraction from technical details allows to capture domain con-

cepts comprehensibly and also facilitates collaborative develop-
ment in (spatially) distributed teams.
Formality by employing domain-specific languages enables

automatic verification, analyses, and transformation of artifacts to
enhance efficiency at all development stages by detecting possible
system failures in an automated way. Techniques for model-based
testing enable fast verification and validation.
Encapsulation defines reusable components which communicate

solely via defined interfaces while shielding their internal behavior
from the outside. Reusing these components and their composition
reduces development time and costs significantly since only the
interface and the interplay with the rest of the system have to be val-
idated. Encapsulation enables individual development of the single
components. Through Composition, systems become modular as
composition of their subsystems.
Abstraction, Formality, Encapsulation, and Composition facili-

tate the development of large complex software systems in distrib-
uted teams. They have proven to enhance efficiency through the
reuse of components significantly and enable parallelization of
development tasks due to clear interface definitions [16,17].

Function-Oriented Development. Theories for automatic vali-
dation and verification typically understand systems as a network of
interacting functions [8,12,20]. Languages with semantics built
with these theories do have physical aspects of CPS in mind, and
consider continuity, or geometry [21] but do not yet integrate phys-
ical aspects from mechanical engineering and software engineering.

The FOCUS theory [8,22] regards systems as networks of inter-
acting, stream processing functions, where a stream is a function
from time domain to a set of messages. Modularity is achieved
because components encapsulate a functional behavior and interact
via their interfaces only. So far, FOCUS does regard continuous
streams [23] but has not yet been applied for modeling functional
behavior that arises from physical effects.
The SMArDT method [24] finds its applications in automotive

software engineering, and in particular testing [9,25]. The method
relies on formalized models in the systems modeling language
(SysML) that represent the system under development on four
levels of abstraction. The method, however, does not yet offer mod-
eling techniques to include functions and solutions considered in the
mechanical domain.
In the past decades, SE methods have evolved to MBSE methods

especially in the context of space missions. Lately, in NASA’s
Europa Project, efforts have been made to design an architecture
including requirements, functions, and concepts to realize MBSE
in SysML and link it with further design artifacts [26,27]. This
approach has mainly been applied to electric and software com-
ponents or focused higher-level mechanical systems—e.g., for
obtaining mass equipment lists [28]—instead of a detailed focus
on the mechanical domain and mechanical behavior.
As mentioned in Sec. 1, Refs. [6,29] offer the potential to inte-

grate mechanics into common CPS development. They establish a
functional architecture from which solutions can be derived as real-
izations of the functions. It is postulated that every mechanical
behavior can be described by a network of elementary functions.
The elementary functions describe transformations of functional
flows, which are not further decomposed and are connected via
incoming and outgoing functional flows. The author in Ref. [6]

Table 1 Challenges in cps development throughout the product life cycle

Product life cycle
phases

Challenges

1. Function-driven innovation 2. Missing holistic workflow 3. Accelerated development

Requirements Requirements are often collected in
documents that specify geometries instead
of an unambiguous description of the
functional behavior.

Requirements are usually not linked to
each other or other development artifacts
hindering consistency and transparency. If
linked in requirements engineering tools,
consistency is often not ensured.

To reduce iterations and late changes, it
must be possible to identify relevant
requirements as early as possible and
change them efficiently later on.

Function
development

Mechanical engineers have centered their
development on physical components,
complicating the collaboration with
function-oriented domains.

For parallel and virtual development of
CPS, its functions must be known with
their interdependencies and interactions,
for which there is no formal method today.

Functional interfaces between
development teams are not always fully
defined and sometimes do not match
organization structures, impeding the
system integration process.

Concept
development

Concept development in industry is often
still based on the individual knowledge of
experts and does often not consider a wide
range of concepts.

Concepts are often described by
heterogeneous and unlinked development
artifacts, e.g., sketches, CAD models, or
analytical equations.

Reusing concepts in future projects
without reusing the same components is
often difficult and slows down concept
development.

Geometric design
and optimization

Allocating functions in a mechanical
component architecture is complex and
often not methodically supported. Thus,
formal function-oriented development is
mostly done on the top-system-level.

Artifacts for geometric design, e.g., CAE
models, are often not linked to other
artifacts from other phases in a way, that
virtual validation and data consistency can
be ensured automatically.

Reduced development time restricts the
number of manual design iterations and
increases the need for machine-readable
descriptions of physical concepts.

Verification and
validation

The typical component-oriented
development focuses on verifying
non-functional requirements instead of
functions, which can only be validated at the
overall system level.

The behavior of components and their interactions rely on physical effects which, up to
now, cannot be modeled entirely. Thus, full validation is only possible in field tests and
not yet virtually.

Production Predicting the impact of changes from
production to functional behavior and vice
versa is complex and has to be verified in
real hardware due to missing links between
both domains.

Due to shorter time to market, product changes are often developed and introduced to
production in parallel. Keeping production and product consistent is effortful and
time-consuming, without seamless linking.

Use Using field and service data to update
existing and improve future product
functions requires linking the collected data
with development artifacts.

Continuous optimization of products after market-launch is an advantage for software
systems but is inherently difficult for mechanical systems.

Recycling and
afterlife

To identify the most sustainable recycling decision for parts or functions of a product instance and accelerate reuse in second life
scenarios, evaluation of field data instance within the virtual models from product development is required.

051001-4 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

proposes that in the mechanical domain physical effects realize
functions. The effects act between two active surfaces from specific
materials. Supplementing a suitable physical effect by active sur-
faces and specifying their material, yields a principle solution. In
the remainder of this paper, we follow this definition. The signifi-
cant discovery is that the sets of both elementary functions and
physical effects are finite. In Ref. [29], both sets and their links
are listed in a document-based catalog [6,29].
In Ref. [29] principle solutions are often depicted by a sketch and

textual description, or by an equation. This representation does not
meet the demands of model-based CPS engineering, as sketches and
descriptions are informal and not machine-readable. This prevents
verification and validation support through automation and
hinders reusing functions and principle solutions.

Formal Modeling of Functions in Mechanical Domain. In
recent research, there have been several approaches to formalize
the concept of principle solutions for MBSE or describe mechanical
realizations of a function with SysML. The authors in Ref. [21] inte-
grate manual sketches of concepts into SysML. However, since
sketches are no formal description, the same disadvantages continue
to exist as with [6,29]. Other approaches describe the realization of
a function by physical components [13,30,31]. Thereby, similarities
of components that fulfill the function with the same principle but
slightly modified geometry are not formally modeled. In addition,
engineers need to design the component geometry in detail before
testing if the realization meets the requirements. Effectively, this
results in delayed collaboration with experts of other domains.
Another approach for modeling principle solutions using equa-

tions for physical laws and parameters for geometric and physical
quantities is proposed in Ref. [32]. It remains unclear whether the
principle solution will be linked to other development artifacts,
e.g., requirements, functions, components, or simulation models.
Hence, the principle solution cannot be validated directly with
behavior describing models [33–35] against functions or
requirements.
A promising approach capturing the concepts of functional

structures, elementary functions, principle solutions, and their
constituents together with their relations from a language engineer-
ing point of view is presented in Ref. [4]. The proposed meta-model
specifies an abstract syntax for modeling languages that enable to
capture these elements in a formal, machine-processable model
whose elements are open for reuse. Also, the authors have
encoded the meta-model as a SysML profile which demonstrates
its applicability for holistic CPS development conforming to the
SysML standard. The approach relies on reusing existing models
for an automated validation. The design of geometric components,
however, has not yet been integrated into a development
methodology.
All in all, to address the identified challenges, a model-based,

function-oriented approach is required, that enables modeling
according to the four key techniques for all domains involved in a
CPS. To the best of our knowledge, mechanics have not yet been
integrated into model-based approaches in a sense that formal mod-
eling of mechanical functions and solutions is possible. An inte-
grated approach to model, test, and reuse mechanical solutions
efficiently is missing. So, as to the best of our knowledge
[4,36,37] showed the first approach for a fully formalized approach
covering all domains. In the remainder of this paper, we adapt
from [4,36,37] and extend them to a full methodology covering
the whole lifecycle of CPS.

Approach
To enable efficient communication and documentation between

experts from heterogeneous backgrounds regarding the state of
development of CPS, engineers need system specifications, i.e.,
descriptions of the system that are precise and detailed, yet abstract

from the details that do not contribute to the understanding. In
MBSE approaches these descriptions are given as models [22].
Models need to be linked to prevent ambiguities and redundancy.

Creating such models requires a paradigm that is understood by the
involved domains, allows to modularize the engineering task to
facilitate development in distributed teams and in parallel, and, at
the same time, admits realizations by different technical means
[5,22]. The functional specification-paradigm seems to do the
trick since it is present in mechanical engineering [6,7], software
engineering [8], as well as electrical and control engineering
[12,20]: By transforming incoming to outgoing flows of energy,
material, and information, a system defines a stream-processing
[8] function. To perform such transformations, the system encapsu-
lates a physical and a computational structure. Through its inter-
faces, the system is connected to its context.
The paradigm suggests a development process guided by three

principles: (1) Functions are a universal construct and well-
understood among the domains involved in development. Functions
provide a universal, commonly understood, and formal description
of the system under development, (2) underspecification [38]
allows to add previously absent information as soon as it is available
and to regard uncertainty in the system, product variability, the
degrees-of-freedom for customizing a product, as well as behavioral
non-determinism that occurs during system operation, and (3)
composition [8] which allows dividing a complex engineering
task into smaller sub-problems that can be solved individually
possibly by reusing existing solutions.
Following the paradigm, our approach models requirements and

derives a decomposed hierarchy of interacting functions from them.
Functions are realized through principle solutions as stated in
Ref. [6] comprising a physical effect and a set of active surfaces.
In the product, the active surfaces are composed to geometric
components.
The following sections demonstrate our approach that follows the

above ideas and paradigms based on a running example. The
approach is first explained on a design methodological level fol-
lowed by a presentation of a formal modeling method. The model-
ing languages and methods proposed in Refs. [4,36,37] are used to
relate the models across the stages systematically and yield a frame-
work for specifying and testing the system seamlessly.

Running Example. We use the cooling circuit of an automotive
combustion engine as a running example, cf. Fig. 2: the vehicle ful-
fills the main function of locomotion. For this purpose, the subsys-
tem drivetrain supplies mechanical energy that is conducted to the
wheels and transferred to the road. In vehicles with combustion
engines, this involves converting chemical energy of the fuel into
mechanical energy. For this purpose, the physical effect of combus-
tion in the engine generates a thermal expansion of the fuel-air
mixture, accelerating the piston, which transfers mechanical
energy to the further drive system.
During the combustion process, some chemical energy is con-

verted into thermal energy, which is induced into the engine’s

Fig. 2 Running example: The cooling circuit of a combustion
engine, source: Ref. [4]

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

components, increasing their temperatures. The rising engine tem-
perature is critical for both the component’s material and the com-
bustion process. Therefore, combustion engines are usually
equipped with a liquid-based cooling system to regulate tempera-
ture. A cooling medium circulates, absorbs heat from the engine,
and releases via the cooler to the environment. The cooling
medium is conveyed by a pump to ensure its motion despite friction
and pressure losses.
The coolant pump of the example system is operated electrically

and can thus be set to a certain rotational speed by a control unit.
For simplicity, the engine itself is reduced to the subsystems cylinder
head (CH) and crankcase (CC), which both require different temper-
ature levels. The coolant pump and cooling circuit can be assumed as
mechatronic functions and systems of the whole thermal manage-
ment system, which itself provides cyber-physical functions, e.g.,
remote control of engine temperatures or over the air update. For
developing the cyber-physical functions an understanding of all sub-
functions is required, including physical functions.

Design Methodology. For developing a system seamlessly, it is
required to transform system requirements to a reliable product that
satisfies such requirements. To ease this transformation process,
design methodology has developed a method of first developing
functions from requirements, find suitable solutions for each func-
tion, and then develop a product from these solutions [7]. Our
approach is based on this method and described in Fig. 3. In our
approach, functional and design requirements are developed from
stakeholder requirements. We derive functions from functional
requirements and decompose the functions into sub-functions and
elementary functions, which are not further decomposed, following
the approach of Ref. [6]. For each function, a solution is developed.
For elementary functions, these are principle solutions. Principle
solutions consist of physical effects acting between active surfaces.
From the active surfaces, components are finally designed. The
methodological approach for each of the layers requirements, func-
tions, principle solutions, and product is described in the following
subsections.

Requirements. Meeting the stakeholder requirements determines
the quality of the final product and therefore requires thorough ver-
ification and validation of the implemented requirements on all
system levels.
Different stakeholders can state additional requirements at any

time during the development process. Such requirements are
usually broken down to technical requirements. An efficient devel-
opment process requires repeatable verification and validation of
the current state of the development with respect to the growing
set of technical requirements at all times. For different types of
requirements, verification, and validation steps may vary. There-
fore, our approach relies on early stage requirements structuring.
We differentiate between functional requirements and design

requirements that arise during all stages of the product’s life cycle
[39]. Functional requirements, on the one hand, express expecta-
tions about the desired behavior of the system. Design require-
ments, on the other hand, express constraints as structural or
geometric expectations, e.g., on the value ranges of system
parameters.
Regarding the running example a functional requirement is that

the cooling system shall be able to remove heat from the engine,
if the engine’s temperatures rise too high—a functional description
of intended behavior. A design requirement is given by the optimal
range of the cylinder head’s operating temperature being given
between 120 °C and 130 °C.

Functions. After developing and structuring requirements, func-
tional decomposition is the next step. Here, the product relevant
functions are defined and decomposed to sub-functions. Functions
in this method describe transformation operations of the functional
flows energy, material, and information, that the system under
development shall be able to perform. Functions therefore consist
of (1) interfaces comprised of the incoming and outgoing typed
flows of energy, material, and information, and (2) a functional
behavior, that defines how the input is transformed to the output
such that, e.g., the conservation laws are obeyed [4].
As stated in Refs. [6,40], the behavior of a function is either

defined through a composition of sub-functions or by a formula

Fig. 3 Function-oriented development methodology

051001-6 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

relating the input to the output. Therefore, and following [6], we
define the two types of functions elementary function and architec-
ture. An architecture may consist of further architectures and
elementary functions and thereby its behavior is combined from
the combination of the sub-functions behaviors. Elementary func-
tions are not further decomposed and define the lowest level of
the functional architecture. According to Ref. [6], the number of ele-
mentary functions for physical flows is finite and can therefore be
catalogized. However, functions do not describe, how the intended
behavior is realized in a system, but what behavior the system can
provide. Therefore, by abstracting from details of the geometric
shape of the components, the functions are specified independently
of a specific solution and technical domain.

Principle Solutions. The functional architecture specifies a
system in terms of interacting functions abstracting from possible
realizations of the function in the technical product. The realization
is domain-specific and described in the solution product’s solution
layer. In the solution layer, it is determined how an intended func-
tional behavior is achieved. Mechanical solutions achieve an
intended functional behavior by utilizing physical effects
determined by physical laws. Physical effects determine how an
incoming functional flow is converted into an outgoing functional
flow. The physical effects act in a defined way between geometric
surfaces, so called active surfaces. The combination of physical
effect and active surfaces is the principle solution and describes
how an elementary function is physically realized in a product
[6,36]. In a principle solution, the physical effect is described by
one or multiple interacting physical laws and is specified through
mathematical equations. The variables in these equations often
require parameters of active surfaces (geometric or material ones),
quantifiers of the incoming or outgoing types of flows, or natural
constants to be quantitatively determined [4,36]. These parameters
given by the equations are the ones that should be focused on first in
the design, as they are the key parameters for functional behavior of
the system.
As described, the principle solutions of a system are structured

according to the system’s functional architecture, not according
to the components in the product structure. However, it considers
the active surfaces of the product. Principle solutions thereby
provide a bridge between the function space and the final
mechanical components. And, since the number of physical
effects is finite [6], cataloging principle solutions can support
accelerating concept development by reusing known principle
solutions.
An example for a principle solution in the running example is the

centrifugal pump impeller. The impeller realizes the elementary
function apply fluid with mechanical energy. This function has a
fluid and a rotational mechanical energy (i.e., torque and rotational
velocity) as input and provides an accelerated fluid as output. In the
centrifugal pump impeller, this is realized by using the physical
effect of centrifugal forces (as listed in Ref. [6]). Other possibilities
are, e.g., Bernoulli’s principle or electro-kinetic effect. For the cen-
trifugal force, different possibilities of the set of active surfaces
include pumping impellers, whose inlets and outlets can be varied
axially and tangentially. Exemplarily, we chose a setup, where a
rotating pump wheel with paddles accelerates the fluid and leads
it to a tangential outlet in a surrounding cylinder. The relevant geo-
metric parameters are then according to the physical law the inner
and outer diameters as well as the width of the wheel. The complete
principle solution of the centrifugal pump wheel comprises the
physical effect of centrifugal force and the two active surfaces
pump impeller and outer cylinder. However, it does not determine
mechanical components. The impeller surface has to be integrated
into an impeller wheel, which might consist of further active sur-
faces as a tight fight that connects it with a shaft. The cylinder
might be integrated into, for example, the pump housing as a com-
ponent. Thus, the principle solution only determines the active sur-
faces, not the mechanical components.

Product. In the product layer, the final realization of the physical
system is described, i.e., mechanical components and assemblies.
Hence, the product layer does not provide a functional view but a
component structured view on the system.
The link between the principle solutions and the product layer is

the active surfaces. In the aforementioned layers, active surfaces are
created to fulfill functions, and in the product layer, they are inte-
grated into components, as a component consists of multiple
active surfaces, which are connected by supporting structure.
Thus, the main development task in the product layer is deciding
which active surfaces to aggregate in which component and then
to generate supporting structure that withstands the physical loads
acting on the active surfaces. This process can either be done man-
ually by a mechanical designer or automated, e.g., by generative
design tools.
The aggregation of active surfaces to components underlies mul-

tiple restrictions, which are on the one hand functional ones, e.g.,
kinematics of the active surfaces. As mentioned before, principle
solutions consist of two active surfaces, between which physical
effects act. Typically, these active surfaces are integrated into differ-
ent components, as often different kinematic states are required for
them. For example, if two active surfaces need to rotate in opposite
directions, they may not be integrated into the same component. On
the other hand, design restrictions influence the aggregation, which
may be for example production restrictions or building space of
components.
As a result of separating principle solutions’ active surfaces to

components, there is a many to many-to-many relationship
between components and principle solutions (and thereby func-
tions). This many-to-many-relationship between component and
function may result in a product structure that does not relate to
the functional architecture.
The decision which active surfaces are aggregated in which

mechanical component can provide new requirements to the
system and thereby create new functions and principle solutions.
For example, components that shall be rotating need to be sup-
ported, i.e., forces and moments need to be taken up. This creates
a new functional requirement, a new function (support and lock
degrees-of-freedom) and new principle solutions (bearings),
which then create new components. Hence, the described process
from requirements via function and solution to product is not a
linear but an iterative one.
Considering the running example, examples for components

aggregating active surfaces are the pump wheel and the pump
housing. The pump wheel integrates the active surface impeller
wheel from the aforementioned principle solution centrifugal
pump wheel. Furthermore, it may integrate a shaft-hub-connection,
so that it can be linked to a shaft. The pump housing integrates the
tangential outlet of the pump, as well as, e.g., bearing seats. As the
pump wheel rotates in the housing, the two active surfaces impeller
wheel and tangential outlet cannot be realized in the same compo-
nent, which would hinder relative movement.

Physical Behavior Models for Testing. Principle solutions
describe how a function is realized within a system physically. To
validate this physical behavior, physical behavior models are
required to test the behavior of a principle solution against the
requirements. Such models are already strongly used in mechanical
engineering. As these models are physically oriented (and thereby
function-oriented), they can be assigned to principle solutions
already and thereby be used for early stage functional testing. For
virtual verification, often different models are combined to work-
flows. In such workflows, outputs and inputs of different models
are linked with each other. Thereby, complex requirements can be
verified by estimating behavior.

Modeling Methodology. In the previous subsection, we
explained the general design methodology. For applying this meth-
odology and create a digital, model-based design method, we use

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

SysML to model the described elements of systems, and thereby
provide a seamless workflow of a physical system from require-
ments to product. This modeling is described in the following
subsection.

Requirements. To ensure requirement satisfaction on all system
levels, the requirements need to be stated such that the models rep-
resenting the state of development can be verified and validated
repeatable with respect to these requirements.
Therefore, in our approach requirements are structured as

described before and modeled in a predefined modeling language
suitable for the respective type of requirement.
As mentioned before, we differentiate between functional

requirements and design requirements. The former express expec-
tations about the desired behavior of the system. Suitable modeling
languages for behavioral are, e.g., SysML state machines or activity
diagrams [9,39].
Design requirements, on the other hand, express constraints as

structural or geometric expectations, e.g., on the value ranges of
system parameters. Expressions, such as mathematical (in-)equa-
tions or logical formulae seem suitable to model these requirements.
In the running example, a SysML-Block with a respective stereo-

type, value properties, and a classifier behavior defined through a state
machine defines the fundamental functional requirement on the beha-
vior of the cooling system, which is shown in Fig. 4. The cooling
system alternates between the two states active and inactive. As
long as the engine’s temperature is within an optimal range defined
through the parameters T_max and T_min, the cooling system
remains inactive. Once the temperature rises above or below the oper-
ating temperature thresholds, the system changes its state to active
and adjusts the temperature back into the operating range, see Fig. 4.
Considering the running example, a design requirement is given

by the expectation that throughout the system’s lifecycle, the
optimal range of the cylinder head’s operating temperature is
between 120 °C and 130 °C. This design requirement is defined
by a block with the respective stereotype. It refines the functional
requirement described above and provides specific values for
T_min and T_max. The functional requirement given in Fig. 4, is
therefore open for reuse in different engines. For reuse, developers
just define another design requirement to refine the functional
requirement and set the engine-specific numeric values of these
parameters. Conversely, the definition of the design requirement
can be reused in other functional requirements that reference the
operating temperature of the cylinder by referencing the parameters.
Since parameters are assigned a unique type, consistency, e.g., in
units is ensured [36].

The proposed modeling methods of requirements enable reuse
and link requirements among each other. Techniques to analyze
state charts, and activity diagrams may be applied and allow
formal verification and validation of elements linked to these
requirements.

Functions. A function performs transformation of energy, mate-
rial, and information.
For modeling functions, Ref. [4] offers blocks with respective

stereotypes. The functional constituents of an architecture, are spec-
ified through SysML’s composition association. The interaction of
sub-functions is defined through connectors that link the interfaces
of these functions in an internal block diagram (IBD) of the archi-
tecture. Herein, typed flows model energy, material, or information
in terms of physical quantities. This notion is compatible with [40]
which equips the functional models in our approach with formal
semantics that allows analyzing these models regarding consistency
with the requirements. SysML’s typing mechanism assures that con-
nectors exist only between ports of equal types. Using SysML rela-
tions, functions can be linked to the requirements they are supposed
to fulfill. These links enable tracing requirements to functions and,
as proposed in Refs. [8,40], enable function verification with respect
to the requirements. The link to the functional requirement is pro-
vided by a satisfy relationship in SysML.
Figure 5 shows the functional architecture of the running

example: The architecture ManageHeatFlows has an interface
that comprises incoming flows of energy of types ThermalEnergy
and ElectricalEnergy, and an outgoing flow of energy also of
type ThermalEnergy. These are modeled by typed ProxyPorts.
The functional behavior of ManageHeatFlows is given through
the composition of four functions, i.e., the three elementary
functions ControlHeatFlows, DistributeHeatFlows, SeparateFlui-
dAndThermalEnergy, and an architecture GenerateVolumeFlow.
Therein, ControlHeatFlows monitors the temperatures of the

engine and calculates a control value that influences the volume
flow of the coolant exiting the function GenerateVolumeFlow. In
DistributeHeatFlows, the coolant absorbs thermal energy from
the combustion process. SeparateFluidAndThermalEnergy releases
heat from the coolant.

Principle Solutions. The functional architecture specifies a
system in terms of interacting functions abstracting from possible
realizations. Mechanical realizations of these functions achieve an
intended behavior, determined by physical laws, that realize the
specified functionality by acting in a defined way between geomet-
ric surfaces.

Fig. 4 Model of the functional requirement CeaseOperatingTemperature

051001-8 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

Suitable to link models within our approach seamlessly is the
object-oriented principle of inheritance already provided by SysML:
principle solutions specialize elementary functions and therefore
inherit all the properties specified in the elementary function, i.e.,
the interface and the behavior [4]. As a specialization, the principle
solution adds to the functional specification a definition of active sur-
faces and the equations defining a physical effect. This narrows the
solution space, as the addition imposes further technical constraints
on valid implementations. Definitions of physical effects, sets of
active surfaces, and materials may be reused from model libraries.
Principle solutions and their constituents, active surfaces, physi-

cal effects, and material are modeled through blocks with the
respective stereotypes. System parameters and natural constants
are typed value properties. Since value properties are typed, search-
ing for sets of active surfaces that are compatible with the equations
that define a physical effect can be automated [4]. As all elements
within principle solutions are typed, the principle solution is
modeled modularly. This allows the creation of libraries for, e.g.,
active surfaces, physical effects, and full principle solutions, in
which the typed elements can be stored and provided for reuse in
other systems.
In the running example, one elementary function in the architec-

ture GenerateVolumeFlow is ApplyMechanicalEnergyToFluid. A
conceptual realization of this elementary function (i.e., how
mechanical energy is applied to a fluid) is defined in the principle
solution CentrifugalPumpWheel, cf. Fig. 6.
Among others, Ref. [6] lists the physical effectCentrifugalForce to

realize this function. The modularity of the architecture facilitates
exploring suitable technical concepts by exchange, provided a
library of models of these effects. PumpWheel and Cylinder specify
active surfaces through geometric parameters (e.g., the width of the
pump wheel) and design parameters (e.g., the optimum volume
flow). To verify the concept with respect to the functional require-
ments, materialistic properties apart from amongst others the
density of the fluid are not decisive, and therefore not considered in
this model.

The modeling technique presented so far allows specifying a
system seamlessly from requirements, over functions to principle
solutions. The formal grounding of the models and their relations
provides the prerequisites for the formal and objective verification
of concepts with respect to the requirements at any time during
the development. The following section details how active surfaces
are integrated into the product to extend the seamless approach to
include models of the physical product.

Product. As described before, mechanical components integrate
active surfaces from principle solutions. We use the SysML compo-
sition to model the relation between active surfaces and compo-
nents. Thereby, the sets of active surfaces from different principle
solutions are reorganized. One component may integrate multiple
active surfaces from different principle solutions, and the active sur-
faces from one principle solution may be integrated into different
components, cf. Fig. 7.
Existing tools such as the Cameo Systems Modeler allow linking

parameters from external models with SysML Blocks. We use this
infrastructure and model the active surfaces as shell surfaces in
computer-aided design (CAD) that refine the parametric description
in SysML via the interface described in Ref. [37]. Hence, integrat-
ing active surfaces to components as described above, initially
yields a CAD component model consisting of unconnected shell
surfaces. Shell surfaces are then transformed into full volume
CAD components by designing the supporting structure between
the active surfaces, either manually or automatically, e.g., using
generative engineering.

Physical Behavior Models for Testing. The principle solution as
proposed above provides a simple functional description of a
mechanical solution. However, it is still to demonstrate that all
requirements of a principle solution are satisfied, not only the func-
tional requirements but also the design requirements, e.g., lifetime.
For testing a solution against design requirements, other physical
models than just the physical effect equations are required. In our

Fig. 5 Functional architecture of the example system

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

running example, the equation given in the physical effect of
CentrifugalPumpWheel cannot estimate the lifetime, as the princi-
ple solution describes the functional relationship between input
and output. Mechanical engineering has already developed power-
ful simulation methods based on physical behavior models and
guidelines for testing mechanical solutions against design require-
ments [34,35]. These are usually created for one purpose, e.g.,
lifetime validation. Therefore, simulation models of multiple
purposes may exist for a solution [41].
Physical behavior models are used for testing, not for providing a

functional description. The models are therefore not directly integrated
into the functional architecture. Instead, in our approach, sequential
testing workflows are defined and linked to the solutions via trace
links [37]. In a testing workflow, an input is converted to an output
by one ormultiple models estimating the physical behavior of the func-
tion under test. The output is then compared to numerical values in the

design requirement.We employ SysML activity diagrams tomodel the
test procedures, where the control flow describes the execution order of
simulations, and the object flow describes the passing of parameter
values between the simulations [37].
For providing executable tests, the physical behavior models,

e.g., simulation models need to be integrated into the activity dia-
grams. Physical behavior models are usually modeled in domain-
specific tools. Here, a tool-specific interface is required between
the SysML editor and the domain-specific tool. Some SysML
editors provide an execution engine, enabling the integration, and
execution of models in external tools such as MATLAB. In this
case, an activity contains an executable link to a physical behavior
model. The activity has predefined and typed inputs and outputs.
The object flow between the activities represents their data depen-
dencies and automatic execution of the activity diagram propagates
the values consistently between them.

Fig. 6 Requirements are satisfied by elementary functions and their principle solutions whose elements, parameters,
and relationships are visible in the internal block diagram

051001-10 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

Using this modeling technique, models of principle solutions
may be enhanced by predefined test activities that represent the
norms or guidelines for validating design requirements. Added to
a library they are open for reuse and provide automatic and repeated
test execution at any time.
During development, physical behavior models are not only used

for testing but also for design. Design guidelines help engineers to
find a suitable set of parameters for a principle solution. From these
guidelines, engineers can infer the typed value properties of a
principle solution by giving input and required output values of a
principle solution. For example, the value properties of the
active surfaces from Fig. 6 as innerWheelDiameter and outerWheel-
Diameter are estimated by giving rotational speed, fluid pressure,
and volume flow of the CentrifugalPumpWheel. The guideline pro-
vides values for the geometric attributes which we model as default
values of the value properties. Based on these values, the geometric
size of the active surfaces can be estimated by an activity that imple-
ments the procedure prescribed in the guideline. For standardized prin-
ciple solutions such as centrifugal pumps or gear stages, these
guidelines help towards finding suitable geometric parameter values.
Design guidelines can also be modeled as activity diagrams and are
in general similar to test activities. However, the result of such guide-
lines is not a parameter that is compared to a requirement, but geomet-
ric and physical parameter values of the principle solution [37].
The combination of tests and design guidelines allows for (semi-)

automated development of solutions. A change in requirements trig-
gers the execution of all test activities. In case of failed tests, design
activities may be executed and the system can be adapted to the new
conditions by estimating new sets of parameter values.
In this section, we presented an approach to describe the mechan-

ical functions of a CPS from requirements via functions and princi-
ple solutions to components including defined tests for solutions by
integrating physical behavior models. In the next section, we
discuss the approach and its potentials.

Discussion & Evaluation
This section discusses the contribution of the presented approach

(Sec. 4) regarding overcoming the identified challenges (Sec. 2).

Challenge 1: Function-driven innovation

The functional specification paradigm of our approach estab-
lishes consistency among requirements and physical components
by modeling a functional architecture and principle solutions, over-
coming geometry orientation.
For this purpose, the approach first differentiates between design

requirements and functional requirements which facilitates linking
them to further models of the system. Functional requirements are

translated into a specification of the functional behavior of the
system under development. Therefore, in the sense of Ref. [6],
the function complied by the future system is defined by a
functional architecture consisting of compositions of (elementary)
functions wherein each function transforms flows of energy,
material, and information. These functions interact by exchanging
flows. Through links, the artifacts describing the functions are con-
nected to the functional requirements they are supposed to fulfill.
The architecture is modular in a mechanical [6] as well as a software
[8] sense that a solution for a composed function is given by the
composition of solutions to its constituents. This structures
the upcoming development activities. Principle solutions specialize
elementary functions by adding physical effects, active surfaces,
and material properties realizing the specified functionality. Physi-
cal effects, active surfaces, and material properties are described by
equations or parameters. Principle solutions do not refer to entire
components, but to specific active surfaces that are related to func-
tions and are initially independent of components. Components
aggregate these active surfaces. The functional reference is consis-
tently maintained, starting from functional requirements, via the
functional architecture and principle solutions to the active
surface of the component.
Thus, with our approach, innovative, cross-domain functions can

be developed independent of component centricity and boundaries.

Challenge 2: Missing holistic workflow

Our approach provides a formally grounded modeling technique
to specify and link the development artifacts of the mechanical
domain seamlessly wherein many of the required tasks during
development can be automated.
For this purpose, the requirements that are often textual in

mechanical engineering are modeled using an explicit modeling
language. Dependencies and refinements of requirements are
modeled explicitly, which facilitates reusing requirement sets.
These requirements are translated into a functional architecture
which describes the system’s functionality through the composition
of (elementary) functions. These functions are linked by functional
flows explicating interdependencies of functions. Functions that
fulfill functional requirements are linked to these via satisfy rela-
tionships so that a continuous development process is ensured.
Principle solutions are deduced from elementary functions by

generalization so that the functional interface and also the depen-
dencies between the functions are inherited by the architecture of
the principle solutions. The principle solution consists, among
other things, of active surfaces, which are subsequently aggregated
into components. Thus, the modeling technique of our approach
makes it possible to develop requirements, functions, principle solu-
tions, and components in a continuous and parameter-based manner.
This provides transparency when analyzing the finally realized

Fig. 7 Concept of mapping active surfaces to components

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

component and automatically provides information about a compo-
nent’s important surfaces, acting physics and interactions, realized
functions, and attached requirements. This transparency accelerates
product development, as the required artifacts are always visible
and accessible. It also allows for automated analyses of products.
Information or data obtained during other life phases such as pro-

duction, use or recycling may be integrated for continuous optimi-
zation during the development time. For this purpose, their demands
are explicated, e.g., as requirements, and added to the system model
that describes the system under development as part of its continu-
ous evolution. This allows optimizing components, e.g., for manu-
facturability and recycling, as well as dimensioning with regard to
field data.

Challenge 3: Accelerated development

Through formal modeling, our approach facilitates reuse of
models and automated, continuous validation.
Explicating and linking requirements forms the basis for verify-

ing and validating functions, principle solutions, and components
in the development. In the case of adaptations, the formally
modeled requirements, functions, and principle solutions can be
reused with high transparency of dependencies, which saves time
and resources. For the functional architecture, our approach uses
elementary functions [6], which exist as a finite set and can be pro-
vided via a library for the system under development. This also
applies to principle solutions: Active surfaces and the finite set of
physical effects can be reused both individually and in combination.
Since [6] covers all possible physical effects for realizing an ele-
mentary function, possible principle solutions can be explored to
identify optimal concepts to realize a specified functionality. As
principle solutions are explicitly modeled in terms of parameters,
they can be tested virtually against the requirements continuously
from early development stages. By aggregating components from
the active surfaces and parameters of the pre-verified principle solu-
tions, components can be further designed in earlier stages. Various
computer-aided engineering (CAE) models allow designing or
testing the components, which use the component parameters or
estimate them appropriately. Due to the described physical con-
straints, the training effort for using the method is seen as a lower
problem than in other modeling approaches, where reuse has not
shown the expected benefits. A benefit of our approach is that the
reuse of models follows a physical logic, which supports engineers
in their way of thinking and thereby may reduce training efforts.
Through the functional specification paradigm, our approach

offers continuous validation throughout the entire development
process by means of automation on the level of the full system,
not only sub systems. This paves the way for (semi-)automated val-
idation and verification, reducing the need for physical prototypes.
Since information or data of other life phases such as production
and use were also considered at an early stage through explicit mod-
eling, we expect a smoother start of production with higher compo-
nent quality.

Outlook: Roadmap Towards a Holistic and Functional
Model-Based Design Method for Mechatronic
Cyber-Physical Systems
The proposed approach provides a function-oriented design

method for CPS including mechanical systems. However, we iden-
tified further open points to provide an industrialized, holistic
approach. In this section, we give a roadmap towards such an
approach from a research perspective.

(1) Scaling for broad industrial application.
For broad industrial usage and truly accelerated product

development, the proposed methods have to be put into
easy-to-use tools and tailored languages represented in an
easy-to-understand way. Therefore, a strong interconnection
between geometry-oriented CAD tools and function-oriented

systems modelers is required. Also, the interconnectivity of
simulation models in the system context has to be simplified.
To link such models and provide efficient virtual testing for
the system a parameter-based integration of simulation
models is required, where simulation models can be easily
linked to functional models via their parameters.

A further important point for industrial application is thor-
ough training of people. Engineers need to consequently
think in systems and functions in order to develop systems
in a holistic manner.

(2) Machine-readable requirements.
We have discussed that formal requirements modeling is

one central element of our approach. Requirements contain
specific knowledge and either arise in a specific project or
are established in a fundamental way, e.g., to represent the
constraints of production facilities. Therefore, companies
usually save all requirements and try to reuse them in subse-
quent projects, thus, taking relevant knowledge into account
from the very beginning. With the rising number of require-
ments and the higher complexity of technical systems,
human-based requirements management is reaching its
limits. Novel requirement management tools already
employ artificial intelligence such as, e.g., natural language
processing for analyzing, structuring, and checking consis-
tency of informal requirements [42,43]. Combined with
formal modeling techniques for deriving and specifying
system functions from these requirements, this overcomes
the identified possible missing links between development
artifacts for requirements. In this way, engineering knowl-
edge can be stored in requirements in the long term and
used efficiently.

(3) A function-oriented design method based on active surfaces.
As discussed, for function-oriented design, the component

is not the smallest entity, but the active surfaces are. Today’s
design methods lack a methodology to design components
with a focus on their active surfaces. Such a method has to
support in identifying required surfaces based on chosen
principle solutions. These surfaces may then be assigned
to mechanical components. The components’ supporting
structure may then be designed automatically, e.g., by gen-
erative design, when active surfaces are given. Considering
the active surface as the center of geometric design can
anchor function-oriented thinking also for mechanical
engineers.

(4) Digital libraries for function and solution models.
A modeling approach such as the one presented allows for

modeling a system from a function-oriented view, that
abstracts from the physical solutions offered in existing
libraries such as the MODELICA standard library [44].
The system may be fully specified including all functions
and their interactions using the modeling language given in
Ref. [4]. However, especially for mechanical functions, the
amount of undefined interactions is large. These interactions
are predefined by solution-dependent physical restrictions.
To handle the complexity of interactions, predefined func-
tion, and solution libraries can support engineering. A trans-
formation of [29] may provide digital functions and
solutions, which can be integrated into functional architec-
tures. Functional flows, that are through physical restrictions
linked to the function, may be included. Such a digital
catalog may also include engineering models, linked to the
respective solution. A strong concept for reuse of functions
and solutions enables efficient modeling, evolving, and
maintaining a system’s functional architecture throughout
the entire lifecycle and helps improving quality. Function
and solution libraries help engineers to save knowledge,
accelerate development, and increase product quality.

(5) Systematic integration of engineering models and tests.
Fully virtual system development requires virtual design,

and virtual testing of systems. Especially for the later steps,

051001-12 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

domain-specific engineering models are used. On the one
hand, the functional architecture provides a formal specifica-
tion of the system under development that enables techniques
such as model checking for the formal verification of require-
ments. On the other hand, the functional architecture serves
as an organizing element to trace domain-specific models
that describe details of physical implementations at lower
abstraction levels. This requires a systematic method to inte-
grate engineering models and predefined tests. On the lan-
guage side, this requires systematics on how to integrate an
external domain model in a reusable way into the system
model. Also, methods of test case generations may be evalu-
ated in this context. For a complete integration, interfaces
and documentation of the models have to be developed and
categorization mechanisms to be defined. Then, changes in
the system model can be propagated to domain models
(semi-) automatically. Virtual testing is hastened, as
models and tests are directly available in the system model
and do not need to be defined manually per tool and test.

Validating products holistically requires models from all
stages of the product life cycle, as each step provides relevant
information for testing requirement satisfaction of the
product. Our approach gives a framework to integrate all
such models and link them to the solution as all kinds of
models may be integrated. In addition, physical hardware
tests have to be integrated into the approach, to deal with
effects that are not predictable or formalized yet.

(6) Refining architectures to digital twins.
We consider a digital twin to be “a set of models of the

system, a set of digital shadows and their aggregation and
abstraction collected from a system, and a set of services
that allow using the data and models purposefully with
respect to the original system” [45]. The digital twin of a
system, therefore, comprises all required kinds of models
to mirror a system during life [46]. Digital twins are used
diversely from design-space exploration [47] to the monitor-
ing of systems [48] and optimizing [49] system behavior.

The models in the digital twin are based on behavior
describing models from product development. However,
they are often simplified to provide information in a shorter
calculation time. The functional architecture can yield a
framework for the digital twin models. It provides the
system’s architecture and can help to identify the models
for specific digital twin purposes. It is to be investigated if
and how the digital twin can be directly derived from the
system models including links to domain-specific models.
Also including feedback (e.g., sensor data) from lifetime to
such models within a system model may be investigated.

Deriving digital twins from functional models provides a
strong link between product development, production, and
use of systems, and thereby is one enabler of a holistic work-
flow through the product lifecycle.

Conclusion
In this paper, we presented a novel approach for a functional,

model-based design method of mechatronic cyber-physical
systems. Based on the derivation and discussion of current chal-
lenges in the industry regarding mechatronic CPS development as
well as the discussion of a comprehensive literature survey of the
current state of research, a novel development approach was pre-
sented that closes the gap between formal, functional modeling,
and mechanical development. It thereby enables the formal specifi-
cation and virtual testing of systems including mechanical
functions.
The foundation of the approach is to develop mechanical func-

tions formally. The approach introduces a link between require-
ments and products via functions and principle solutions and
thereby formalizes the studies of Koller [6,29]. It provides a math-
ematical, generally understandable description of mechanical

solutions. Furthermore, it integrates engineering models and is, to
the far of our knowledge, the first approach to provide functional
development and testing for mechanical functions at every stage
of development.
Thus, our approach enables a full specification of CPS also

including the mechanical domain on all stages of the product devel-
opment in a formal way. It thereby enables a fully virtual, model-
based methodology covering the whole development process for
the development of CPS and linking all data objects seamlessly.
Additionally, the method allows for a complete virtual testing of
CPS including all domains and interdependencies by organizing
models and linking them in a function-oriented way.
We demonstrated the approach using the running example of an

electric coolant pump of a combustion engine’s coolant circuit. The
results show how a seamless description of a mechatronic system as
the coolant pump is realizable with our approach from requirements
via system functions and solutions to product and how functional
testing and automated design may be realized. Based on the
results and the identified challenges in product development, a
roadmap on future research topics has been defined to extend the
approach towards a fully seamless product lifecycle.
For product development, this includes automated requirement

modeling, reusable libraries for functions and solutions, automated
verification and validation of functions and solutions by theorem
proving and simulation models, and generation of components
from their active surfaces.
As a link towards the further steps of the product lifecycle, the

derivation of digital twins from functional models in product devel-
opment is to be investigated. A broad use in the industry then
requires the support of the method via tools allowing for scalability.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The authors attest that all data for this study are included in the

paper.

Nomenclature
CAD = computer-aided design
CAE = computer-aided engineering
CC = crankcase
CH = cylinder head
CPS = cyber-physical systems
FE = finite elements

IBD = internal block diagram
MBSE = model-based systems engineering
OEM = original equipment manufacturer

SE = systems engineering
SysML = systems modeling language

References
[1] Törngren, M., and Sellgren, U., 2018, “Complexity Challenges in Development

of Cyber-Physical Systems,” Principles of Modeling, M Lohstroh, P Derler,
and M Sirjani, eds., Springer International Publishing, Cham, pp. 478–503.

[2] Olivain, N., Tiefenbacher, P., and Kohl, J., 2021, “Bayesian Structural Learning
for an Improved Diagnosis of Cyber-Physical Systems,” arXiv:2104.00987.

[3] SEBoK Editorial Board, 2021, The Guide to the Systems Engineering Body of
Knowledge (SEBoK), v. 2.5, RJ Cloutier, ed., INCOSE Systems Engineering
Research Center, Hoboken, NJ.

[4] Drave, I., Rumpe, B., Wortmann, A., Berroth, J., Hoepfner, G., Jacobs, G.,
Spuetz, K., Zerwas, T., Guist, C., and Kohl, J., 2020, “Modeling Mechanical
Functional Architectures in SysML,” Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, Virtual, Oct. 16–23, ACM, New York, NY, pp. 79–89.

[5] France, R., and Rumpe, B., 2007, “Model-Driven Development of Complex
Software: A Research Roadmap,” Future of Software Engineering (FOSE ‘07),
Minneapolis, MN, May 23–25, IEEE, pp. 37–54.

Journal of Computing and Information Science in Engineering OCTOBER 2023, Vol. 23 / 051001-13

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

http://dx.doi.org/10.1007/978-3-319-95246-8_27

[6] Koller, R., 1998, Konstruktionslehre für den Maschinenbau: Grundlagen zur
Neu- und Weiterentwicklung technischer Produkte mit Beispielen, Springer
Berlin, Berlin, Heidelberg.

[7] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H., 2007, Engineering Design: A
Systematic Approach, 3rd ed, Springer, London.

[8] Broy, M., 2018, “On Architecture Specification,” SOFSEM 2018: Theory and
Practice of Computer Science, AM Tjoa, L Bellatreche, S Biffl, J van
Leeuwen, and J Wiedermann, eds., Springer International Publishing, Cham,
pp. 19–39.

[9] Markthaler, M., Kriebel, S., Salman, K. S., Greifenberg, T., Hillemacher, S.,
Rumpe, B., Schulze, C., Wortmann, A., Orth, P., and Richenhagen, J., 2018,
“Improving Model-Based Testing in Automotive Software Engineering,” 2018
IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), Gothenburg, Sweden, May 30–
June 1, pp. 172–180.

[10] Endres, A., and Rombach, D., 2003, A Handbook of Software and Systems
Engineering: Empirical Observations, Laws and Theories, Pearson Addison
Wesley, Harlow.

[11] INCOSE, 2007, INCOSE Systems Engineering Vision 2020, INCOSE, San Diego,
CA.

[12] Alur, R., 2015, Principles of Cyber-Physical Systems, The MIT Press,
Cambridge, MA.

[13] Eigner, M., Gilz, T., and Zafirov, R., 2012, “Proposal for Functional Product
Description as Part of a PLM Solution in Interdisciplinary Product
Development,” DS 70: Proceedings of DESIGN 2012, the 12th International
Design Conference, Dubrovnik, Croatia, May 21–24.

[14] Wheatcraft, L. S., 2010, “Everything You Wanted to Know About Interfaces, But
Were Afraid to Ask,” Incose Int. Symp., 20(1), pp. 1132–1149.

[15] Conway, M. E., 1968, “How Do Committees Invent?,” Datamation Mag., 14(4),
pp. 28–31.

[16] Stahl, T., Völter, M., Bettin, J., Czarnecki, K., and Stockfleth, B. v., 2006,
Model-Driven Software Development: Technology, Engineering, Management,
Wiley, Chichester.

[17] Selic, B., 2003, “The Pragmatics of Model-Driven Development,” IEEE Softw.,
20(5), pp. 19–25.

[18] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1994, Design Patterns:
Elements of Reusable Object-Oriented Software, Pearson International,
Reading, MA.

[19] Hölldobler, K., Michael, J., Ringert, J. O., Rumpe, B., and Wortmann, A., 2019,
“Innovations in Model-Based Software And Systems Engineering,” JOT, 18(1),
p. 1.

[20] Ptolemaeus, C., 2014, System Design, Modeling, and Simulation Using Ptolemy
II, Ptolemy.org, Berkeley.

[21] Moeser, G., Albers, A., and Kumpel, S., 2015, “Usage of Free Sketches in MBSE
Raising the Applicability of Model-Based Systems Engineering for Mechanical
Engineers,” 2015 IEEE International Symposium on Systems Engineering
(ISSE), Rome, Italy, Sept. 28–30, IEEE, pp. 50–55.

[22] Broy, M., and Stølen, K., 2001, Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement, Springer, New York.

[23] Broy, M., 2012, “System Behaviour Models With Discrete and Dense Time,”
Advances in Real-Time Systems, S Chakraborty, and J Eberspächer, eds.,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 3–25.

[24] Drave, I., Hillemacher, S., Greifenberg, T., Kriebel, S., Kusmenko, E.,
Markthaler, M., Orth, P., et al., 2019, “SMArDT Modeling for Automotive
Software Testing,” Softw. Pract. Exper., 49(2), pp. 301–328.

[25] Ebert, R., Jolianis, J., Kriebel, S., Markthaler, M., Pruenster, B., Rumpe, B., and
Salman, K. S., 2019, “Applying Product Line Testing for the Electric Drive
System,” Proceedings of the 23rd International Systems and Software Product
Line Conference—Volume A, ACM, New York, NY, pp. 14–24.

[26] Bayer, T., Day, J., Dodd, E., Jones-Wilson, L., Rivera, A., Shougarian, N., Susca,
S., and Wagner, D., 2021, “Europa Clipper: MBSE Proving Ground,” 2021 IEEE
Aerospace Conference, Big Sky, MT, Mar. 6–13

[27] Dubos, G., Schreiner, S., Wagner D, A., Jones, G., Kerzhner, A., and Kaderka, J.,
2016, “Architecture Modeling on the Europa Project,” AIAA SPACE 2016, Long
Beach, CA, Sept. 13–16.

[28] Chung, S. H., Bayer, T. J., Cole, B., Cooke, B., Dekens, F., Delp, C., and Lam, D.,
2012, “Model-Based Systems Engineering Approach to Managing Mass Margin,”
5th International Workshop on Systems & Concurrent Engineering for Space
Applications, Lisbon, Portugal, Oct. 17–19.

[29] Koller, R., and Kastrup, N., 1998, Prinziplösungen zur Konstruktion technischer
Produkte, 2nd ed., Springer Berlin Heidelberg, Berlin, Heidelberg.

[30] Gausemeier, J., Dorociak, R., Pook, S., Nyßen, A., and Terfloth, A., 2010,
“Computer-Aided Cross-Domain Modeling of Mechatronic Systems,” DS 60:
Proceedings of DESIGN 2010, the 11th International Design Conference,
Dubrovnik, Croatia, May 17–20, pp. 723–732.

[31] Moeser, G., Kramer, C., Grundel, M., Neubert, M., Kümpel, S., Scheithauer, A.,
Kleiner, S., and Albers, A., 2015, “Fortschrittsbericht zur modellbasierten
Unterstützung der Konstrukteurstätigkeit durch FAS4M,” Tag des Systems
Engineering, S. O Schulze, and M. Christian, eds., Carl Hanser Verlag,
Munich, pp. 69–78.

[32] Wölkl, S., and Shea, K., 2009, “A Computational Product Model for Conceptual
Design Using SysML,” ASME 2009 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, San
Diego, CA, Aug. 30–Sept. 2, pp. 635–645.

[33] Berroth, J., Jacobs, G., Kroll, T., and Schelenz, R., 2016, “Investigation on Pitch
System Loads by Means of an Integral Multi Body Simulation Approach,”
J. Phys.: Conf. Ser., 753(11), p. 112002.

[34] Pasch, G., Jacobs, G., and Berroth, J., 2020, “NVH-Systemsimulation eines
Traktors mit hydrostatisch-mechanischem Leistungsverzweigungsgetriebe,”
Landtechnik, 75(4), pp. 301–315.

[35] Jaeger, M., Drichel, P., Schröder, M., Berroth, J., Jacobs, G., and Hameyer, K.,
2020, “Die Kopplung elektrotechnischer und strukturdynamischer Domänen zu
einem NVH-Systemmodell eines elektrischen Antriebsstrangs,” Elektrotech.
Inftech., 137(4–5), pp. 258–265.

[36] Zerwas, T., Jacobs, G., Spütz, K., Hoepfner, G., Drave, I., Berroth, J., Guist, C.,
Konrad, C., Rumpe, B., and Kohl, J., 2021, “Mechanical Concept Development
Using Principle Solution Models,” IOP Conf. Ser.: Mater. Sci. Eng., 1097(1),
p. 12001.

[37] Hoepfner, G., Jacobs, G., Zerwas, T., Drave, I., Berroth, J., Guist, C., Rumpe, B.,
and Kohl, J., 2021, “Model-Based Design Workflows for Cyber-Physical Systems
Applied to an Electric-Mechanical Coolant Pump,” IOP Conf. Ser.: Mater. Sci.
Eng., 1097(1), p. 12004.

[38] Rumpe, B., 2016,Modeling With UML, Springer International Publishing, Cham.
[39] Glinz, M., 2002, “Statecharts For Requirements Specification—As Simple As

Possible, As Rich As Needed,” Proceedings of the ICSE 2002 International
Workshop on Scenarios and State Machines: Models, Algorithms and Tools,
Orlando, FL, May 20.

[40] Broy, M., 2010, Cyber-Physical Systems, Springer Berlin Heidelberg, Berlin/
Heidelberg.

[41] Stachowiak, H., 1973, Allgemeine Modelltheorie, Springer, Wien.
[42] Perini, A., Susi, A., and Avesani, P., 2013, “A Machine Learning Approach to

Software Requirements Prioritization,” IEEE Trans. Softw. Eng., 39(4),
pp. 445–461.

[43] Juhnke, K., Nikic, A., and Tichy, M., 2021, “Clustering Natural Language Test
Case Instructions as Input for Deriving Automotive Testing DSLs,” J. Object
Technol., 20(3), p. 5:1.

[44] Modelica Association, 2020, Modelica Standard Library—Version 4.0.0,
Modelica Association, Linköping, Sweden.

[45] Dalibor, M., Michael, J., Rumpe, B., Varga, S., and Wortmann, A., 2020,
“Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits,”
Conceptual Modeling, G Dobbie, U Frank, G Kappel, SW Liddle, and HC
Mayr, eds., Springer International Publishing, Cham.

[46] Negri, E., Fumagalli, L., and Macchi, M., 2017, “AReview of the Roles of Digital
Twin in CPS-Based Production Systems,” Procedia Manuf., 11, pp. 939–948.

[47] Allemang, R., Spottswood, M., and Eason, T., 2014, “A Principal Component
Analysis (PCA) Decomposition Based Validation Metric for Use With Full
Field Measurement Situations,” Model Validation and Uncertainty
Quantification, 3, HS Atamturktur, B Moaveni, C Papadimitriou, and T
Schoenherr, eds., Springer International Publishing, Cham, pp. 249–263.

[48] Golafshan, R., Dascaliuc, C., Jacobs, G., Roth, D., Berroth, J., and Neumann, S.,
2021, “Damage Diagnosis of Cardan Shafts in Mobile Mining Machines Using
Vibration Analysis,” IOP Conf. Ser.: Mater. Sci. Eng., 1097(1), p. 12019.

[49] Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D.,
Schmitz, M., and Wortmann, A., 2020, “Model-Driven Development of a
Digital Twin for Injection Molding,” Advanced Information Systems
Engineering, S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, eds.,
Springer International Publishing, Cham, pp. 85–100.

051001-14 / Vol. 23, OCTOBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/5/051001/6997312/jcise_23_5_051001.pdf by U
niversitätsbibliothek D

er R
W

TH
 Aachen user on 16 June 2023

http://dx.doi.org/10.1002/j.2334-5837.2010.tb01130.x
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.5381/jot.2019.18.1.r1
http://dx.doi.org/10.1002/spe.2650
http://dx.doi.org/10.1088/1742-6596/753/11/112002
http://dx.doi.org/10.1007/s00502-020-00802-z
http://dx.doi.org/10.1007/s00502-020-00802-z
http://dx.doi.org/10.1088/1757-899X/1097/1/012001
http://dx.doi.org/10.1088/1757-899X/1097/1/012004
http://dx.doi.org/10.1088/1757-899X/1097/1/012004
http://dx.doi.org/10.1109/TSE.2012.52
http://dx.doi.org/10.5381/jot.2021.20.3.a5
http://dx.doi.org/10.5381/jot.2021.20.3.a5
http://dx.doi.org/10.1016/j.promfg.2017.07.198
http://dx.doi.org/10.1088/1757-899X/1097/1/012019

	 Introduction
	 Missing Cross-Domain Collaboration Makes Cyber-Physical Systems Development Complex and Time-Consuming
	 Model-Based Systems Engineering Including Mechanical Functions Offers a Facilitation of the Cyber-Physical Systems Development Process
	 Overview of the Contribution

	 Challenges in Mechatronic Cyber-Physical Systems Development
	 The Product Lifecycle From a Mechanical Perspective
	 Challenges in Today’s Development Process
	 Consequences of the Challenges Throughout the Development Process

	 State of Research
	 Key Concepts of Model-Based Approaches in the Software Domain
	 Function-Oriented Development
	 Formal Modeling of Functions in Mechanical Domain

	 Approach
	 Running Example
	 Design Methodology
	 Requirements
	 Functions
	 Principle Solutions
	 Product
	 Physical Behavior Models for Testing

	 Modeling Methodology
	 Requirements
	 Functions
	 Principle Solutions
	 Product
	 Physical Behavior Models for Testing

	 Discussion Evaluation
	 Outlook: Roadmap Towards a Holistic and Functional Model-Based Design Method for Mechatronic Cyber-Physical Systems
	 Conclusion
	 Conflict of Interest
	 Data Availability Statement
	 Nomenclature
	 References

