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Abstract 

The engineering of sophisticated systems today is highly multi-disciplinary and depends 
on domain-specific documents being exchanged between the different participating ex-
perts, software tools, and engineering phases. The lack of integration between these 
tools raises the challenge of media disruption, which demands for manual translation of 
documents passed between the different tools. Existing research on tool integration fo-
cuses the pairwise translation between specific technological spaces only, which hinders 
toolchain extension. We conceived an integration model for systematic data exchange 
among systems engineering tools that leverages component and connector architec-
tures. Our model supports automated data translation and distribution between tools 
encapsulated using the architecture description language MontiArc and model transfor-
mations. This enables agile and sustainable development among heterogeneous tool-
chains, which preserves existing workflows and is easily extensible.  

1 Introduction 

In modern development of mechatronic and cyber-physical systems, a variety of soft-
ware tools, such as MagicDraw [SIL09], support developers in creating, maintaining, and 
updating their products. These tools have been proven to be essential for various do-
mains such as automotive [BLO13], avionics [FEI12], and robotics [WIG17]. As technol-
ogy gets more advanced, the complexity of the resulting products and hence the neces-
sary tooling grows in terms of required functionality diversity. Unfortunately, the available 
tools support the developer concerning specific tasks only. Due to the heterogeneity of 
particular tools, they lack in interconnectivity and uniform information distribution. This 
emerges media disruptions, the manual and error-prone translation between tool data 
formats, which impedes agile development.  

Different approaches in Model-Based Systems Engineering (MBSE), such as SysML, 
support product development by providing tools that enable working on a combined sys-
tem model [ROB98]. While these solutions tackle the problem of distributed data by join-
ing information into a single source of truth, they also entail additional effort. Domain 
experts have to be trained and motivated in using these new tools. Additionally, compa-
nies often require customizations that may not be compatible with the prescribed tooling 
[DRA18]. Developers also tend to fall back into accustomed workflows with familiar tools, 
if the added value of systems engineering is not accessible directly [CHA18].  

These challenges require a domain-independent solution that prevents media disrup-
tions, without entailing additional effort for domain experts. Therefore, we present our 
approach of leveraging component and connector (C&C) architectures to automatically 
distribute tool-specific data as generalized messages along a generated communication 
layer towards particular tools. Hence, developers can preserve their workflows within 
familiar tools, while automatically exchanging information throughout the toolchain. The 
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approach is based on the architecture description language (ADL) MontiArc [BUT17a, 
BUT17b, RIN15] for C&C systems and model transformations [HOE18]. 

In the following, Section 2 illustrates selected challenges in agile systems engineering 
and motivates connecting the different technological spaces of development tools. Sec-
tion 3 presents preliminaries before Section 4 introduces the realization of our solution. 
Afterwards, Section 5 illustrates the benefits through a case study, and Section 6 con-
siders related work. Finally, Section 7 discusses our solution and concludes. 

2 Motivating Example 

Consider a company producing wind turbines using highly heterogeneous software 
tools, such as MagicDraw [SIL09] for modeling software structure, CATIA [BRA09] for 
computer-aided design (CAD), MATLAB Simulink [ONG98] for simulation, and a spread-
sheet software for production cost analysis. Domain experts have to consider multiple 
aspects when developing a new turbine design. For the sake of simplicity, we restrict 
this example to a small subset of the original parameter space. Figure 1 presents a class 
diagram for the simplified wind turbine infrastructure. The model of a wind turbine is 
characterized by its height, span, expected efficiency, and production cost. Ad-

ditionally, it features geometry data that also contains material information. 

 

Figure 1: Class diagram of a simplified structure of a wind turbine. The wind turbine 
features height, span, efficiency, and production cost. Additionally, it 

requires geometry data with a corresponding material. 

When designing a new wind turbine, developers have to address these parameters. A 
toolchain comprising a variety of tools supports the development process concerning 
specific focal aspects. In this example, we require four tools to properly model the wind 
turbine. In Figure 2, we illustrate the corresponding applications. Initially, we have a 
SysML Tool MagicDraw for defining the overall architecture. With this, constraints such 
as the height, rotor span width, and efficiency are specified. To evaluate these, 

we perform a MATLAB Simulink Simulation to verify over an according environment 
model, whether the wind turbine reaches the expected efficiency threshold. Addi-

tionally, we use the CAD Tool CATIA to specify geometry data including material. 

Finally, we perform a Cost Calculation to estimate production cost. 

This toolchain is capable of completing the distinct tasks. However, the involved tools 
rely on information that is specified within another tool. Figure 2 presents an example 
where all these tools have data interdependency. The CAD Tool and the Simulation 
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both require constraints depicted in the SysML Tool. Additionally, the Cost Calcu-

lation depends on the SysML Tool (for height and span), as well as the CAD Tool 

(for the rotor material). Since these tools are not connected, development entails 

media disruptions through manual translation of output data of one tool into input data 
of another tool, which impede severely development. Moreover, this constitutes an un-
necessary source of failure and prevents truly agile systems engineering, since the data 
has to be traced down the complete toolchain, once a parameter changes. To mitigate 
this, the next sections emphasize a method to automatically distribute the data through-
out the toolchain without media disruptions. 

 

Figure 2: Exemplary tooling landscape for the development of a wind turbine. Media 
disruptions emerge between the four distinct tools. Information is not distrib-
uted throughout the system automatically. 

3 Preliminaries 

The realization of connecting heterogeneous tools relies on the MontiArc ADL and model 
transformations across the different technological spaces. This section introduces both. 

MontiArc [BUT17a, BUT17b] is an ADL for modeling C&C systems. An architecture de-
signed with MontiArc consists of components, ports, and connectors that define the C&C 
infrastructure over a corresponding configuration. Components either compute behavior 
or contain configurations of subcomponents. They feature interfaces of typed, directed 
ports to exchange messages. We will leverage the strongly typed component interfaces 
of components to encapsulate tool-specific inputs and outputs and use MontiArc’s com-
position mechanism to integrate different encapsulated tools without media disruptions. 

Within the components we employ formal model-to-model (M2M) transformations 
[HOE18] to automatically translate messages received by the tool-encapsulating com-
ponents into suitable inputs for the contained tool. Approaching tool integration via en-
capsulation and model transformation enables portability between the different data for-
mats (or metamodels [KLE08]) and facilitates building bridges among the different tech-
nological spaces of systems engineering.  
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We apply model transformations on the abstract syntax tree (AST), a tree representation 
of the parsed model that only contains processable features, without further syntactic 
sugar, such as file format artifacts. The overall structure of the abstract syntax is given 
by the metamodel [KLE08], the formal definition of a language or data format. This met-
amodel prescribes the set of possible models within the corresponding domain. 

4 Constructing a Tool Communication Infrastructure 
with C&C Architectures 

In this section, we explain our approach of enabling an automatic data transfer between 
distinct tools, utilizing MontiArc C&C architectures. The basic idea is to create a trans-
portation layer by using connected components that exchange messages. Tools can be 
plugged in into components, which serve as communication interfaces and distribute 
required data along the network. In the following, we explain, how components extract 
the required information from an application concerning its metamodel and transform it 
into a generalized form. Figure 3 illustrates the structure of such a tool interface. A com-
ponent contains multiple ports, one for each data set that should be distributed. We use 
an incoming port when the tools require information that is provided elsewhere. Analo-
gously, outgoing ports denote that the tool contributes information for other applications. 
The interdependencies of the tools are lifted onto the transportation layer of the C&C 
infrastructure. Here, they are realized via corresponding connectors between ports of 
the particular components. This abstraction enables data exchange with respect to but 
also independent of the actual interdependencies of the underlying tooling landscape. 

Figure 3: Components serve as communication interfaces to the C&C transportation 
layer for distributing data to other tools. Model transformations enable the 
translation of tool-specific data into a generalized and distributable format. 

Since we can realize the communication on the C&C layer, we now consider the trans-
portation of information from a tool towards its corresponding component. To this end, 
we use model transformations to prepare the data for exchange. Figure 3 sketches the 
translation of tool-specific data into a generalized model for data distribution. The data 
created within a tool gets parsed with respect to the corresponding metamodel of the 



ATK 2019 

5 

tool. The information is stored in an AST, and we apply M2M transformations to map the 
tool-specific abstract syntax representation to a generalized form, which is used on our 
transportation layer. Hence, the infrastructure extracts data from a tool and distributes it 
along the network.  

To provide information for a tool, we use an analogous approach. Here, we translate the 
generalized AST into tool-comprehensive data. In general, there are two approaches. If 
the tool supports an application programming interface (API), we again use M2M trans-
formations to map the general AST into a specific that the tool can directly process. 
Otherwise, we generate a file with respect to the tool’s metamodel. Thus, the tool can 
import the required information.  

This enables a complete data distribution throughout a tooling landscape of highly het-
erogeneous applications. Data is exchanged via model transformations between tools 
and the corresponding components, which then distribute messages for communication 
along the C&C network. Finally, the data is reintegrated into the desired tools.  

 

Figure 4: C&C system as communication layer for distributing data among distinct 
tools. Components exchange information with their underlying tools and 
transport messages concerning the original dependencies. 

5 Case Study 

To evaluate our approach of generating a communication infrastructure with C&C archi-
tectures, we consider the initial example from Section 2. Again, we require four distinct 
applications for designing a wind turbine. For each tool, we create a component in the 
communication infrastructure to distribute and receive data. Figure 4 illustrates the Mon-
tiArc C&C model for the tooling landscape. Each tool is encapsulated by its correspond-
ing component that handles the data distribution. The ports and connectors are derived 
from the original tool interdependencies described in Section 2. The SysML Tool pro-

vides the span and height values for the Simulation, CAD Tool, and Cost Cal-
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culation. Additionally, it passes the expected efficiency to the Simulation. Fi-

nally, the CAD Tool contributes the rotor material that is required for the Cost 

Calculation as well. Thus, the C&C infrastructure distributes information across the 

communication network. The particular components translate received messages into 
consilient tool-specific information. This way, the communication layer ensures global 
consistency, even among highly heterogeneous tools and thus, enables agile MBSE.  

6 Related Work 

There have been many attempts to integrate tools that support the MBSE process 
[FER15, SHA10, CHA06]. The realized solutions are often particular for tools that com-
panies use to define their system models. For example, in [FER15] the authors present 
an integration between CAD systems tailored for shipbuilding and general product lifecy-
cle management (PLM) tools. The key idea is the publish and synchronization mecha-
nism which ensures that changes in one tool are transferred to the other. Publishing 
refers to the transfer of changes in the CAD tool into an PLM. Synchronization, on the 
other hand, is the process of informing the CAD system about changes in the PLM sys-
tem. The whole process of publishing and synchronizing relies on a database that con-
tains the identification between CAD and PLM elements. In contrast to our approach, 
this approach is specific for CAD systems, whereas we present a concept that integrates 
arbitrary tools. Besides, we provide a graphical notation of tool interactions, which im-
proves readability compared to a database table. 

Another approach introduces an integration idea based on a common SysML model, 
that describes those parts of the system that are common for all tools that interact during 
the systems modeling process [SHA10]. A mapping between the SysML model and the 
tool-specific models is archived by model transformations, that define which parts of the 
SysML model are relevant for the specific tool and how they are represented. The paper 
evaluates the idea based on an integration between EPLAN [SEN09] and Modelica 
[FRI10]. The main advantage of C&C models is the visualization. It shows explicitly 
which data is transferred between involved tools. This enables engineers to analyze how 
changes in one tool may affect models that engineers created and maintain in another 
tool. Therefore, as effects of a change in one model are also visible, simplifies an agile 
systems engineering. 

7 Discussion and Conclusion 

We presented a concept of connecting heterogeneous tools by leveraging C&C archi-
tectures and model transformations. The goal was preventing media disruptions in de-
velopment due to tool incompatibility. At its core, components provide communication 
interfaces for the underlying applications. We presented the generalization of tool-spe-
cific data using M2M transformations concerning an underlying metamodel. The port and 
connector configuration, which results from the original data dependencies, represents 
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a communication layer. This allows the exchange of messages that finally, are translated 
back into tool-specific information. As communication is automated, this approach does 
not entail any additional effort for domain experts. In fact, our solution reduces the 
amount of work, as manual data distribution is now managed by the system. This also 
eliminates the entailed source of error and facilitates agile development. In contrast to 
existing solutions that mainly concentrate on data transfer between two particular tools, 
our approach describes a general concept independent of underlying applications. Since 
the established communication infrastructure is concealed from the development envi-
ronment of the domain experts, our solution perfectly scales even for larger systems. 
We believe that connecting tools among distinct technological spaces is essential for 
future development of mechatronic and cyber-physical systems. 
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