
Towards Self-Explainable Cyber-Physical Systems

Mathias Blumreiter∗, Joel Greenyer†, Francisco Javier Chiyah Garcia‡, Verena Klös¶,
Maike Schwammberger‖, Christoph Sommer∗∗, Andreas Vogelsang†† and Andreas Wortmann‡‡

∗Institute for Software Systems, Hamburg University of Technology, Germany
†Software Engineering Group, Leibniz Universität Hannover, Germany

‡Heriot-Watt University, United Kingdom
¶Software and Embedded Systems Engineering, Technische Universität Berlin, Germany

‖Department of Computing Science, University of Oldenburg, Germany
∗∗Heinz Nixdorf Institute and Dept. of Computer Science, Paderborn University, Germany
††Automated Systems Engineering Technologies, Technische Universität Berlin, Germany

‡‡Software Engineering, RWTH Aachen University, Germany

mathias.blumreiter@tuhh.de, greenyer@inf.uni-hannover.de, fjc3@hw.ac.uk,
verena.kloes@tu-berlin.de, schwammberger@informatik.uni-oldenburg.de,

sommer@ccs-labs.org, andreas.vogelsang@tu-berlin.de, wortmann@se-rwth.de

Abstract—With the increasing complexity of Cyber-Physical
Systems, their behavior and decisions become increasingly
difficult to understand and comprehend for users and other
stakeholders. Our vision is to build self-explainable systems
that can, at run-time, answer questions about the system’s past,
current, and future behavior. As hitherto no design methodology
or reference framework exists for building such systems,
we propose the Monitor, Analyze, Build, Explain (MAB-EX)
framework for building self-explainable systems that leverage
requirements- and explainability models at run-time. The basic
idea of MAB-EX is to first Monitor and Analyze a certain behavior
of a system, then Build an explanation from explanation models
and convey this EXplanation in a suitable way to a stakeholder.
We also take into account that new explanations can be learned,
by updating the explanation models, should new and yet un-
explainable behavior be detected by the system.

Index Terms—Explainability, self-adaptive systems, cyber-
physical systems

I. MOTIVATION

The complexity of Cyber-Physical System (CPS) is con-

stantly increasing because they control more and more complex

processes in the physical world, possibly with multiple users,

changing contexts, and changing environmental conditions.

Hence, their software is distributed, concurrent, and combines

discrete and continuous aspects. Due to this complexity,

it becomes increasingly difficult for system- and software

engineers, but also users, auditors, and other stakeholders,

to comprehend the behavior of a system. Thus, it will be

increasingly relevant for future CPS to explain their behavior

to their stakeholders. This is essential to improve the trust and

understanding between the user and the system [1], to enhance

collaboration, and to increase confidence [2]. Our vision is to

enable the development of self-explainable systems that can –

at run-time – answer questions about their past, current, and

future behavior, e.g., why a certain action was taken, what

goals the system tries to achieve and how, etc.

An example for an ambiguous action that might need

explanation could be that a user in an autonomous car wishes

to know an answer to the following question: “Why are we
leaving the highway?”. Here, the observed behavior is “leaving

the highway”. However, there could be several explanations

for the behavior, e.g., “We are leaving the highway ...”

• “... because there is a traffic jam ahead”; or
• “... because we reached our travel destination”; or
• “... because we need to drive to a gas station”.

Adding such self-explainability capabilities, however, is

difficult. Self-explainability requires that the system has some

understanding (i.e., a model) of itself, its environment, the

requirements that it shall satisfy, and more: an understanding

of the stakeholder that requires an explanation, and mechanisms

that can reflect on the current behavior and provide hindsight

and foresight. To date, there is no requirements engineering

or design methodology for building such systems, and there is

no reference framework for building self-explainable systems.

In this paper, we propose such a reference framework for

building self-explainable systems which bases on the Monitor,
Analyze, Plan, Execute (MAPE) loop for self-adaptive systems

from IBM [3]. The MAPE loop proposes to continuously

monitor relevant system and environment data, and, based on

this, analyze whether an adaptation is necessary to satisfy

system goals/ improve the performance. According to the

analysis results, the system plans and executes a suitable

adaptation. As we need similar self-reflection capabilities for

a self-explaining system, we adapt this feedback loop to our

needs. We demonstrate the applicability of our approach by

sketching realizations in an example use case of a Vehicle-to-
X (V2X) driver assistance system, which is prototypical for

cooperative mobile systems in smart cities [4].

We introduce details on our Monitor, Analyze, Build, Explain
(MAB-EX) framework and how it adapts the MAPE loop in

Section III. Afterwards, we illustrate its application to our

use case in Section IV. We discuss challenges yet to face and

potential extensions of our framework in Section V. For related

work on explainability of CPS see the following Section II.

[BGG+19] M. Blumreiter, J. Greenyer, F. J. C. Garcia, V. Klös, M. Schwammberger, C. Sommer, A. Vogelsang, A. Wortmann:
Towards Self-Explainable Cyber-Physical Systems.
In: Proceedings of MODELS 2019. Workshop Models@run.time, pp. 542--547, Munich, Sep. 2019.
www.se-rwth.de/publications/

II. EXPLAINABILITY IN SOFTWARE-INTENSIVE CPS –

AN OVERVIEW

Explainability has gained attention due to research projects

on Explainable AI. Whereas these projects focus on explaining

machine learning results, many CPS make context-dependent

decisions that are not based on ML. To explain these decisions,

some approaches focus on explainable planning: In [5],

Assumption-based Argumentation is used to model planning

problems and to generate explanations for planning solutions as

well as for invalid plans. [6] explicitly focus on CPS. This work-

in-progress aims at providing interactive explanations based

on Why and Why-Not questions from end-users about specific

behaviors of the system. Answers are provided in form of

contrastive explanations. Explanations contain the consequences

or properties of choices, and how the choices affect goals and

objectives of the system. In [7], verbal explanations of multi-

objective probabilistic planning are automatically generated.

They also use contrastive justification as explanation for why

a generated behavior is preferred to other alternatives. In

contrast to our work, these approaches focus on how to generate

explanations and do neither provide a framework for identifying

situations that need to be explained nor provide automatic

customization to users and operation contexts.

In [8], the authors sketch first steps towards a conceptual

framework for self-explaining CPS. Similar to our approach,

they propose to add a layer for self-explanation that includes

an abstract model of the system, and they propose to adjust

the granularity of explanations for different user groups. In

contrast to our work, they propose to construct cause-effect

chains for observable actions using the abstract model. Users

can access these chains to understand the cause of actions.

In [9], a feedback loop approach is used to identify situations

where it is valuable to ask a user for feedback about system

behavior. There, the authors compare the user behavior with a

goal model and ask for feedback when users achieve sub-goals

or when they deviate from an expected sub-goal. This is similar

to our detection of situations that might need an explanation.

Other work has focused on rationalizing and verbalizing

the behavior of autonomous agents. Rationalizations do not

need to accurately reflect the true decision-making process,

but give some explanations like humans would give in similar

situations. In [10] an agent’s actions are rationalized by using

an encoder-decoder neural network to translate between state-

action information and natural language. In [11] the agent’s

experiences on a route are verbalized by converting sensor data

into natural language as answer to user queries with varying

levels of abstraction, specificity and locality. Another approach

to generate explanations at run-time is to use a multi-modal

agent that can be queried ‘on-demand’ [12], [13]. There, the

system behaviors are mapped into a modified version of fault

trees, which the authors call model of autonomy, that capture
the possible states of the system [14]. The authors found

that the explanations given by the agent helped improving the

fidelity of the operators’ mental model, increasing the operator’s

Fig. 1. The Monitor, Analyze, Build, Explain (MAB-EX) framework.

understanding of what the autonomous vehicles were doing

and why, as well as how they work [13].

III. THE MAB-EX LOOP FOR EXPLAINABILITY

Our framework for self-explaining systems is inspired by

the MAPE loop for self-adaptive systems, as we need similar

self-reflection capabilities to detect the possible need for an

explanation and to provide context-specific explanations. To

achieve this, we propose the Monitor, Analyze, Build, Explain
(MAB-EX) framework as depicted in Figure 1. Note that the

underlying system does not need to be self-adaptive. Our

MAB-EX loop can be added to any kind of computing system.

However, if the underlying system is self-adaptive, our approach

can also be integrated into the existing (MAPE) feedback loop.

Similar to the MAPE loop, we first Monitor the control system,

its environment and possibly also the recipient of explanations.

To this end, we capture and sample relevant sensor data, (a

history of) commands from controller components, and possibly

also a history of user and/or system interactions and former

explanations. To identify whether the user is satisfied with an

explanation, we could also monitor the users face expressions

(cf. Cowie et al. [15]).

Then, we Analyze the monitored data to detect an explanation

need. This need can either be triggered because a recipient

requires it (e.g., “Why are we leaving the highway?”) or

because the system shows behavior that requires an explanation

(e.g., “We are slowing down soon, because the road ahead is in

poor condition.”). The latter can be detected by identifying de-

viations from formerly observed behavior that might indicate an

explanation need. Examples are irregularities in the monitored

sensor data or sudden changes in the way the user interacts

with the system. In the former case we additionally need to

analyze whether the change can be expected, e.g., due to a user

interaction. Furthermore, the history of controller commands or

user commands can be analyzed to identify aimless sequences

of commands/ interactions (e.g., contradicting commands over

time that lead to nowhere). In case of explanation queries from

the recipient, the query can be processed in this phase.

Instead of planning new behavior like in the MAPE loop, our

third phase is to Build an explanation by evaluating an internal

model of the system, which we call explanation model, based
on the currently monitored system behavior, in order to extract

relevant information. An explanation model is a behavioral

543

model of the system that captures causal relationships between

events and system reactions. It allows for identifying possible

causes for the behavior that needs to be explained, e.g., traces

of events that may lead to the behavior. It may also allow

for look-ahead simulation to enable answering questions like

“What happens if ... ?” or “When will ... be possible again?”.

Possible implementations for an explanation model could, e.g.,

be (fault/decision) trees that connect observations to possible

reasons, or executable behavior models (e.g., state machines),

as illustrated in our case study in Section IV. Such models may

be constructed from requirements or from a behavior model,

constructed manually, or learned from observations. Possible

implementations also could be goal models that capture goals,

objectives and motivations for the systems’ behavior. Note

that this synthesized explanation is not yet in a recipient-

understandable format, but in an intermediate format. With

recipient we refer to the addressee of an explanation, which

can be a user (e.g., engineer or end-user) or a (sub-)system.

Thus, the fourth and last phase is to actually EXplain the

behavior in question to the recipient, meaning to transfer the

result of the building phase to an understandable explanation

for the target group. The explanation should be target-specific,

as, e.g., an engineer might need more detailed information than

an end-user, and an end-user might not understand technical

terms that are useful for the engineer. To this end, we use a

recipient model, e.g., mental model of a human recipient or

an explanation interface between control software of different

systems (e.g., to allow for collaborative learning and operation).

It describes preferences of the recipient w.r.t. explanation format

(e.g., textual, image, voice, or machine-processable) and kind

of information that should be included in an explanation (e.g.,

level of abstraction, points of interest). These recipient models

can range from general mental models for target groups (e.g.,

engineers vs. end-users) to models for individual users.

The final explanation is provided to the recipient and thus,

we do not have a loop anymore. However, we might have an

indirect loop by monitoring the recipient’s reaction to the given

explanation or because the recipient itself asks for more details

on the explanation.

As both, the system that needs to be explained and the

recipient of the explanation may evolve over time or are subject

to uncertainties at design time (about the system behavior, its

operational context, and the recipient and its preferences),

we include a Model Learning into our framework that is

responsible for updating both our explanation model and our

recipient model. Consider, e.g., the case that an emergency

maneuver is executed due to a spontaneously changing extreme

weather condition for autonomous driving. If the monitored and

analyzed behavior is not contained in the explanation model,

an explanation cannot be built immediately in the building

phase. However, after having integrated this new behavior

into the explanation model, an explanation can be provided

later or if the behavior should occur again. Model Learning

can be realized using machine learning algorithms, or as an

expert system, where domain experts (and probably also other

cooperating systems) are asked to provide an explanation for the

Fig. 2. Vehicle-to-X (V2X) narrow passage coordination assistance system

observed situation, or as combination of both. This cooperative

updating process could, e.g., be realized by connecting Model
Learning components of different systems and experts via a

cloud service. To update the recipient model, preferences of the

recipient can be inferred from the interaction with the recipient

(e.g., based on follow-up questions that indicate the wish for

further information).

IV. EXAMPLE REALIZATIONS OF MAB-EX

We illustrate the MAB-EX framework by instantiating it

for an example of an advanced V2X driver assistance system

such as is typically envisioned for future cooperative mobile

systems [4]. This system helps drivers safely pass obstacles on

the road (see Figure 2). In this example, cars that approach the

obstacle register at an obstacle controller and await permission

to enter the narrow street section. The system’s response (pass

or stop) is displayed to the driver. We focus on a car (c1 in

Figure 2) that must stop and where the driver wonders why

passing the obstacle is not possible—even though the roadworks

is on the opposite lane and the road ahead seems free. We

envision that an interface (top left of Figure 2) provides an

explanation to this question. The explanation in this case is

twofold: There is a car in the narrow street section approaching

from the other side (which the driver may not see yet), and,

moreover, there is an emergency vehicle approaching from

the other side, which is not yet in the narrow section, but has

registered at the obstacle controller as a priority vehicle. Other

reasons to stop could be fairness to cars that already waited

for a long time.

We illustrate the four building blocks of the framework for

this example.

A. Monitor

As stated in Section III, we monitor the controlled system

to identify situations that demand an explanation. In the

example, we need information about the position of a car

in the lane (L1 or L2) and the controller’s response towards

the event of approaching the obstacle (enteringDisallowed or

enteringAllowed). Since we are only interested in one specific

544

Fig. 3. Model of causality for the car example. Each node has a condition
of system variables and a natural language explanation. A model of causality
may contain as many nodes and depth levels as necessary.

situation in this example, we do not need more information.

In extended scenarios, it may be interesting to monitor, for

example, the vehicle’s speed to identify critical situations that

may demand an explanation. If the system has a query feature

for explanations in its HMI, we need to monitor user queries

as well.

B. Analyze

We analyze the monitored data and identify situations that

need to be explained. In our example, the only situation that

needs an explanation is when a car is approaching the obstacle

on lane L1 and the controller responds with enteringDisallowed.

C. Build

Building the actual explanation is usually the greatest

challenge in the MAB-EX framework. We present two solutions

that can be used to identify and compose the ingredients of

an explanation (i.e., the causes of the event that needs to be

explained). The first solution to provide such explanations

is based on models of causality, which connect actions

of the system to their (possibly internal) causes, including

natural language descriptions. The second solution shows how

behavioral models of the system that are created at design-time

can be leveraged to assemble explanations at run-time.

1) Models of Causality Approach: This approach was

explored before for providing explanations to operators of

autonomous underwater vehicles [13], [14]. We can also apply

this approach to the example above.

Figure 3 shows a tree for the situation of when a car stops

in our case example. The root node is the observable event

(“Vehicle Stops”) and the branches give the possible reasons

for the event. Traversing down the tree gives the explanations,

which are attached to the nodes as natural language sentences.

The explanations are increasingly detailed further down the

tree, allowing to easily adapt to the user’s needs. Together with

the explanations, the nodes have a condition in terms of system

variables that can be checked to determine if the node could

be a plausible reason for the observable event.

A solution based on models of causality gives a high-level

representation of the events without looking at the system

details. Thus, the trees are independent from the system imple-

mentation, which allows to build these trees at any point of the

system’s life. They can be directly derived at the requirement

specification phase or built after the system has been released.

This approach requires minimal or no changes to the system that

it explains, as they only monitor system variables to evaluate

the node conditions. The level of abstraction over the system’s

internal processes makes controlling the amount of information

disclosed easily adjustable.

However, the models of causality rely on manual modeling,

which involves system knowledge that only those building or

maintaining the system itself can provide. They also require

knowing ahead of time which events can happen and the

different explanations for the phenomena. Thus, they are limited

(or focused) to explaining certain predefined state conditions.

2) Creating Explanations Dynamically from Run-Time Mod-
els: The above approach has the advantage that designers can

easily model the system’s explanation capabilities, specifically

control the level of abstraction of the explanations, and

that it can be easily integrated into a system: However, the

explanations are limited to the phenomena anticipated at design

time, and they are limited to explanations concerning specific

(current or past) states—properties of sequences of states or

predictions about the future are not possible. To achieve this, we

require more elaborate models at run-time, which connect the

behavior of the system and its environment with requirements

specification, assumption specifications, and which can be

queried and, especially, executed for look-ahead predictions.

Such an approach could be based on executable scenario-

based behavior models, e.g., Live Sequence Charts (LSC) [16],

that can be annotated with per-requirement/scenario rationales,

or could contain trace links to natural language requirements,

from which explanations can then be derived dynamically, at

run-time. The executable scenarios could live solely within the

system’s explanation layer (as EX models), but they can even

be used as the final implementation code for the distributed

reactive behavior of CPS such as our example V2X system [17].

We sketch a scenario-based explanation approach in the

following. Listing 1 shows scenarios from the example V2X

system in Scenario Modeling Language (SML) [18], a textual

language for modeling LSC-style scenarios. An SML specifi-

cation models, via assumption- and guarantee scenarios, how
objects of a system and its environment interact by sending

messages. Guarantee scenarios describe how the developed

(software) system may, must, or must not react to environment

events; assumption scenarios (not shown here) describe what

may, will, or will not happen in the environment. Each scenario

models valid sequences of events, using different modalities.

545

1 ...
2 guarantee scenario CarRegistersAtObstacle
3 bindings [oc = cp.obstacleCtrl] {
4 sensor -> car.approachingObstacle()
5 //@EX: when approaching an obstacle, the car must register at

the obstacle control
6 strict requested car -> oc.register()
7 }
8
9 guarantee scenario CarEnteringAllowedDefault {
10 car -> oc.register()
11 // @EX: entering is allowed because there is no indication to

disallow it.
12 requested oc -> car.enteringAllowed()
13 } constraints [
14 interrupt oc -> car.enteringDisallowed()
15]
16
17 guarantee scenario CarEnteringDisallowedWhenCarPassing {
18 car -> oc.register()
19 alternative [car.direction == L1 && !oc.passingL2.isEmpty() ||

car.direction == L2 && !oc.passingL1.isEmpty()] {
20 // @EX: entering is disallowed because other cars are passing

the obstacle in the opposite direction.
21 strict requested oc -> car.enteringDisallowed()
22 } constraints [
23 forbidden oc -> car.enteringAllowed()
24]
25 }
26
27 guarantee scenario EnteringDisallowedForOtherPriorityVehicle {
28 car -> oc.register()
29 alternative [!oc.registeredPriorityVehicles.isEmpty()
30 && !oc.registeredPriorityVehicles.contains(car)]{
31 // @EX: entering is disallowed because a priority vehicle is

registered for passing the obstacle.
32 strict requested oc -> car.enteringDisallowed()
33 } constraints [
34 forbidden oc -> car.enteringAllowed()
35]
36
37 guarantee scenario SetPriorityForEmergencyVehicle {
38 car -> oc.register()
39 alternative [car instanceOf EmergencyVehicle] {
40 // @EX: car registered is a priority vehicle because it is an

emergency vehicle.
41 strict committed oc -> oc.registeredPriorityVehicles.add(car)
42 }
43 }
44 }
45 ...

Listing 1. SML scenarios for the V2X driver assistance system

For example, events can be requested, which means that the

event must eventually occur; non-requested messages need

never occur. Events can also be strict, saying that when the

scenario is waiting for the event to occur, no event must occur

that is expected within the same scenario at an earlier or

later point. The forbidden modality models events that are

forbidden while (a certain part of) a scenario is active; interrupt
models events that are allowed, but will interrupt the scenario.

The scenarios are executable; at execution-time, multiple

scenarios can be active at the same time, each requesting

or forbidding certain events, and events are chosen to satisfy

all the constraints imposed by the scenarios.

The scenario CarRegistersAtObstacle specifies that when

a car sensor detects that the car approaches an obstacle, the

car must register at the obstacle controller oc. The scenario

CarEnteringAllowedDefault specifies that the obstacle control

shall allow the car to enter, unless the scenario is interrupted by

the enteringDisallowed event that can be requested, for example,

by the scenario CarEnteringDisallowedWhenCarPassing, which
models the case of a car that is passing the obstacle in the

other direction. Scenario EnteringDisallowedForOtherPriority-
Vehicle models the case where a priority vehicle is registered

Fig. 4. Scenario run-time states for the V2X example

for passing the obstacle while the car that is subject to that

scenario is itself not a priority vehicle. Last, SetPriorityFor-
EmergencyVehicle specifies that when an emergency vehicle

registers at the obstacle control, it will be added to the list of

registeredPriorityVehicles (cf. Figure 2).

Figure 4 shows a sequence of states in the execution

of these scenarios. For brevity we omit the states of the

underlying objects. Starting with the approachingObstacle event

the scenario CarRegistersAtObstacle is activated. Then, register
terminates CarRegistersAtObstacle, but activates CarEntering-
AllowedDefault, CarEnteringDisallowedWhenCarPassing, and
EnteringDisallowedForOtherPriorityVehicle. In this case, enter-
ingDisallowed is executed due to the conditions in the latter

two scenarios that are satisfied in the state as in Figure 2.

The scenarios contain explanations annotated to all events

that they request. This way, an explanation as show in Figure 2

can be produced by combining these explanations. Figure 2

also shows that the explanation component is able to answer

the follow-up question Why is a priority vehicle registered?.
This question can be answered by traversing over the past

states in search of the events that contributed to rendering the

condition true. In this example, a past activation of SetPriority-
ForEmergencyVehicle triggered by the register message from

the emergency vehicle c3 caused the event of adding c3 to

the list of registeredPriorityVehicles, which was the point from

when the evaluation of the condition in EnteringDisallowedFor-
OtherPriorityVehicle turned from false to true.

The scenarios could also be used for a forward-exploration

of possible future behaviors that could be used to answer

questions about the future, such as When will I be allowed
to pass the obstacle? Moreover, instead of annotating the

scenarios with explanations, these could also be extracted from

textual requirements that could be referenced via trace links. It

will be interesting to elaborate how also explanations for not

executing certain events can be provided.

D. Explain

Finally, we need to generate the actual explanation from the

information gathered in the Build component. In our example,

the explanation is given as a text that is generated from the text

fragments associated with the nodes in the model of causality

or with the annotations in the scenario specifications. This way,

the provided explanation for the detected situation is rendered

as “Entering is disallowed because other cars are passing
the obstacle in the opposite direction and a priority vehicle is
registered for passing the obstacle“.

546

V. CONCLUSION AND RESEARCH ROADMAP

The MAB-EX approach towards explainability of system

run-time behavior represents a first approach towards a general-

izable architecture for self-explainable systems. We have shown

how requirements- and models-at-runtime can be exploited as

a basis for realizing self-explanation capabilities.

The road towards truly comprehensible, flexibly tailored

explanations yields many challenges:

Comprehensible explanations: Useful explanations demand

for a representation of decisions that supports tailoring the

abstraction of explanation parts to the recipient, e.g., in contrast

to the infamous Windows operating system blue screens

’explaining’ its failure in terms of memory locations. Similarly,

in engineering CPS with domain experts, a networking engineer

might be very interested in communication decisions, but less

in HCI decisions the system has made.

Explanation presentation: Depending on the facts to be

explained or the receivers’ background, different presentations

of explanations will be of different usefulness. While engineers

might prefer textual explanations (e.g., log files), users might

prefer graphical explanations or conversational interfaces.

Focused explanations: To prevent systems from overwhelming

receivers with potentially relevant information we need to con-

ceive means for filtering and truncating explanation information

based on, e.g., user studies or learned patterns.

Consultable explainers: When systems are capable of pro-

ducing a wealth of explanations of different extent, abstraction,

and personalization, being able to consult systems for specific

explanations becomes necessary to support producing the best-

possible explanations for different circumstances.

Interactive explanations: Similar to human discourse, self-

explaining systems may produce explanations that entail

subsequent queries about the reasons for a given explanation.

Consequently, truly useful self-explaining systems should

support interactive exploration of explanations, explanation

sequences, and metadata (e.g., relations between explanations).

Explanation prediction: Systems equipped with means for

self-explanation should be able to explain the future potential

behavior as well as why expected events did not happen. This

could have the form of explicit what-if queries or online

explanation about expected behavior.

Cooperative explanations: To understand the behavior of

systems cooperating in the Internet of Things, the smart factory

of the future, or in V2X, systems must be able cooperatively

explain their behavior. This demands for means to align their

explanation terminologies (e.g., through explanation ontologies

for specific domains) and might require reason about their own

behavior based on implicit explanations (i.e., observations) of

the cooperating systems’ behaviors.

A posteriori explaining: The long-lived systems in industrial

domains will need to cooperate with systems incapable of

explaining themselves. Therefore, means to explain system

behavior based on observations made by a posteriori deployed,

dedicated explainers is necessary.

REFERENCES

[1] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why not explanations
improve the intelligibility of context-aware intelligent systems,” in
SIGCHI Conference on Human Factors in Computing Systems (CHI),
2009, pp. 2119–2129.

[2] P. Le Bras, D. A. Robb, T. S. Methven, S. Padilla, and M. J. Chantler,
“Improving User Confidence in Concept Maps: Exploring Data Driven
Explanations,” in CHI Conference on Human Factors in Computing
Systems, ACM, 2018, pp. 1–13.

[3] “An Architectural Blueprint for Autonomic Computing,” IBM, White
Paper, Jun. 2005.

[4] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, 2014.

[5] X. Fan, “On Generating Explainable Plans with Assumption-Based
Argumentation,” in International Conference on Principles and Practice
of Multi-Agent Systems, Springer, 2018, pp. 344–361.

[6] E. Zhao and R. Sukkerd, “Interactive Explanation for Planning-Based
Systems,” in 10th ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS 2019), 2019.

[7] R. Sukkerd, R. Simmons, and D. Garlan, “Towards explainable multi-
objective probabilistic planning,” in 4th International Workshop on
Software Engineering for Smart Cyber-Physical Systems, ACM, 2018,
pp. 19–25.

[8] R. Drechsler, C. Lüth, G. Fey, and T. Güneysu, “Towards Self-Explaining
Digital Systems: A Design Methodology for the Next Generation,” in
2018 IEEE 3rd International Verification and Security Workshop (IVSW),
IEEE, 2018, pp. 1–6.

[9] D. Wüest, F. Fotrousi, and S. Fricker, “Combining Monitoring and
Autonomous Feedback Requests to Elicit Actionable Knowledge of
System Use,” in Requirements Engineering: Foundation for Software
Quality, E. Knauss and M. Goedicke, Eds., Cham: Springer International
Publishing, 2019, pp. 209–225.

[10] B. Harrison, U. Ehsan, and M. O. Riedl, “Rationalization: A Neural
Machine Translation Approach to Generating Natural Language Expla-
nations,” 2017. arXiv: 1702.07826.

[11] V. Perera, S. P. Selveraj, S. Rosenthal, and M. Veloso, “Dynamic gener-
ation and refinement of robot verbalization,” in 25th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN),
New York, NY, USA: IEEE, Aug. 2016, pp. 212–218.

[12] D. A. Robb, F. J. Chiyah Garcia, A. Laskov, X. Liu, P. Patron,
and H. Hastie, “Keep Me in the Loop: Increasing Operator Situation
Awareness through a Conversational Multimodal Interface,” in 20th ACM
International Conference on Multimodal Interaction (ICMI), ACM, 2018,
pp. 384–392.

[13] F. J. Chiyah Garcia, D. A. Robb, A. Laskov, X. Liu, P. Patron, and
H. Hastie, “Explainable Autonomy: A Study of Explanation Styles for
Building Clear Mental Models,” in 11th International Natural Language
Generation Conference (INLG), ACM, 2018, pp. 99–108.

[14] F. J. Chiyah Garcia, D. A. Robb, X. Liu, A. Laskov, P. Patron, and
H. Hastie, “Explain Yourself: A Natural Language Interface for Scrutable
Autonomous Robots,” in Explainable Robotic Systems Workshop (HRI),
2018.

[15] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias,
W. Fellenz, and J. G. Taylor, “Emotion recognition in human-computer
interaction,” IEEE Signal Processing Magazine, vol. 18, no. 1, pp. 32–80,
2001.

[16] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” in Springer Formal Methods in System Design, vol. 19, 2001,
pp. 45–80.

[17] J. Greenyer, L. Chazette, D. Gritzner, and E. Wete, “A Scenario-
Based MDE Process for Dynamic Topology Collaborative Reactive
Systems – Early Virtual Prototyping of Car-to-X System Specifications,”
in Modellierung 2018, Workshops zur Modellierung in der Entwick-
lung von kollaborativen eingebetteten Systemen (MEKES), vol. 2060,
Braunschweig, Germany: CEUR-WS.org, 2018, pp. 111–120.

[18] J. Greenyer, D. Gritzner, T. Gutjahr, F. König, N. Glade, A. Marron,
and G. Katz, “ScenarioTools – A tool suite for the scenario-based
modeling and analysis of reactive systems,” Elsevier Science of Computer
Programming, vol. 149, pp. 15–27, 2017, Special Issue on MODELS’16.

547

