
Journal of Object Technology | RESEARCH ARTICLE

Towards Modular Development of Reusable Language
Components for Domain-Specific Modeling Languages

in the MagicDraw and MontiCore Ecosystems
Arvid Butting∗, Rohit Gupta†, Nico Jansen∗, Nikolaus Regnat†, and Bernhard Rumpe∗

∗Software Engineering, RWTH Aachen University
†Siemens AG, Munich, Germany

ABSTRACT The modularization of domain-specific modeling languages (DSMLs) during language development is important
for languages or language parts to be reusable. As languages and their components are created using different language
workbenches or modeling tools, the definitions and concepts for such language components are often limited to their individual
technological spaces. In reality, language development requires significant effort, and DSMLs are often built from scratch within
a single technological space, with little consideration for the generalization of the development concepts to other technological
spaces. In this article, we discuss common notions of language components that are valid across the textual and graphical
technological spaces and provide definitions, concepts, and realization techniques to foster the reusability of such language
parts during DSML development. To this end, we first individually define language components and the various forms of
language composition in MontiCore, a textual language workbench, and MagicDraw, a graphical modeling tool, and then
describe unified cross-cutting concepts of language components that are crucial in developing variants or families of similar
languages valid in both the textual and the graphical technological spaces. These language components that are described
regardless of their individual technological spaces ensure the reusability of common language parts, ultimately supporting
language engineers in developing complex modular DSMLs in the large.

KEYWORDS Software Language Engineering, Language Components, Domain-Specific Modeling Languages, MontiCore, MagicDraw

1. Introduction
Domain-specific modeling languages (DSMLs) can be mod-
ularized into composable units that we refer to as language
components. The modularization of languages serves several
purposes, a central one being the reusability of languages or lan-
guage parts. The definition and use of language components can
be achieved with different language workbenches and modeling
tools, while some explicitly support it. However, the technolog-
ical spaces for DSMLs are heterogeneous. For example, some

JOT reference format:
Arvid Butting, Rohit Gupta, Nico Jansen, Nikolaus Regnat, and Bernhard
Rumpe. Towards Modular Development of Reusable Language
Components for Domain-Specific Modeling Languages in the MagicDraw
and MontiCore Ecosystems. Journal of Object Technology. Vol. 22, No. 1,
2023. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2023.22.1.a4

language workbenches, such as MontiCore (Hölldobler et al.
2021), enable defining languages with a textual syntax, while
others, such as MagicDraw (MagicDraw Enterprise 2022), allow
the creation of graphical languages (Gupta et al. 2021). Another
difference may be how the language workbenches assign mean-
ing to models (Harel & Rumpe 2004) of the language, which
can be achieved, e.g., by interpreters or code generators. Some
language workbenches check the well-formedness with context
conditions specified in OCL-like notations or implementations
of programming languages, while others support modeling of
well-formed models by means of sophisticated model editors.
Although the literature (Combemale et al. 2018; Butting &
Wortmann 2021; Butting et al. 2018; Clark et al. 2015) pro-
posed several definitions and notions of language components
or synonyms of it, they are often tied to individual technologi-
cal spaces. Various forms of language composition have been

An AITO publication

[BGJ+23] A. Butting, R. Gupta, N. Jansen, N. Regnat, B. Rumpe:
Towards Modular Development of Reusable Language Components
for Domain-Specific Modeling Languages
in the MagicDraw and MontiCore Ecosystems.
In: Journal of Object Technology, Volume 22(1), pp. 1:1-21, Sep. 2023.

http://dx.doi.org/10.5381/jot.2023.22.1.a4

discussed by (Erdweg et al. 2012) in the textual technologi-
cal space. Notions of language extension, language restriction,
self-extension, language unification, and extension composition
have been detailed in their work. The concepts presented in our
article build on this related work by describing language com-
position mechanisms in MontiCore and extending these notions
to the graphical technological space of MagicDraw. Further, we
also present a unified approach to language composition in the
technological spaces of textual and graphical languages.

Today, it is still challenging to reuse languages properly.
Often, reusing a language requires more effort than imple-
menting a new language or reusing languages via clone-and-
own (Méndez-Acuña et al. 2016; Şutîi et al. 2018). Furthermore,
language reuse can mostly be achieved in the same technological
space (CKM+18 2018). Thus, a common notion for language
components can serve as the foundation for language reuse
across different technological spaces. The contributions of this
paper are:

– Individual definitions for language components in Monti-
Core and MagicDraw, which are generalized to other tools
capable of defining textual and graphical languages.

– An investigation of similarities and differences in the two
notions of language components and language composition
mechanisms in MagicDraw and MontiCore.

– A joint definition of language components in textual and
graphical-based technological spaces.

The remainder of this paper is structured as follows: sec-
tion 2 introduces the technological spaces that this paper covers
before section 3 describes a running example that we use to
demonstrate language components in MontiCore and Magic-
Draw. The general notion of language components is explained
in section 4, while section 5 and section 6 explain its application
in the frameworks MontiCore and MagicDraw. The comparison
of the two approaches to form mutual definitions is elaborated
in section 7, with section 8 discussing the mutual notions of
language composition. In section 9, we discuss the related work
and section 10 concludes.

2. Technological Spaces for Engineering Soft-
ware Languages

Our work involves the analysis of different technological spaces
and their concepts of modular language components. In this
context, modularity denotes self-contained units that can be dis-
tributed (e.g., as archive artifacts). Such modules are developed
and used independently of each other and have an interface for
the features they provide and require. We investigate to what ex-
tent MagicDraw and MontiCore support the notion of modular
language components to derive a generalized definition.

2.1. Engineering Software Languages in MontiCore

MontiCore (Hölldobler et al. 2021) is an open-source1 language
workbench for engineering textual DSMLs. The combined con-
crete and abstract syntax of a MontiCore DSML is described via

1 MontiCore is available via: www.monticore.de

MontiCore
Grammar

Parser

Visitor Infrastructure

CoCo Infrastructure

Symbol Management

Infrastructure

Abstract Syntax Classes

Pretty Printer

Figure 1 Conceptual overview of the language infrastructure
MontiCore provides for an input grammar.

a MontiCore grammar, which comprises a custom, EBNF-based
(Wirth 1996) notation for context-free grammars. From these
grammars, MontiCore generates language infrastructure, such
as a parser, an abstract syntax data structure, a visitor infrastruc-
ture for traversal of the abstract syntax, and a context condition
(CoCo) infrastructure. The latter enables language engineers to
define and check well-formedness rules in the form of context
conditions realized as Java classes. Figure 1 depicts an overview
of MontiCore and the language infrastructure it generates from
a grammar. The abstract syntax data structure comprises classes
for instantiating the abstract syntax tree (AST) when parsing
a textual model. Additionally, MontiCore generates a symbol
management infrastructure (SMI), providing a symbol table that
interrelates with the AST and enables cross-referencing and
quick navigation. The instances of the AST directly result from
parsing, whereas the symbol table is instantiated by traversing
the AST with the language’s visitor.

The SMI is the foundation to realize type checks and different
forms of language composition, as explained later in section 5. It
further abstracts from the AST by representing only the essence
of the language’s abstract syntax. Despite that, it may intro-
duce additional relationships between abstract syntax elements.
While the AST is a tree data structure, a symbol table is a graph
structure containing scopes and symbols. Symbols correspond
to names defined by model elements, and scopes impact the
visibility of the symbols. Conceptually, MontiCore demands
that each symbol is contained in an (enclosing) scope and that
the scopes are arranged in a tree shape. A scope may import
and export symbols with regard to other scopes. There are two
special kinds of scopes for each language: artifact scopes, de-
scribing the visibility of symbols for an entire model artifact,
and the (singleton) global scope, describing the visibility of
symbols among different model artifacts.

For performance reasons, the symbol table of a model can
be persisted in a file. This speeds up type-checking for other
models. Furthermore, it enables the decoupling of language
infrastructures and, hence, supports language composition, as
described later in this paper.

2 Butting et al.

www.monticore.de

To give meaning to a model, MontiCore supports the realiza-
tion of pretty printers that traverse an AST to translate it into
source code conforming to another language. By default, Mon-
tiCore already provides a printer that translates an AST instance
back into its textual representation. Alternatively, MontiCore
has a built-in infrastructure to realize template-based code gen-
eration that is built around FreeMarker (Forsythe, Charles 2013).
Based on this engine, MontiCore provides for facile adaptation
of the generation process, including adaptive template exchange
for language engineers as well as for advanced modelers.

2.2. Engineering Software Languages in MagicDraw
The engineering of graphical DSMLs is often tied to specific
departments in a large organization. This introduces various
challenges in the development of such DSMLs. The combina-
tion of using a modeling language with a methodology and using
an appropriate graphical modeling tool is important in develop-
ing efficient graphical DSMLs. To this end, we have worked
with a handful of commercial graphical modeling tools such
as Enterprise Architect (Enterprise Architect 2022), Rational
Rhapsody (IBM Rhapsody 2022), and MagicDraw (MagicDraw
Enterprise 2022). We have focused on MagicDraw as a choice
of graphical modeling tool as it supports the definition of pop-
ular modeling languages such as Unified Modeling Language
(UML) and Systems Modeling Language (SysML). In addition,
MagicDraw provides an extensive range of customization ca-
pabilities, including support for Java, that is subsequently used
to capture all, if not most, aspects of domain-specific problems
and project requirements. The customization capabilities of
MagicDraw can be leveraged to create a language profile con-
sisting of language component artifacts. One such example of
an artifact is a language element, referred to as a stereotype in
MagicDraw. Customization elements for each stereotype allow
the definition of custom rules for the MagicDraw DSML. These
custom rules define how model elements or diagrams can be
created, which elements can be configured from a MagicDraw
shortcut menu, and which specific properties of the elements
are displayed to the user, among other customization. Magic-
Draw provides Open API Java-based plugin mechanisms that
support the integration of the automation and creation of custom
functionalities that are not supported by default. Further, model
templates for individual languages allow for a predefined model
structure to be automatically instantiated during modeling, re-
ducing manual efforts in modeling and providing a good starting
point for modelers. Perspectives in MagicDraw help language
engineers configure the visible number of tool or DSML func-
tionalities that different kinds of users require. Novice users
may require fewer functionalities for more focused and guided
modeling, while advanced users may need extra functionalities
of MagicDraw or the DSML to fully realize their modeling with
the combination of the tool and the modeling language.

A graphical DSML in MagicDraw is defined using: (1) an
abstract syntax that defines the structure of its models, e.g., in
the form of class diagrams; (2) a graphical concrete syntax that
defines how the models are presented; (3) semantics, in the
sense of meaning (Harel & Rumpe 2004); and (4) context con-
ditions in Java, to check the well-formedness of the language.

Naturally, as with any other software, graphical DSMLs are also
subject to the usual challenges faced in software and systems
engineering. Further, every DSML should, in all completeness,
include the functional and non-functional aspects of the project
requirements. As domains become more complex and hetero-
geneous, the complexity of the language syntax and semantics
grows, thus requiring the need to integrate a suitable methodol-
ogy for providing a good modeling experience. Especially in
industrial DSMLs, novice users who are introduced to graph-
ical modeling tools require special training and guidance for
efficient modeling.

DSL Building Block Method

User Experience
Design

Language
Components

111

instanceof

Concept
Level

Tool-specific
Implementation

Level

conforms to

consists of

based on

DSL

Models

DSL Building Block

Usage
Level

Figure 2 A conceptual model for the development and usage
of a graphical DSML describing the different levels in the
engineering process, including defining the language compo-
nents, suitable methods for the language, and user experience
design decisions to improve the overall modeling experience
for DSML users (Gupta et al. 2022b).

A systematic process of engineering industrial DSMLs using
modular and reusable DSL Building Blocks in MagicDraw is
described in (Gupta et al. 2021). Figure 2 describes parts of
the systematic process by separating the concerns of industrial
engineering and deployment of the DSMLs on the following
levels: (1) Concept level, where language engineers define: (i)
the reusable language components that, completely or in part,
defines the language (Rumpe 2016); (ii) the method, describing
a methodology for the DSML ultimately intended to guide users
in their modeling; and (iii) the user experience design (UXD)
decisions, where standards and usability heuristics are defined
to improve the overall user experience (Gupta et al. 2022a);
(2) Tool-specific implementation level: where language engi-
neers realize the aspects described in the concept level using a
modeling tool such as MagicDraw; and (3) Usage level: where
modelers design their models using the DSML and their mod-

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 3

grammar UseCaseDSL extends MCBasics {

symbol scope UCDiagram =

"usecasediagram" Name "{" UseCase* "}" ;

symbol UseCase =

"case" Name ("extends" ext:Name@UseCase)? ";";

}

01

02

03

04

05

06

07

MG

Figure 3 MontiCore grammar for the use case diagram mod-
eling language.

eling tool of choice. Ultimately, these reusable DSL Building
Blocks are composed together to create the resulting DSML
that consists of various heterogeneous domain constructs. In
the scope of this paper, we discuss language composition on the
level of reusable language components for such DSL Building
Blocks. The method and UXD decisions are considered inde-
pendent of composition aspects, meaning they either compose
naturally or must be configured later during DSML engineering.

MagicDraw provides capabilities to define plugins that are
ultimately bundled together into an archive .mdzip file and in-
stalled as a DSML. These plugins consist of a MagicDraw
project containing the language definition, predefined templates
for creating new models, perspectives to limit the functionalities
of the DSML or the tool, and custom Java extensions that en-
hance the existing capabilities of the resulting DSML. Standard
modeling language constructs for UML and SysML are bundled
together as artifacts within the DSML that users can simply
install and use. These capabilities of MagicDraw as a graphical
tooling environment make it a good fit for realizing the different
forms of language composition and make it applicable to com-
parable frameworks, with the underlying principle of graphical
modeling remaining the same: language development.

3. Running Example
To compare the language composition mechanisms of the dif-
ferent technological spaces, we create two basic languages in
MagicDraw and MontiCore, which can be composed together in
different ways. First, we create a language similar to UML use
case diagrams for modeling simple use cases and their relation-
ships, UseCaseDSL. Second, we provide an ActorDSL in which
actuators and their tasks can be represented. These two DSLs
are standalone modeling languages, thus representing entirely
separate language components. Moreover, their composition
offers additional distinct modeling techniques. In the following,
we describe these languages in detail and elaborate on their
implementation in MagicDraw and MontiCore.

3.1. Use Case Language
Models of UseCaseDSL should be able to represent individual
use cases within a corresponding diagram. Figure 3 shows the
context-free grammar in EBNF notation (Wirth 1996), repre-
senting the realization within MontiCore. It contains production
rules, defining nonterminals on the left side, with terminals
or references to other nonterminals on the right side, sepa-
rated by an equals sign. Furthermore, nonterminals can be
augmented with stereotypes, such as symbol or scope, indi-

cating unique access via their name, enabling structuring and
cross-referencing in the symbol table. The grammar defines
the overall diagram (ll. 2-3), starting with a respective keyword,
identified via a name, and containing an arbitrary number of
use cases. These use cases also have a unique name, as they
are defined as symbols, and may extend other use cases by
referencing these via their name (ll. 5-6).

To realize the UseCaseDSL in MagicDraw, we define a cor-
responding metamodel (cf. Figure 4). Again, a language’s
diagram contains an arbitrary number of use cases that, in
turn, have a name (here represented by the String attribute
attribute1). However, the MagicDraw implementation adds
two additional versions of use cases, MyFirstUseCase and
MySecondUseCase, with the second one explicitly prohibiting
any relationships between these diagram elements. An example
of restricting such relations is in the healthcare domain, where
it would be advisable to impart training to novice modelers for
modeling different parts of an X-ray system with a rather lim-
ited set of DSML constructs and not burdening such modelers
with a large number of interlinked relations to other constructs.
Thus, we achieve similar languages in MontiCore and Mag-
icDraw, primarily distinguished in their textual and graphical
representation, respectively.

3.2. Actor Task Language
The ActorDSL enables modeling diagrams with different actors,
tasks, and their corresponding relations. Figure 5 presents the
textual grammar, defining the language within MontiCore. A
model (ll. 2-4) starts with a set of import statements, followed
by the actual diagram definition containing the respective key-
word, a name, and an arbitrary number of diagram elements
(cf. RDElement) in curly brackets. The import statements allow
referencing and thus importing other models and their features,
facilitating the composition of different artifacts. RDElement is
defined as an interface nonterminal, enabling the grouping of
several nonterminals. Thus, each nonterminal that implements
this interface (cf. Actor l. 8) can be employed where the gen-
eral RDElement is referenced. This mechanism grants greater
flexibility adopted from object-oriented programming. It also
offers an explicit hook point intended for extension in inher-

Figure 4 MagicDraw metamodel for the use case diagram
modeling language.

4 Butting et al.

grammar ActorDSL extends MCBasicTypes {

symbol scope RoleDiagram =

MCImportStatement* "rolediagram" Name

"{" RDElement* "}" ;

interface RDElement;

symbol Actor implements RDElement = "actor" Name

("extends" sup:Name@Actor)? ";" ;

symbol Task implements RDElement = "task" Name ";";

Relation implements RDElement =

actor:Name@Actor "->" task:Name@Task ";" ;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

MG

Figure 5 MontiCore grammar for the actor task modeling
language.

iting languages. The diagram itself can contain actors, tasks,
and relations. An actor (ll. 8f.) has a name and can extend
other actors by referencing them via their name. Tasks (l. 11)
start with a corresponding keyword and are also identified via
their unique name. Finally, relations (ll. 13f.) associate actors
with their tasks, utilizing their property as a symbol for unique
cross-referencing access via their names.

For implementing the ActorDSL in MagicDraw, we create
a metamodel, as shown in Figure 6. Similar to the production
rules in MontiCore, there are corresponding stereotype defini-
tions for the main diagram elements, i.e., Actor, Task, and
Performs. These either have direct customizations specifying
their contents or are extended by more specialized variants. For
example, the MyFirstActor stereotype extends the general
actor and specifies that it can be connected via the Performs
relationship. While we only have one specialized actor, we
have established a hook point via the general stereotype for easy
extension. A task has a name represented via its String attribute
attribute1. Furthermore, it is decomposed into two special-
ized tasks, allowing further distinction. Finally, the metamodel
contains the Performs relation, indicating the connection be-
tween tasks and actors. As the definition of the relation refers to
the general stereotypes of the linked elements, the relationship
also holds for each specialized actor or task.

4. Language Components and General Compo-
sition Techniques

4.1. Requirements for Language Components
Language components, in general, should support the flexible
reuse of (potentially incomplete) languages for their compo-
sition (Butting 2023). Their purpose is bundling modeling
languages to form self-contained, logical units that can be in-
cluded using various language composition techniques. An
important feature is that language components are developed
independently of each other, although potentially designed with
extension in mind. They foster building a library of languages
(and their constituents) that are eventually beneficial by elimi-
nating the need for defining languages completely from scratch.
Thus, a language component must comprise all artifacts rele-
vant for describing the concrete and abstract syntax as well as

2 Actors DSL Profile DiagramProfile Diagram 2 Actors DSL] [

hiddenOwnedTypes = Element
customizationTarget = SoftwareTask

«Customization»

SoftwareTask
«Customization»

[Class]
SoftwareTask
«stereotype»

customizationTarget = MyFirstActor
allowedRelationships = Performs

«Customization»

MyFirstActor
«Customization»

hiddenOwnedTypes = Element
customizationTarget = SystemTask

«Customization»

SystemTask
«Customization»

[Class]
SystemTask
«stereotype»

[Actor]
Actor

«stereotype»

[Actor]
MyFirstActor
«stereotype»

[Dependency]
Performs

«stereotype»

typesForTarget = Task
typesForSource = Actor
hideMetatype = true
customizationTarget = Performs

«Customization»

Performs
«Customization»

-attribute1 : String
attributes

[Class]
Task

«stereotype»

Figure 6 MagicDraw metamodel for the actor task modeling
language.

additional validation and tooling, such as well-formedness rules,
symbol management, and syntheses via pretty-printing, code
generation, or interpretation.

4.2. Properties
In essence, the composition of languages is not a property of
the languages: this implies any two languages can be composed
with new syntax and semantics for the composed language (Erd-
weg et al. 2012). Instead, the composition of languages is a
property of language definitions and, by implication, of their
language components, meaning two language components can
work together without alteration towards a common goal. A lan-
guage component may itself be dedicated to composition such
that it may be used to create a variant of a standalone language.
Language components must be defined precisely but still be flex-
ible to permit extensions and adaptations in their definition for
easily composing new languages or variants of languages. A lan-
guage component should be capable of providing interfaces that
provide hook points for other language components. This could
be via a syntactic interface connecting syntax, variables, and
names via inter-language cross-referencing or a purely technical
interface that connects the behavior of two language compo-
nents. Finally, the actual language composition is deferred to a
later binding point, which means all the language component
artifacts can be generated independently, thus separating the
concerns of DSML engineering.

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 5

4.3. Language Composition
Integrating language components into sophisticated DSMLs
requires composing their corresponding constituents. Over the
years, various composition techniques have emerged to tackle
this challenge. While their terminology slightly varies in differ-
ent technological spaces, modern language workbenches (Erd-
weg et al. 2013) support (at least some of) the following forms
of language composition.

4.3.1. Language Inheritance A language inherits from one
or more other languages if its definition (e.g., a grammar or
metamodel) inherits from their respective specifications. If a
definition inherits from another definition, it can reuse, extend,
and override all its constituents. Overriding means redefining
an existing nonterminal from the inherited language and, thus,
specifying a new concrete or abstract syntax for it. Furthermore,
the language can either reuse the start rule from the inherited
languages or specify a new one. The other parts of the language
infrastructure realize language inheritance individually. Most
parts generated should be compositional and follow the inheri-
tance of the languages. For instance, generated abstract syntax
types of a language inherit from the abstract syntax classes
of inherited languages. Providing the artifacts of an inherited
language must also incorporate handwritten tooling against the
generated infrastructure, such as well-formedness rules. As lan-
guage inheritance enables the reuse of all inherited nonterminals,
the validation rules implemented against inherited nonterminals
must be reusable in an inheriting language. These conditions of
inherited languages can then be checked against the AST of a
language.

4.3.2. Language Extension In language extension, a lan-
guage adds novel parts to a reused language. Such language
extensions are considered conservative, i.e., each model of the
original language is still a valid model of a language that ex-
tends the original language. Thus, extension is just a specific
(more restrictive) form of inheritance, adding further constructs
to a language while respecting existing ones.

4.3.3. Language Embedding Language embedding de-
scribes that a language E is embedded into a host language
H without the need for the languages to be aware of one an-
other. It can be compared with multiple language inheritance
controlled via a novel language definition that inherits from the
definitions of E and H (and potentially more). Usually, the
novel language reuses the start rule of the language H. At some
point, a nonterminal of the language H is either overridden, ex-
tended, or implemented (in case the nonterminal is an interface
nonterminal) to add novel language syntax obtained from the
language E. This integrates the syntax of the two languages at a
single point. On the level of well-formedness, the sets of rules
of the two languages, H and E, can be unified.

4.3.4. Language Aggregation Language aggregation dif-
fers from the other forms of language composition in the fact
that aggregation does not require integrating the models of the
languages in a single artifact. Instead, the models remain indi-
vidual, and there is only a loose coupling between the involved

languages. The coupling enables modelers to refer to elements
of distinct models of an aggregated language. This requires
a cross-referencing mechanism on the model level via unique
names or other object identifiers. In summary, inheritance, ex-
tension, and embedding produce integrated models, whereas, in
aggregation, models remain separated.

5. Realization of Language Components in
MontiCore

5.1. Language Component Models in MontiCore

A language component in MontiCore is a (potentially incom-
plete) language definition particularly designed for being com-
posed with other languages. They comprise a context-free gram-
mar for defining the partial sentences of the corresponding com-
ponent (Hölldobler et al. 2021). Language components are
designed to define hook points and fill these of other languages.
A hook point serves as an extension point, which can be en-
riched with syntax constituents of the overall language in a
composed scenario. Here, productions marked as "external"
serve as hook points to be filled, while default nonterminals
are provided features. Interface nonterminals can serve as both,
as they provide information but can additionally be externally
extended. While each extending grammar can add further pro-
ductions and new nonterminals, predefined hook points have
the additional advantage that they allow for late binding. Thus,
language components can provide productions referencing non-
terminals via their interfaces, which inheriting grammars can
seamlessly integrate. Besides the grammar, a language compo-
nent can comprise additional infrastructures, such as context
conditions for setting up well-formedness rules, the symbol ta-
ble constituents for the specified symbols, and code generation
functionalities.

A language component in MontiCore (Butting & Wortmann
2021) is defined as follows:

Definition 1 (Language component in MontiCore) A lan-
guage component in MontiCore is a reusable unit encapsulating
a potentially incomplete language definition. A language
definition comprises the realization of (concrete and abstract)
syntax, well-formedness rules, and semantics of a software
language.

In other words, a language component in MontiCore contains
all artifacts that are part of the realization of the language. By
default, the language component definition does not distinguish
different kinds of artifacts that contribute specific parts to the
language, such as a grammar file or a context condition class.
Related language component definitions (Butting, Eikermann,
et al. 2020) often rely on such concrete artifact kinds (e.g., a
grammar file) or describe a language in terms of the conceptual
contributions that these artifacts make (e.g., abstract syntax).
However, these definitions are often highly specific to a certain
technological space and are still not detailed enough to properly
describe language composition. Hence, our definition is rather
general.

6 Butting et al.

5.2. Realizing Language Composition in MontiCore
MontiCore supports various types of language composition, en-
abling the realization of those introduced in section 4. This of-
fers distinct options for integrating models or their constituents.

5.2.1. Language Inheritance The most basic composition
technique is language inheritance. Here, a modeling language
extends another, inheriting existing constructs. In MontiCore,
the inheriting language adopts abstract and concrete syntax,
well-formedness rules, and the generated infrastructure, allow-
ing for reuse and extension. This way, existing language pro-
ductions can be reused and new sentences added. Furthermore,
the inheriting language can override existing productions and
exchange the start rule.

5.2.2. Language Extension Language extension uses the
technical mechanism of inheritance to add new constituents to a
language without altering the original definition. If a realization
of language inheritance uses extension of nonterminals only and
does not override any nonterminals, it does not remove any parts
of the syntax because extension of a nonterminal in MontiCore
adds novel right-hand sides to a given grammar rule for the
nonterminal. Therefore, any language inheritance in which
the inheriting language reuses the start rule of an inherited
language and in which no nonterminals are overridden is a
language extension. MontiCore does not distinguish language
extension from language inheritance in all parts of the language
infrastructure except for the grammar.

grammar ReqUseCase extends UseCaseDSL {

start UCDiagram;

DependantUseCase extends UseCase =

"case" Name "requires" req:Name@UseCase ";";

}

01

02

03

04

05

06

MG

usecasediagram StoreUseCases {

case Browse_Goods;

case Buy_Goods;

case Refund requires Buy_Goods;

}

01

02

03

04

05

RUC

added

relation

Figure 7 Extended UseCaseDSL for enabling additional
relations between particular use cases.

Figure 7 (top) shows an example of conservative language
extension. The grammar ReqUseCase extends the existing lan-
guage definition of the UseCaseDSL. The starting nonterminal
stays the same (l. 2). Additionally, we add a specific kind of
use case (l. 4f.), extending the original one. At each position
where such a use case could be used originally, a modeler can
now use the new form as well, which adds a relation to pre-
viously defined use cases. Figure 7 (bottom) contains a corre-
sponding model adhering to the extended language. The model
represents simplified use cases for a store. The newly added
production rule enables modeling use cases requiring other use
cases. For instance, l. 4 describes that in order to get a Refund,
the Buy_Goods case must also be involved in the corresponding
transaction. Overall, language inheritance and extension are

relatively straightforward ways to build new languages based
on existing definitions. While extension requires each model
of the original language to remain a valid instance of the newly
created, inheritance is less restrictive and allows for arbitrary
modifications. However, this could result in conflicts in the AST
or the generated Java infrastructure, such as type or API clashes
for overridden productions.

5.2.3. Language Embedding Language embedding con-
siders the integration of one or more existing languages into
each other. Here, constructs of the embedded language com-
ponents are accessible in a common language definition and
suitably interwoven. In MontiCore, we realize language em-
bedding via a common, unifying grammar. Similar to language
inheritance, existing grammars are extended to leverage their
productions in a new language. The main difference is that not
only a single, but instead multiple grammars are extended, such
that the sentences of the corresponding language definitions
are jointly available. Thus, the particular model elements can
be used together. An example is embedding expressions into
an automaton language, where the expressions can function as
guards for transitions.

grammar ActorUC extends ActorDSL, UseCaseDSL {

start RoleDiagram;

UseCase implements RDElement;

ActorUCRel implements RDElement =

actor:Name@Actor "->" usecase:Name@UseCase ";" ;

01

02

03

04

05

06

07

MG

rolediagram Store {

actor Customer;

actor Employee;

task SellProduct;

Customer -> SellProduct;

case Browse_Goods;

case Buy_Goods;

case Refund;

Employee -> Buy_Goods;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

AUC

added

relation

standard ActorDSL

constituents

embedded use cases

as role diagram element

Figure 8 Embedding the UseCaseDSL into the ActorDSL,
allowing to relate actors with use cases.

Based on the running examples of the textual actor and use
case modeling languages, Figure 8 (top) contains an example of
how to embed one language into another. In this scenario, use
cases are integrated into the ActorDSL, which, thus, reuses the
RoleDiagram as starting nonterminal (l. 2). The constituents
of a model are RDElements as prescribed in the ActorDSL. To
further embed use cases, we let the corresponding nontermi-
nal implement this respective interface (l. 4). This way, the
definition of use cases remains unchanged, while they can be
utilized the same as typical elements of the ActorDSL, result-
ing in a joint modeling opportunity. This already suffices to
enable embedding constituents of both languages. To further
establish a relation between the two languages’ components,

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 7

we can add the ActorUCRel (l. 6f.), allowing actors to refer to
use cases similar to tasks. The bottom of Figure 8 presents a
possible model containing elements of the original languages,
ActorDSL (ll. 2-7) and UseCaseDSL (ll. 9-11), as well as the
newly introduced relation (l. 13).

Language embedding significantly benefits from interfaces in
the host language, allowing for implementation by the elements
to be integrated. Thus, these interfaces serve as predefined hook
points, facilitating extension and embedding. Without such
explicit extension points, language embedding is also applicable
but might require more overriding of existing productions.

5.2.4. Language Aggregation An advanced composition
technique is language aggregation. Here, the composed models
stay separated artifacts while operating in a single, combined
context. Model elements of these particular artifacts may re-
fer to each other, mutually accessing or mutating each other’s
instances. In MontiCore, this is achieved by utilizing the sym-
bol table. Symbols, as uniquely identifiable elements, can be
resolved via their qualified names. Technically, language aggre-
gation can be achieved in different forms:

Aggregation via shared grammar Language aggregation can
be achieved by utilizing a shared grammar, specifying
the symbols to define and refer to. Thus, all models ad-
hering to this grammar share the same symbol kinds and
symbol table structure. This enables exchanging symbols
between the separated artifacts by referring to the corre-
sponding constituents via their name. Furthermore, multi-
ple, completely different, extending languages can reuse
these symbol definitions and thus achieve an exchangeable
information base between their independent models.

Aggregation via unifying grammar Alternatively, we can real-
ize language aggregation via a unifying grammar. Similar
to language embedding, the distinct constructs of the ex-
isting language definitions are made accessible to each
other. While, in this case, the models’ artifacts still remain
separated, they technically belong to a common language
definition that serves as the glue to handle all elements
within the same context. In comparison to the previous
approach, a newly created unifying grammar embeds both
grammars of the languages to be aggregated. Thus, to
enable mutual symbol usage of the separate worlds, the
inheritance relation is the opposite of aggregation via a
shared grammar that uses the fact that somewhere in the
inheritance hierarchy, a common grammar is already ex-
tended in both languages.

Aggregation via resolvers A possibility to aggregate languages
without associating them via a combining grammar is the
configuration of resolvers. Resolvers are responsible for
traversing the symbol table to derive symbols from their
corresponding qualified names. MontiCore supports attach-
ing adapters to these resolvers to link symbols of different
kinds, interpreting these in the required context. Ultimately,
these adapters serve as the glue between the particular mod-
eling languages provided via hand-coded extensions for
predefined hook points.

Aggregation via symbol files As introduced in subsection 2.1,
the symbol tables of models of a language can be persisted
in symbol table files. Such symbol table files enable de-
coupling the tools of the individual languages completely.
The aggregation in this approach is achieved by translating
or re-interpreting the symbol table files of an aggregated
language as if they were symbol table files of their own lan-
guage. To do so, MontiCore offers reconfiguration of the
algorithms that achieve the deserialization of each symbol
kind individually.

import StoreUseCases;

rolediagram Store {

actor Customer;

actor Employee;

task SellProduct;

Customer -> SellProduct;

Employee -> Buy;

}

01

02

03

04

05

06

07

08

09

10

Ac

usecasediagram StoreUseCases {

case BrowseGoods;

case Buy;

case Refund;

}

01

02

03

04

05

UC

putTaskSymbolDeSer("UseCaseSymbol")

adapted

use case

symbol

Figure 9 Aggregating the UseCaseDSL and the ActorDSL,
adapting use cases as tasks.

Figure 9 shows how two models of the ActorDSL and the
UseCaseDSL are composed using language aggregation. Simi-
lar to the embedding example, we make use cases accessible as
tasks in models of the ActorDSL. However, in this case, there is
no unifying grammar for introducing productions that provide
the glue between the separate language definitions. Instead,
they are connected via their symbol tables by adapting use case
symbols to task symbols. For this purpose, MontiCore pro-
vides generated symbol deserializers that allow loading a stored
symbol table into memory and simultaneously translating their
symbol kinds. As tasks and use cases are similar in nature, the
corresponding deserializer manages this mapping without any
customization. However, a manual adaption might be necessary
if the symbols are too different. In this scenario, a language
engineer registers the use case symbol kind to be loaded as a
task via the provided putTaskSymbolDeSer() method. Mon-
tiCore generates these methods automatically inside the scope
classes for all symbol kinds known to a language.

Ultimately, the two models remain separated artifacts that
refer to each other via their names. On the left-hand side,
the role diagram Store imports (l. 1) the use case diagram
StoreUseCases. Syntactically, it remains a pure ActorDSL
model. However, due to the symbol-kind adaptation, it can also
refer to use cases in its relations. Thus, we can model the link
from the actor Employee to the use case Buy (l. 9), referring to
an element of the other diagram. The reference is automatically
resolved in a shared context.

8 Butting et al.

MagicDraw Plugin Zip File
files

Language Profile
Project Template
Perspectives
Specific Plugins

descriptor.xml

Figure 10 MagicDraw plugin hierarchy consisting of the
software artifacts that define a language.

6. Realization of Language Components in
MagicDraw

6.1. Language Component Models in MagicDraw
As discussed in subsection 2.2, one of the main functionalities
of MagicDraw is the ability to provide editing capabilities for
modeling languages using a customization engine. This allows
MagicDraw to be adapted for a specific domain and to develop a
language profile consisting of language components. We define
a language component in MagicDraw as follows:

Definition 2 (Language component in MagicDraw) A lan-
guage component in MagicDraw is a reusable unit consisting
of artifacts that, entirely or in part, encapsulate a (potentially
incomplete) graphical language definition. A graphical
language definition in MagicDraw consists of the abstract
syntax, the graphical concrete syntax, well-formedness rules
(context conditions), and the semantics of a software language.

In other words, a language component in MagicDraw con-
sists of the artifacts that are part of the realization of the graphi-
cal language. MagicDraw allows language designers to write
and maintain graphical languages commonly used in industrial
DSML engineering (Méndez-Acuña et al. 2016; Tolvanen &
Kelly 2005). Moreover, it also provides a Java-based plugin
mechanism that supports the integration of further automation
and other custom functions. Figure 10 shows the software arti-
facts that are individually generated and bundled together in an
archived plugin file that is subsequently installed in MagicDraw
as a DSML. Once this plugin is installed, users can utilize the
in-built hierarchical navigation tool, Model Browser, to manage
their model data, including all language components, in a struc-
tured and organized manner. Software artifacts are realized in
the form of a file system and are stored in a file system directory
format as part of the compiled source code that is bundled and
installed as a DSML plugin in MagicDraw.

Language Profile. The language profile of a MagicDraw
plugin contains the artifacts of the language. These include
the definition of language elements as stereotypes along with
their configured properties, called customizations, and rela-
tions within a UML profile. Figure 4 shows an example of
the UseCaseDSL stereotypes and their customizations. The
customizationTarget property specifies to which stereotype
the properties are applied. The hiddenOwnedTypes property
specifies the list of stereotypes and metaclasses that will be hid-
den for this stereotype, meaning if it is configured to Element,

no standard UML elements can be created for this DSML ele-
ment. The language also contains artifacts for the configured
tables, diagrams, and matrices that are exported as Extensible
Markup Language (XML) files and bundled into the plugin.
Context conditions are defined in the language profile in the
form of validationRules on language elements, which are lo-
cated within an activeValidationSuite, meaning these validation
rules, written in Java, are checked for errors during design time.
The language profile defines these configurations to hide gen-
eral UML or SysML elements, which are beneficial in domain-
specific modeling.

Project Template. An important component of the Mag-
icDraw DSML is the project template. The project template
is essentially a customized project pattern that is instantiated
during the creation of a new model and serves as a starting point
in modeling. Whenever a new project in MagicDraw is cre-
ated, the template automatically applies the predefined model
structure on the graphical modeling canvas. Often, the lack of
such templates introduces rigorous manual efforts in the cre-
ation of models in complex systems where language users need
to design their models from scratch. Such a project template
is not only helpful for both novice and advanced users, but it
is also important in improving the overall user experience for
such users. The project template is generated as a MagicDraw
.mdzip file and is bundled into the MagicDraw plugin.

Perspectives. Perspectives are a way of displaying a fixed set
of DSML constructs or tool functionalities. They are predefined
and show functionalities depending on the kind of users, novice
or advanced. By defining perspectives, users can choose a suit-
able user experience mode for their modeling. Advanced users
may require a greater number of functionalities, while novice
users might find fewer functionalities easier to work with during
modeling. Perspectives are created as .umd files and bundled
with the MagicDraw plugin. Some examples of functionalities
that can be configured are: MagicDraw menu items, MagicDraw
toolbars, DSML diagram toolbars, and shortcuts.

Specific Plugins. Plugins in MagicDraw are a way of adding
new functionalities in MagicDraw to enhance a DSML. The
main parts of a plugin include a directory containing the com-
piled Java files, packaged as jar files, an XML file that de-
scribes the purpose of the plugin, and any other dependent files
that are required by the plugin. An integrated development
environment (IDE) such as Eclipse or IntelliJ can be used to
compile and package jar files. Plugins can be used for a variety
of purposes. As part of defining context conditions, a validation
plugin is created to support binary validation rules for language
elements that are not supported by MagicDraw. These can in-
clude checking naming conventions or performing type checks
on certain language elements. A visualization plugin can be pro-
grammed to dynamically change the color of a graphical model
element during design time. All the plugins are combined and
bundled into the MagicDraw plugin.

Descriptor XML File. A descriptor XML file is used to
reference all the artifacts and their configurations to help Mag-
icDraw seamlessly install the plugin file. During the installation
of the plugin file, MagicDraw detects the sets of artifacts and
copies them into its own installation directory. On tool startup,

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 9

MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\DSL Language Composition\LanguageCompositionExtAndAssoc.mdzip Language Extension 20 Sep 2022 10:37:01

Language Extension3 DSL CompositionProfile Diagram][

customizationTarget = MyExtendedSecondUseCase
allowedRelationships = UseCaseActorAssociation

«Customization»

MyExtendedSecondUseCase
«Customization»

[UseCase]
MyExtendedSecondUseCase

«stereotype»

[UseCase]
MySecondUseCase

«stereotype»

Figure 11 An example of the MySecondUseCase being ex-
tended and customized to MyExtendedSecondUseCase with
an association dependency between a UseCase and an Actor.

MagicDraw loads all the necessary generated artifacts into mem-
ory so that the DSML is ready to use.

6.2. Realizing Language Composition in MagicDraw
All forms of language composition discussed in section 4 rely
on the composition of the language components and, hence, the
composition of their constituents themselves. In other words,
a language in MagicDraw can be composed by composing the
artifacts of the individual language components.

6.2.1. Language Inheritance Figure 4 of our running ex-
ample shows the inheritance of language components for the
UseCaseDSL. The MyFirstUseCase and MySecondUseCase
stereotypes are defined as specific classifiers for the UseCase
stereotype, which is a general classifier. Therefore, each in-
stance of the specific classifiers naturally inherits the properties
of the UseCase classifier. Newly configured attributes in the
inherited stereotype with the same name as that of the base
language element are distinguished internally using unique iden-
tifiers to eliminate problems of multiple inheritance (Butting,
Eikermann, et al. 2020). For example, if an instance of
MyFirstUseCase has an attribute named attribute1, then
attribute1 of MyFirstUseCase can be configured via the
Properties tab of the Specification configuration window of the
model element in MagicDraw. However, when a user wants to
configure attribute1 that belongs to an instance of UseCase,
they would have to configure it in the Tags section under the
Specification configuration window of the model element in
MagicDraw. Context conditions specified on UseCase are valid
for instances of the MyFirstUseCase and MySecondUseCase
stereotypes.

6.2.2. Language Extension Figure 11 shows an ex-
ample of language extension on a language component
for the UseCaseDSL. The MyExtendedSecondUseCase
stereotype extends the MySecondUseCase stereotype and
inherits the UseCase metaclass. The metaclass for
MyExtendedSecondUseCase can also be altered during an

extension composition, but this could lead to undesired er-
rors during modeling. The MyExtendedSecondUseCase
stereotype is configured with an association relation be-
tween UseCases and Actors. However, since the
MySecondUseCase stereotype disallows all relationships (Fig-
ure 4), the UseCaseActorAssociation is also naturally dis-
allowed for all instances of the MyExtendedSecondUseCase
stereotype. While restricting language elements is necessary
for certain scenarios, the under-specification of these language
elements is recommended to allow configuring relations in other
variants of the UseCaseDSL. In our experience, instead of re-
stricting all relations, allowing specific types of relations is
far more beneficial in composing a language. Similar to lan-
guage inheritance, context conditions are also naturally valid in
language extensions.

6.2.3. Language Embedding Figure 12 shows an exam-
ple of the configuration of a novel syntax in the composed
language for embedding the ActorDSL into the UseCaseDSL.
The UseCaseDSL and the ActorDSL are reused completely
without change as read-only projects in MagicDraw, fostering
the reusability of the individual languages and their compo-
nents. The UseCaseTask is the novel syntax that inherits from
both the host and embedded language’s stereotypes, UseCase
and Task. As a result of this inheritance, the UseCaseTask
contains the metaclasses of both UseCase and GeneralTask
stereotypes, UseCase and Class, respectively. UseCaseTask
can, therefore, be either instantiated with a UseCase or a Class,
depending on the user during model design. The GeneralTask
stereotype is a specialization of the Task stereotype and, there-
fore, naturally inherits all its properties and features. The
UseCaseGeneralTaskGlue attribute for the UseCaseTask
stereotype acts as the integration glue and is configured by
setting the property showPropertiesWhenNotAppliedLimited-
ByElementType value to the UseCase stereotype. This property
ensures that the integration glue is visible to the UseCase stereo-
type. On the other hand, the IsUseCaseAGeneralTask at-
tribute on the GeneralTask stereotype is configured to demon-
strate that the integration glue (UseCaseGeneralTaskGlue)
can only exist as a novel syntax, and the UseCaseDSL will be
unaware of the ActorDSL constructs when only this attribute
is set. Thus, any model elements of the UseCase stereotype
cannot access the constructs of the ActorDSL without such an in-
tegration glue necessary for language embedding in MagicDraw.

Figure 13 illustrates language embedding using an exam-
ple model containing the following model elements: Customer
(Actor), T1 (Task), and UseCaseWithdraw (UseCase). Ini-
tially, a Customer can only perform T1, whereas the UseCase-
Withdraw is only configured to be a UseCase stereotype. The
languages are reused completely unchanged, and UseCaseWith-
draw is unaware of either Customer or T1, except only for
being modeled on the same UML class diagram. Later, during
modeling, the user decides that the UseCaseWithdraw descrip-
tion is simple enough for this use case to be considered a task.
By configuration, the UseCaseGeneralTaskGlue attribute for
UseCaseWithdraw is visible, and the user sets a value to it, e.g.,

10 Butting et al.

MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\DSL Language Composition\UseCaseActorTaskComposition.mdzip Language Embedding 20 Sep 2022 10:39:24

Language Embedding3 DSL CompositionProfile Diagram][

«placeOnPaletteProperty»-UseCaseTaskInstance{place = "Class Di...
attributes

showPropertiesWhenNotAppliedLimitedByElementType = UseCase
showPropertiesWhenNotApplied = true
customizationTarget = UseCaseTask

«Customization»

UseCaseTask
«Customization»

-UseCaseGeneralTaskGlue : String
attributes

[Class, UseCase]
UseCaseTask
«stereotype»

-IsUseCaseAGeneralTask : String
attributes

[Class]
GeneralTask
«stereotype»

{}
[UseCase]
UseCase

«stereotype»

[Class]
Task

«stereotype»

Figure 12 The configuration for language embedding us-
ing a host UseCaseDSL, an embedded ActorDSL, and
an integration glue (UseCaseTask) in MagicDraw. The
UseCaseTask stereotype is the novel syntax that specifies
the UseCaseGeneralTaskGlue attribute as the integration
glue on the UseCase stereotype. The ActorDSL is embedded
through the integration glue attribute of the UseCaseTask
stereotype into the UseCaseDSL using MagicDraw’s show-
PropertiesWhenNotAppliedLimitedByElementType property.

“Yes”. This automatically adds the UseCaseTask stereotype to
UseCaseWithdraw and embeds the ActorDSL constructs, mean-
ing UseCaseWithdraw is now configured both as a use case and
a task. The integration glue (UseCaseGeneralTaskGlue) cre-
ates the necessary interface between the UseCaseDSL and the
ActorDSL, enabling the user to now set an outgoing Performs re-
lationship from the Customer to the UseCaseWithdraw. On the
class diagram, the model element Customer is shown with the
respective relationships to both T1 and UseCaseWithdraw. The
setting of the integration glue ensures the ActorDSL is embed-
ded into the UseCaseDSL. Without setting this integration glue,
the individual ActorDSL and the UseCaseDSL remain indepen-
dent and unaware of each other. New language infrastructure,
such as the creation of novel context conditions, is valid in the
composed language. The individual context conditions for the
UseCaseDSL and the ActorDSL continue to remain valid in-
dependently. The introduction of new language infrastructure,
therefore, does not affect the usage or the configuration of the
individual languages.

6.2.4. Language Aggregation Figure 14 shows an exam-
ple of the configuration required to achieve language aggrega-
tion in MagicDraw. Similar to language embedding, we reuse
the ActorDSL and the UseCaseDSL and their components in
their entirety. Language aggregation in MagicDraw is realized
by creating a UML dependency relationship along with a novel
syntax. This ensures that language components are still decou-
pled, as each of the individual language components is reused

MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\DSL Language Composition\UseCaseActorTaskComposition.mdzip Language Embedding 20 Sep 2022 11:31:52

3 DSL Composition Models Language Embeddingpackage][

Documentation = "A customer must be able to
withdraw money from their account."

UseCaseWithdraw

«UseCase»
«UseCaseTask»

{UseCaseGeneralTaskGlue = "Yes"}

T1: A customer w alks to the bank to withdraw money.
«Task»

Customer
«Actor»

«Performs»

«Performs»

Figure 13 An example of a model showing language embed-
ding using an integration glue in MagicDraw. The attribute
UseCaseGeneralTaskGlue acts as the integration glue be-
tween the ActorDSL and the UseCaseDSL. If this glue is
missing, the model element UseCaseWithdraw is unaware of
either the Customer or the Task T1 model elements. Here,
as the integration glue is set, UseCaseWithdraw is config-
ured both with a UseCase and the UseCaseTask stereotype,
therefore embedding the ActorDSL into the UseCaseDSL,
allowing a Customer to now configure an outgoing Performs
relationship to UseCaseWithdraw.

without alterations. A composed language is created without
any modifications to either the UseCaseDSL or the ActorDSL,
as they are read-only projects in MagicDraw, and the respective
models for each language are part of their individual artifacts.
The TaskBelongsToUseCase dependency is created as a novel
syntax in the composed language. The customization values
for the properties typesForSource and typesForTarget define
from which source stereotypes to which target stereotypes the
dependencies are configurable. In our example, the source is
configured to be of Task stereotype, and the target is configured
to be of UseCase stereotype. This means an outgoing depen-
dency from an instance of a Task to an instance of a UseCase
can be created, but not the other way around. To achieve bi-
directionality in the composed language, the properties types-
ForSource and typesForTarget, must be configured with both
the Task and the UseCase stereotypes. This kind of config-
uration can also be created during the initial definition of the
languages, meaning both the UseCaseDSL and the ActorDSL
already exist, and a TaskBelongsToUseCase dependency is
created to achieve the aggregation. In this scenario, a loose
form of conceptual coupling exists between the languages, as
certain constructs of either language may be known to the other
language.

Figure 15 illustrates language aggregation using the same ex-
ample model we described earlier in Figure 13 involving a Cus-
tomer (Actor), T1 (Task), and a UseCaseWithdraw (UseCase).
Initially, the Customer can only perform T1, and the UseCase-
Withdraw is configured to be a UseCase stereotype. The lan-
guages are reused unchanged, and UseCaseWithdraw is un-
aware of either the Customer or T1, except only for being
modeled on the same UML class diagram. Later, the user

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 11

MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\DSL Language Composition\UseCaseActorTaskComposition.mdzip Language Aggregation 20 Sep 2022 11:44:19

Language Aggregation3 DSL CompositionProfile Diagram][

typesForTarget = UseCase
typesForSource = Task
hideMetatype = true
customizationTarget = TaskBelongsToUseCase

«Customization»

TaskBelongsToUseCase
«Customization»

[Dependency]
TaskBelongsToUseCase

«stereotype»

Figure 14 An example of the configuration for language
composition using language aggregation in MagicDraw. The
TaskBelongsToUseCase dependency is a novel syntax in the
composed language. The typesForSource and typesForTar-
get property configurations in the customization of the novel
syntax specify the direction of the dependency between the
models of the ActorDSL and the UseCaseDSL. In this config-
uration, the dependency is configured to exist from a Task to
a UseCase model element. Similar to language embedding,
both languages are completely reused unchanged in language
aggregation.

decides that task T1 belongs to UseCaseWithdraw. As the
TaskBelongsToUseCase dependency is already configured
for T1, the user can create an outgoing dependency to indi-
cate that T1 belongs to UseCaseWithdraw. This dependency
creates the necessary aggregation between the ActorDSL and
the UseCaseDSL. As the Actor stereotype is configured with a
Performs dependency to the Task stereotype, there exists no di-
rect dependency between UseCaseWithdraw and the Customer.
However, UseCaseWithdraw can trace back to the Customer,
meaning the set of dependencies that are recorded between
model elements in the MagicDraw can be used to derive the
link between the Customer and UseCaseWithdraw. To directly
connect Customer and UseCaseWithdraw, a new dependency
must be created in the composed language. Without this depen-
dency configuration, the languages are unaware of each other,
and their respective models continue to remain in their individ-
ual artifacts. Similar to language embedding, new language
infrastructure, such as the creation of novel context conditions
on the composed language, can be created.

7. Unified Concept for Language Components
In section 5 and section 6, we discussed in detail the definitions
of language components in their respective technological spaces
of textual and graphical modeling. To achieve a seamless unifi-
cation of the language component aspects between the two kinds
of representation, it is important to consider all cross-cutting
concerns. These concerns address the reusability of the defini-
tion of the language, both syntactically and semantically. We
observe that the individual definitions of language components
in MontiCore and MagicDraw are principally similar in nature.
This is also supported by considerable similarities regarding
the frameworks’ abstract syntax synthesis, fostering equivalent

MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\DSL Language Composition\UseCaseActorTaskComposition.mdzip Language Aggregation 20 Sep 2022 11:38:28

3 DSL Composition Models Language Aggregationpackage][

T1: A customer walks to the bank to w ithdraw money.
«Task»

Documentation = "A customer must be able
to withdraw money from their account."

UseCaseWithdraw
«UseCase»

Customer
«Actor»

«Performs»

«TaskBelongsToUseCase»

Figure 15 An example of a MagicDraw model showing lan-
guage aggregation using a dependency relationship. The
TaskBelongsToUseCase dependency creates the necessary
relation between task T1 and the use case UseCaseWithdraw.
When this dependency is not set, UseCaseWithdraw is com-
pletely unaware of either the Customer or T1. In this example,
the direct dependency is only configured between T1 and Use-
CaseWithdraw.

composition techniques. A key difference in the definition of
the language component across both technological spaces is the
specific format of the software artifacts. While both definitions
leverage software artifacts, MontiCore focuses primarily on the
creation of grammar files, whereas in MagicDraw, the language
is defined directly on the modeling tool, and subsequently, the
artifacts are bundled into another artifact, the plugin file. To this
end, we discuss the mutual definition of a language component
independent of the technological spaces.

7.1. Mutual Definition of a Language Component
A language component consists of reusable units that encapsu-
late a language definition, partially or in whole. Further, a lan-
guage component consists of software artifacts that contribute
to the definition of a language. Examples of such software arti-
facts could be grammar files, e.g., in MontiCore, or files in a file
system directory bundled together in the form of a plugin, e.g.,
in MagicDraw. Therefore, we define a language component
independent of a technological space as follows:

Definition 3 (Language component) A language component
is a reusable unit encapsulating a potentially incomplete lan-
guage definition valid for its respective technological space,
including but not limited to textual or graphical representation.
A language definition consists of reusable software artifacts
comprising the realization of the syntax and semantics of a
software language.

In other words, the mutual definition of a language com-
ponent does not distinguish the different software artifacts in
different technological spaces that belong and contribute to the
language definition. We consider realizing software artifacts in
the context of the file system. Therefore, all the software arti-
facts are primarily located in a file system directory format as
part of the compiled source code. Even though the description

12 Butting et al.

of the abstract or concrete syntax is realized differently in the
different technological spaces, the underlying compiled source
code is stored as files. Additional artifacts or applications (in
some cases, the modeling tool or the language workbench itself)
facilitate completing the language definition. Thus, they can
also be categorized as parts of language components. For the
actual composition of these language components in a unified
manner, we consider the following mutual notions of language
composition.

7.2. Mutual Notions of Language Composition
Aspects of mutual notions of language composition cover com-
position techniques described earlier in this paper (cf. section 5
and section 6). Additionally, certain characteristics and threats
to validity of these mutual notions must be considered for lan-
guage composition to be described independently of their tech-
nological spaces.

Language inheritance and extension are closely related. Both
forms of language composition rely on inheritance concepts
well-defined in the object-oriented programming world. Lan-
guage inheritance should provide reuse, extension, and overrid-
ing of all language elements for a language definition, such as
nonterminals in a textual language and stereotypes in a graphi-
cal language. Subsequently, in language extension, a composed
language should add novel parts to a reused language. The main
difference between these two variants is that with language in-
heritance, the models of the original language no longer need to
be valid models of the resulting language definition. Language
extension, on the other hand, conserves all original sentences
(hence the notion of conservation extension) and only introduces
new constituents.

In contrast to language inheritance and extension, which
reuses a single language specification, language embedding
reuses at least two languages, a host language, and an embedded
language. Language embedding is achieved by a joint inher-
itance from the involved languages. This can be achieved by
providing an integration glue, as novel syntax, in the composed
language that extends the syntax of both the host language and
the embedded language. Here, the embedded language is em-
bedded into the host language at predefined extension points.
An extension point is configured in the host language to provide
for the extension for the constituents of the embedded language.
In other words, embedding realizes or subsequently implements
the extension point.

Similar to language embedding, language aggregation also
composes multiple languages, with models remaining in their
individual artifacts. While these languages can be reused in
their entirety, in this form of language composition, adjustments
need to be made to one of the existing languages so that one
language can refer to the other language and access the visible
constructs. This requires a re-configuration and a regeneration
of the existing language infrastructure. A kind of reference must
be established between the two languages, for instance, via a
symbol table infrastructure in a textual technological space or
via relationships in the form of associations in the graphical
technological space. This reference establishes the interface
between the accessible model elements of the languages. There-

fore, in language aggregation, the involved languages exhibit a
rather loose form of conceptual coupling.

The reusability of language components allows independent
languages to be bundled together and foster building a library of
languages. These are particularly helpful in developing complex
variants of languages that are flexible enough to allow extensions
and adaptations for composed languages. Some of the forms of
language composition describe building language components
in a way that they act as interface providers for allowing dif-
ferent realizations of a language. The grouping of individual
language components ensures that a common combination of
such language components can be reused directly for a language
definition. Further, the realization of language components
should be under-specified, wherever possible, to avoid problems
of language restriction later on during extensions.

8. Discussion

In this paper, we present individual definitions of language
components and the different forms of language composition
in the technological spaces of textual and graphical modeling.
Additionally, we also present a mutual definition of a language
component and the mutual notions in language composition that
is valid in both of these technological spaces. Defining and
realizing such notions of language composition independent
of technological spaces is a complex endeavor. While this
study aims to provide a unified notion of language components,
the realization of these concepts is certainly not the “go-to”
solution. Instead, we aim to provide guidance for further work
on language components and composition of languages that
essentially targets existing and upcoming tools and language
workbenches, including those that provide hybrid support for
both textual and graphical modeling. Language engineers who
compose languages or variants of languages should, therefore,
be aware of all the concepts and decide on techniques that are
best suited for their language development.

As observed from best practices in software engineering,
monolithic definitions of large artifacts often lead to problems
in the maintenance and reuse of existing assets that have been
developed. To this extent, the introduction of reuse through
modularity has gained traction in software language engineer-
ing (SLE) and component-based software engineering (CBSE)
communities in recent years. Software components consist
of interfaces providing the necessary interaction of the com-
ponent to its environment (Broy et al. 1998). Our approach
does not specifically proclaim explicit interfaces for language
components, which are considered an overhead in developing,
evolving, and maintaining them. Interfaces require the inclusion
of all foreseeable points of extension, which is a hindrance to
the reusability of language components or even parts of them.
Further, they often lead to inconsistencies between the explicit
interface and the underlying implementation. Instead, our in-
tention is to describe the composition of languages through the
introduction of novel syntax and reusing existing languages com-
pletely in addition to under-specifying language components so
that an in-depth knowledge of the internals of a language compo-
nent is not essential. Such internals, therefore, help in realizing

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 13

language composition in a black-box manner, where only the es-
sential and novel parts in a composed language are exposed and
implemented by language engineers. While explicit interfaces
can be beneficial in complex systems, our approach ensures that
the language component definitions are less complex in nature,
fostering independent reusability.

Definitions of language components consist of software arti-
facts. The only difference between the definitions in different
technological spaces is the specific format in which the software
artifacts are generated and stored. These artifacts are a result of
the compiled source code during the definition of the DSMLs.
We consider the modeling tool or the language workbench itself
a language component, as it contributes to the definition of a
language. However, the specific tools may be independent of
consideration for aspects of language composition. All forms
of language composition reuse at least one language in some
way or the other. This fosters the composition of linguistic
assets at a finer granularity level than the complete languages
themselves (Bertolotti et al. 2023). While language inheritance
and language extension reuse a single language, language em-
bedding and language aggregation reuse at least two languages.
Language embedding ensures that the embedded language is
embedded into the host language at a single point, which makes
the accessible constructs of the embedded language available
to the host language. Language aggregation introduces novelty
or adjustments in one of the existing languages to provide a
kind of reference between the languages. This could be seen
as a rather loose form of conceptual coupling. However, in all
forms of language composition, the reusability of independent
language components allows language engineers to build a li-
brary of languages that are flexible enough to build variants of
languages easily.

In a hybrid technological space that uses a combination of tex-
tual and graphical representation, such as in projectional editing,
the mutual notions of language composition are also applicable.
MontiCore focuses on textual DSMLs and is widely used to
derive proofs of concepts for various domains that make use of
textual languages. Its concepts and results are not only used
in academia but have been translated into successful domain-
specific industrial projects. MagicDraw, on the other hand,
focuses on graphical DSMLs, with consideration for many in-
dustrial scenarios, and therefore has a more practical approach
for modeling scenarios with practitioners. This union of lan-
guage composition aspects using these two technological tools
creates an exhaustive complement of research in academia and
its application in the industry. The results of this study show
that language components and the different forms of language
composition are applicable to other language workbenches and
modeling tools that support language development. In particu-
lar, we have also completed a preliminary evaluation of these
notions in Enterprise Architect, where the results comply with
the concepts presented in this paper.

In this paper, we mutually define the concept of a language
component that is valid for textual and graphical technological
spaces. The underlying principle is that language components
do not distinguish between the software artifacts that belong in
different technological spaces. These software artifacts are real-

ized in the context of a file system, which is implicitly present in
a file system directory as part of the compiled source code. The
forms of language composition are applicable to the language
components as well as to the DSMLs. Language inheritance
reuses a single language and provides mechanisms to reuse,
extend, and override language elements. Language extension
is achieved by adding novel parts to a reused language. The
already constructed models of the original language continue
to exist and remain valid in their respective original software
artifacts. Language embedding reuses at least two languages but
provides an integration glue, as a novel syntax, on the composed
language that enables the embedding of an embedded language
into a host language. This integration glue permits the extension
of the host language with the constructs of the embedded lan-
guage. In theory, an integration glue can be used to glue together
completely incompatible components. A famous example of
this is during the Apollo 13 mission, when the lunar module’s
supply of lithium hydroxide filters was exhausted, and the space
crew had to create an adapter using items such as plastic bags
and duct tape to reuse filters from the command module (Orloff
et al. 2006). A corresponding example in software engineering
is fostering compatibility using wrapper classes that encapsu-
late the functionality of other components (Arnold et al. 2000).
However, in practice, an integration glue should be compatible
between the grammars, in the textual space, and the graphical
elements, in the graphical space, to prevent ambiguities during
composition. Unifying grammars in MontiCore and novel inte-
gration glue, along with inheritance in MagicDraw, are ways to
technically realize language embedding. Language aggregation
also reuses at least two languages and needs adjustments on one
of the existing languages, which requires sufficient reconfigu-
ration and regeneration of the existing language infrastructure.
Here, a kind of reference must be established in the respective
technological space to provide a kind of interface for accessing
constructs of the other language. Symbol tables in MontiCore
and associations in MagicDraw are ways to technically realize
language aggregation in textual and graphical modeling.

To achieve independent language composition, a library of
language components is beneficial. Such language components
should be reusable in any technological space: textual, graph-
ical, or projectional. These language components should not
be strictly specified, as it often leads to restrictions when com-
posing a new language. For instance, disallowing all kinds
of relationships in the original language leads to relationships
being disallowed in the composed language as well. We dis-
cuss the realization of the concepts using a textual language
workbench, MontiCore, and a graphical modeling tool, Magic-
Draw. Since all language workbenches serve the same primary
purpose of language development and the concepts discussed
in this paper are generalized, the overall notation of language
components can be applied to other language workbenches
or modeling tools. The running example languages of Use-
CaseDSL and ActorDSL cover aspects of language components
such that they can be used to demonstrate the results of the study
in real-world projects. However, as part of further work, we
aim to validate the proposed realization techniques for other
language workbenches and modeling tools.

14 Butting et al.

We bring our perspectives on the aspects of language com-
ponents and forms of language composition both from a re-
searcher’s and practitioner’s point of view. As language engi-
neers, we have used MontiCore and MagicDraw to compose
modular languages in several domains over the years, which has
subsequently been used extensively by a wide variety of users
and domain experts. We argue in this paper that the concepts
and realization of the language components and the various
forms to compose languages are valid in both the textual and
graphical technological spaces. We validated our study with
a wide variety of language engineers, researchers, and practi-
tioners from research groups as well as across many business
lines within Siemens AG with different modeling needs. These
researchers and practitioners have years of experience either in
developing or using DSMLs that are suited for their specific
domains, such as in the healthcare, energy, IT, or digital indus-
tries. We researched various methodologies to realize language
components and the forms of language composition to provide
an overview of methods, concepts, and their realizations, which
is beneficial for all kinds of language engineers and users, both
novice and advanced, and serves as an important step in de-
veloping component-based independent language composition
techniques in the large.

Threats to Validity The validity of this study is the extent
to which the language component definition and the forms of
language composition, both in concept and in implementation,
are free from systematic errors or bias. To this extent, we
have explored the definition of a language component in two
technological spaces, textual and graphical, and also in terms
of the realization of these language components. Further, we
discuss the various forms of language composition and how they
are implemented in both these technological spaces. We discuss
validity threats for our study and ways in which our conclusions
might be wrong.

Among the available textual language workbenches and
graphical modeling tools, our study is based on two well-known,
actively developed, advanced, and OMG standard-compliant
tools. MontiCore is an open-source language workbench for
engineering textual DSMLs that is used in academia with its
methods and concepts also translating into industrial applica-
tions (Hölldobler et al. 2021). MagicDraw, on the other hand,
is a popular commercial modeling tool supporting UML and
SysML standards and is widely used in the industry for devel-
oping graphical DSMLs and has support for many frameworks
such as SysML, UAF, SoaML, and Enterprise Architect in the
form of plugins (MagicDraw Enterprise 2022).

Previous work on compositional reusable language design
(Butting, Eikermann, et al. 2020; Gupta et al. 2021) for both
MontiCore and MagicDraw was evaluated. We note that the
realization part of our study is currently tool-specific or vendor-
locked. This could introduce unintended risks related to gener-
alizing language composition aspects, as not all workbenches
and tools provide a similar set of modeling concepts or func-
tionalities. However, other language workbenches or tools can
provide similar outcomes as in the study, given they provide
means for language composition and introduce aspects for as-

sembling language components. Our work is a first step towards
a universal understanding of language components. A bene-
ficial future work would be to compare the derived definition
against other language workbenches and frameworks, such as
MPS (Voelter & Pech 2012), Xtext (Efftinge & Völter 2006), or
Spoofax (Kats & Visser 2010), to identify potential differences
and further refine the definition.

To illustrate the foundational aspects of our study, we de-
veloped two example languages: UseCaseDSL and ActorDSL.
Although these example languages are not very complex in
nature, they are sufficient to cover the distinct language com-
position concepts described in this study. Further, these lan-
guages are commonly used for demonstrating proof of concepts
in many DSMLs and are applicable to real-world projects as
well (Tiwari & Gupta 2015). Both the example languages cre-
ated for this study are based on UML and SysML constructs.
The UseCaseDSL is used to create simplified UML-like use
case diagrams used for modeling simple use cases and their rela-
tionships. The ActorDSL is used to create and model the actors
and their tasks. Each of these languages has hook points that
allow for easy extensions, as described in section 3. While each
language is standalone and represents entirely separate domain
concepts, the composition of both provides for the description
of discrete modeling techniques.

We describe the concepts of language components and the
forms of language composition in a way that, in each of the
individual technological spaces, the findings support reusability.
However, in a complex scenario with many domain concepts,
language components from one domain may not always be
completely reusable in another entirely independent domain.
The definitions of the language components and the forms of
language composition show that the individual definitions are
similar and are applicable to both the textual and graphical tech-
nological spaces. A minor threat to generalizability remains
concerning DSLs utilizing projectional editing. However, this
threat can be neglected, as, from a language engineering per-
spective, projectional editing largely combines the concepts
found in textual and graphical modeling analyzed in this pa-
per. Additionally, we were able to replicate the results of the
study across more complex and practical languages belonging
to various domains, which illustrates that the concepts can be
generalized. While some of these practical implementations
are industry-specific, such as designing DSMLs for Siemens
Healthineers and Siemens Digital Industry, other implementa-
tions were carried out as research for publicly funded projects
with academic partners, such as SpesML (Gupta et al. 2022b).
With constantly evolving workbenches and tools, it is important
to ensure that the concepts of our study are validated and veri-
fied for other language workbenches and modeling tools as well.
While our motivation for this study is derived from previously
researched language composition aspects, we clarify that we are
not the exclusive users of these workbenches, modeling tools,
and the concepts described in this study.

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 15

9. Related Work

To easily develop, manage, and evolve complex systems (and
software), it is important to build them using individual reusable
units. Such units should capture all the details needed for the
system to operate while also providing the necessary interfaces
to allow the composition of larger languages. A modular ap-
proach for model-based systems engineering (MBSE) alleviates
concerns for such complex systems (Herrmann et al. 2009).
Compositional modeling aspects described in (Broy & Rumpe
2007; Rumpe & Wortmann 2018) detail modular aspects in
interacting systems. Compositional approaches consider not
only the modeling language but the models, their respective soft-
ware components, and their artifacts as well (Talcott et al. 2021;
Butting, Eikermann, et al. 2020). These approaches are well
described in the textual technological space (Butting et al. 2021;
Butting, Pfeiffer, et al. 2020; Hölldobler et al. 2018) with consid-
eration for the different forms of language composition. (Völter
& Visser 2010) discuss in their study the primary requirements
and variation points in two established language workbenches,
Spoofax and JetBrains Meta Programming System (MPS).

An important related work on language composition is de-
scribed by (Erdweg et al. 2012) in their work on language
composition mechanisms that is described for the textual tech-
nological space. In their paper, the described mechanisms are:
“language extension, language restriction, language unification,
self-extension, and extension composition”. Their notion of
“language extension” also requires the reuse of a base language
completely unchanged, meaning the extension itself is not pur-
poseful when considered independent from the base language.
Such language extensions also subsume language restrictions
that prohibit the use of certain language constructs. Their de-
scribed notion of “language unification” matches our notion of
language aggregation, where two independent languages are
reused unchanged with the introduction of a novel syntax, which
they refer to as glue code. In contrast, our notion of language
embedding introduces an integration glue that helps embed one
language completely unchanged into another language at pre-
defined extension points. Thus, language embedding can be
considered principally similar to their notion of “self-extension”.
However, in their definition of “self-extension”, a language can
be extended by the programs of the language itself through
extension styles such as string embedding or pure embedding.
MontiCore does not, by default, provide such a self-extension
mechanism but instead provides the unification of two languages
at a single point. The notion of “extension composition” through
incremental extension is also supported by both MontiCore and
MagicDraw. One distinction to their work is that our concepts
of language composition are extended to the graphical techno-
logical space, which, to the best of our knowledge, is currently
missing in the literature. This is primarily because reusing lan-
guages is still considered more effort than building completely
new languages (Méndez-Acuña et al. 2016), and therefore, a
conceptual framework for language composition in the graphical
technological space would foster the modular development of
reusable language components. Our work, thus, fundamentally
builds on the mechanisms of language compositions described

by (Erdweg et al. 2012) and presents a unified approach to lan-
guage composition detailed in the two technological spaces of
textual and graphical languages.

Language-related patterns are common in the litera-
ture (Spinellis 2001; Mernik et al. 2005; Drux, Jansen, & Rumpe
2022), but there is a lack of relations in identifying language
components that can be reused with such patterns. Various stud-
ies (Şutîi et al. 2018; Vallecillo 2010) have also discussed focus
on the reusability aspects of language implementations. (Cheng
et al. 2015) discuss how specific forms of language composi-
tion can be restrictive, subsequently introducing challenges in
language reuse.

A single definition of a language component that is valid in
different technological spaces is still a relatively untouched re-
search area. We observe that definitions of language components
or forms of language composition have been exclusively de-
scribed in the technological space of textual modeling (Butting
et al. 2019; Haber et al. 2015). These studies describe the con-
stituents of a language component as software (and hardware)
artifacts that realize a system’s functionality. The definition of a
language component in this paper is similar to the one presented
in (Clark et al. 2015), whereas our definition does not suggest
that language components should have required and provided
interfaces. (Leduc et al. 2020) in their study introduce the “lan-
guage extension problem (LEP)”, that allows defining a family
of languages wherein a new language can be added by adding
novel syntax or semantics. The LEP describes five constraints:
“extensibility in both dimensions, strong static type safety, no
modification or duplication, separate compilation, and indepen-
dent extensibility”, which are in some form or shape addressed
by the concepts described in our work. Specifically, language
components can be extended independently, new semantics can
be introduced to the syntax, and existing semantics ensure it
describes the complete syntax. Reusing language components
and their artifacts ensures that modifications to the originals are
unnecessary and components can be compiled separately.

The systematic engineering of languages in the textual space,
including in practice, has been well-researched (Sprinkle et
al. 2010; Krahn et al. 2006; Meyers et al. 2012). Similarly,
the systematic development of languages in various domains
in the graphical space has been studied for practitioners in in-
dustrial scenarios (Gupta et al. 2022b). The implementation
of modularisation and composition concepts with MPS have
been researched (Voelter 2011), and it is based on a projectional
editor. Although possibilities to combine the development of
languages in two technological spaces exist, e.g., integration of
a textual syntax inside a graphical modeling tool (Drux, Jansen,
Rumpe, & Schmalzing 2022; Seidewitz 2014), often the cre-
ation of such supplementary units is tedious, homogeneous,
horizontal, or vertical and only provides a loose relation to
our study. An example is the embedding of generated eclipse
modeling framework (EMF) based textual editors and eclipse
graphical modeling framework (GMF) based graphical editors
with tree-based editors that are generated with EMF (Scheid-
gen 2008). Our study, however, provides mutual and common
notions of language components and the different forms of lan-
guage composition that are valid in both the textual and the

16 Butting et al.

graphical technological spaces. Other studies (Maro et al. 2015;
Engelen & van den Brand 2010) propose ways to facilitate
model transformations by providing both a textual and a graphi-
cal notation. On the other hand, we propose ways to compose
languages using language components that can be exclusively
used in the individual technological spaces, meaning the con-
cepts can be interchangeably used in the textual and graphical
spaces. In the projectional space, a model can be projected using
various notations, including textual, graphical, or a combination
of both (Voelter 2010). Therefore, the aspects described in our
study also apply to this technological space.

Graphical modeling and UML tools such as Enterprise Ar-
chitect (Enterprise Architect 2022), IBM Engineering Systems
Design Rhapsody (IBM Rhapsody 2022), and MetaEdit+ (Tolva-
nen & Rossi 2003) have been evaluated using a variety of pa-
rameters intended to study the reusability of language com-
ponents (Khaled 2009; Ozkaya 2019). Textual language
workbenches such as MontiCore (Hölldobler et al. 2021),
Spoofax (Kats & Visser 2010), EMFText (Heidenreich et al.
2009), and Xtext (Efftinge & Völter 2006) allow text-based
modeling language development and have also been evaluated
for modular language development (Erdweg et al. 2013).

In studies on pattern-based modeling (Bottoni et al. 2010),
research approaches provide language-independent formaliza-
tion of a pattern to assist in the composition and analysis of
conflicts expressed in a textual form. The concept of reusabil-
ity has also been discussed through generic model transfor-
mations (Sánchez Cuadrado et al. 2011) where templates are
defined to map the concepts with their meta-models. Certain
languages can also be defined through multiple levels of mod-
eling. Such kinds of multi-level modeling paradigms (Lara
et al. 2014) achieve separation of concerns across different
stages in language development and usage of more complex
languages. In their paper, (Butting et al. 2022) take a deeper
look into composition aspects of a textual language, which
can be described by referring to model element names in other
languages using strongly kind-typed symbol tables. In the graph-
ical space, (Gupta et al. 2021) provide a detailed look into how
languages are developed in the industry for a variety of software
and system domains and how the reusability of graphical lan-
guage components is vital in reducing repetitive efforts needed
to compose graphical DSMLs in the large.

10. Conclusions

As problems in various domains grow in complexity, so does
the need for describing models in different technological spaces
using concepts of reusability and modularization in the form of
language components. Individual technological spaces present
individual definitions and notions of language components, and
their respective synonyms are often vendor-locked or tied to spe-
cific language workbenches or graphical modeling tools. Within
this paper, we explore the individual definitions for the notion
of language components in two technological spaces, textual
and graphical, using language workbenches and modeling tools
that support language development and language composition.
We also investigate the similarities and differences between the

concepts in these two technological spaces and provide mutual
definitions and notions of language components and how they
can be composed into complex languages. Our approach is
described and validated in the technological spaces of textual
and graphical modeling. In the textual space, we explored the
composition of languages primarily using language aggrega-
tion approaches via a shared grammar, a unifying grammar,
resolvers, and strongly kind-typed symbol table files. In the
graphical space, we explored the composition of languages pri-
marily using language embedding approaches by embedding
an embedded language into a host language. To ensure that the
concepts of language components and the described forms of
composition are valid in both these technological spaces, we
described mutual definitions and notions that ultimately address
cross-cutting concerns of reusability and modularization. We
realized language components in the textual space by defining a
(potentially incomplete) language using a context-free grammar
that is configured with a hook point, at which language compo-
nents can be composed to develop a complex language. In the
graphical space, we described these language components as
UML or SysML stereotypes that are configured with extensions
to ensure that language constructs can be embedded into a host
language. The realization in these technological spaces has been
demonstrated and validated with two simple yet commonly used
language examples, use cases and actors that perform certain
tasks. Using language components from different languages in
different technological spaces to compose complex languages
is interesting for both researchers and practitioners. Software
artifacts should be easily transferable to the individual language
workbenches or graphical modeling tools to prevent building a
new language from scratch every time that consists of similar
syntax and semantics, primarily to assist in software product
line engineering. Further, this is beneficial in developing a
family of languages with reusable units that alleviates any cross-
cutting concerns. While the concepts have been described using
MontiCore, a textual language workbench, and MagicDraw,
a graphical modeling tool, the results of this study show that
these concepts can be applied to language workbenches and
modeling tools that support language development. As part of
further work, we intend to extend and validate our approaches
to other modeling tools and language workbenches to provide a
more holistic way of describing the mutual notions of language
composition. We believe describing notions of language com-
ponents and language composition, in general, is beneficial to
language engineers in composing complex languages or fami-
lies of languages that are reusable and can be the foundation for
language reuse across different technological spaces.

References

Arnold, K., Gosling, J., & Holmes, D. (2000). The Java
Programming Language (3rd ed.). USA: Addison-Wesley
Longman Publishing Co., Inc. Retrieved from https://dl.acm
.org/doi/10.5555/556709 doi: 10.5555/556709

Bertolotti, F., Cazzola, W., & Favalli, L. (2023). On the
granularity of linguistic reuse. Journal of Systems and Soft-

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 17

https://dl.acm.org/doi/10.5555/556709
https://dl.acm.org/doi/10.5555/556709

ware, 202, 111704. Retrieved from https://doi.org/10.1016/
j.jss.2023.111704 doi: 10.1016/j.jss.2023.111704

Bottoni, P., Guerra, E., & de Lara, J. (2010). A language-
independent and formal approach to pattern-based modelling
with support for composition and analysis. Inf. Softw. Tech-
nol., 52(8), 821–844. Retrieved from https://doi.org/10.1016/
j.infsof.2010.03.005 doi: 10.1016/j.infsof.2010.03.005

Broy, M., Huber, F., Paech, B., Rumpe, B., & Spies, K. (1998).
Software and System Modeling Based on a Unified Formal
Semantics. In Workshop on Requirements Targeting Software
and Systems Engineering (RTSE’97) (p. 43-68). Springer.
Retrieved from https://doi.org/10.1007/10692867_2 doi:
10.1007/10692867_2

Broy, M., & Rumpe, B. (2007, Februar). Modulare hierar-
chische Modellierung als Grundlage der Software- und Sys-
tementwicklung. Informatik-Spektrum, 30(1), 3-18. Re-
trieved from https://doi.org/10.1007/s00287-006-0124-6 doi:
10.1007/s00287-006-0124-6

Butting, A. (2023). Systematic Composition of Language
Components in MontiCore. Shaker Verlag. Retrieved from
http://www.se-rwth.de/phdtheses/Diss-Butting-Systematic
-Composition-of-Language-Components-in-MontiCore.pdf

Butting, A., Eikermann, R., Hölldobler, K., Jansen, N., Rumpe,
B., & Wortmann, A. (2020, October). A Library of Literals,
Expressions, Types, and Statements for Compositional Lan-
guage Design. Special Issue dedicated to Martin Gogolla on
his 65th Birthday, Journal of Object Technology, 19(3), 3:1-
16. Retrieved from https://doi.org/10.5381/jot.2020.19.3.a4
doi: 10.5381/jot.2020.19.3.a4

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wort-
mann, A. (2018, September). Modeling Language Vari-
ability with Reusable Language Components. In Interna-
tional Conference on Systems and Software Product Line
(SPLC’18). ACM. Retrieved from https://doi.org/10.1145/
3233027.3233037 doi: 10.1145/3233027

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wortmann,
A. (2019, June). Systematic Composition of Independent
Language Features. Journal of Systems and Software, 152, 50-
69. Retrieved from https://doi.org/10.1016/j.jss.2019.02.026
doi: 10.1016/j.jss.2019.02.026

Butting, A., Hölldobler, K., Rumpe, B., & Wortmann, A. (2021,
July). Compositional Modelling Languages with Analytics
and Construction Infrastructures Based on Object-Oriented
Techniques - The MontiCore Approach. In Heinrich, Robert
and Duran, Francisco and Talcott, Carolyn and Zschaler, Stef-
fen (Ed.), Composing Model-Based Analysis Tools (p. 217-
234). Springer. Retrieved from https://doi.org/10.1007/978
-3-030-81915-6_10 doi: 10.1007/978-3-030-81915-6_10

Butting, A., Michael, J., & Rumpe, B. (2022, October). Lan-
guage Composition via Kind-Typed Symbol Tables. Jour-
nal of Object Technology, 21, 4:1-13. Retrieved from
http://dx.doi.org/10.5381/jot.2022.21.4.a5 doi: 10.5381/
jot.2022.21.4.a5

Butting, A., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2020,
October). A Compositional Framework for Systematic
Modeling Language Reuse. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven En-

gineering Languages and Systems (p. 35-46). ACM. Re-
trieved from https://doi.org/10.1145/3365438.3410934 doi:
10.1145/3365438

Butting, A., & Wortmann, A. (2021, January). Language
Engineering for Heterogeneous Collaborative Embedded
Systems. In Model-Based Engineering of Collaborative
Embedded Systems (p. 239-253). Springer. Retrieved
from https://doi.org/10.1007/978-3-030-62136-0_11 doi:
10.1007/978-3-030-62136-0_11

Cheng, B. H. C., Combemale, B., France, R. B., Jézéquel, J.-M.,
& Rumpe, B. (Eds.). (2015). Globalizing Domain-Specific
Languages. Springer. Retrieved from https://doi.org/10.1007/
978-3-319-26172-0 doi: 10.1007/978-3-319-26172-0

Clark, T., Brand, M. v. d., Combemale, B., & Rumpe, B. (2015).
Conceptual Model of the Globalization for Domain-Specific
Languages. In Globalizing Domain-Specific Languages (p. 7-
20). Springer. Retrieved from https://doi.org/10.1007/978-3
-319-26172-0_2 doi: 10.1007/978-3-319-26172-0_2

Combemale, B., Kienzle, J., Mussbacher, G., Barais, O., Bousse,
E., Cazzola, W., . . . Wortmann, A. (2018). Concern-oriented
language development (COLD): Fostering reuse in language
engineering. Comput. Lang. Syst. Struct., 54, 139–155. Re-
trieved from https://doi.org/10.1016/j.cl.2018.05.004 doi:
10.1016/j.cl.2018.05.004

Combemale, B., Kienzle, J., Mussbacher, G., Barais, O., Bousse,
E., Cazzola, W., . . . Wortmann, A. (2018). Concern-Oriented
Language Development (COLD): Fostering Reuse in Lan-
guage Engineering. Computer Languages, Systems & Struc-
tures, 54, 139 - 155. Retrieved from http://www.se-rwth.de/
publications/Concern-Oriented-Language-Development
-COLD-Fostering-Reuse-in-Language-Engineering.pdf

Drux, F., Jansen, N., & Rumpe, B. (2022, October). A Catalog
of Design Patterns for Compositional Language Engineering.
Journal of Object Technology, 21(4), 4:1-13. Retrieved from
https://doi.org/10.5381/jot.2022.21.4.a4 doi: 10.5381/jot
.2022.21.4.a4

Drux, F., Jansen, N., Rumpe, B., & Schmalzing, D.
(2022, June). Embedding Textual Languages in Magic-
Draw. In Modellierung 2022 Satellite Events (p. 32-43).
Gesellschaft für Informatik e.V. Retrieved from https://
doi.org/10.18420/modellierung2022ws-006 doi: 10.18420/
modellierung2022ws-006

Efftinge, S., & Völter, M. (2006). oAW xText: A framework
for textual DSLs. In Workshop on Modeling Symposium at
Eclipse Summit (Vol. 32). Retrieved from http://voelter.de/
data/workshops/EfftingeVoelterEclipseSummit.pdf

Engelen, L., & van den Brand, M. (2010). Integrating tex-
tual and graphical modelling languages. Electronic Notes
in Theoretical Computer Science, 253(7), 105–120. Re-
trieved from https://doi.org/10.1016/j.entcs.2010.08.035 doi:
10.1016/j.entcs.2010.08.035

Enterprise architect. (2022). Retrieved from https://
sparxsystems.com/

Erdweg, S., Giarrusso, P. G., & Rendel, T. (2012). Lan-
guage composition untangled. In Proceedings of the Twelfth
Workshop on Language Descriptions, Tools, and Applica-
tions (pp. 1–8). Retrieved from https://doi.org/10.1145/

18 Butting et al.

https://doi.org/10.1016/j.jss.2023.111704
https://doi.org/10.1016/j.jss.2023.111704
https://doi.org/10.1016/j.infsof.2010.03.005
https://doi.org/10.1016/j.infsof.2010.03.005
https://doi.org/10.1007/10692867_2
https://doi.org/10.1007/s00287-006-0124-6
http://www.se-rwth.de/phdtheses/Diss-Butting-Systematic-Composition-of-Language-Components-in-MontiCore.pdf
http://www.se-rwth.de/phdtheses/Diss-Butting-Systematic-Composition-of-Language-Components-in-MontiCore.pdf
https://doi.org/10.5381/jot.2020.19.3.a4
https://doi.org/10.1145/3233027.3233037
https://doi.org/10.1145/3233027.3233037
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.1007/978-3-030-81915-6_10
https://doi.org/10.1007/978-3-030-81915-6_10
http://dx.doi.org/10.5381/jot.2022.21.4.a5
https://doi.org/10.1145/3365438.3410934
https://doi.org/10.1007/978-3-030-62136-0_11
https://doi.org/10.1007/978-3-319-26172-0
https://doi.org/10.1007/978-3-319-26172-0
https://doi.org/10.1007/978-3-319-26172-0_2
https://doi.org/10.1007/978-3-319-26172-0_2
https://doi.org/10.1016/j.cl.2018.05.004
http://www.se-rwth.de/publications/Concern-Oriented-Language-Development-COLD-Fostering-Reuse-in-Language-Engineering.pdf
http://www.se-rwth.de/publications/Concern-Oriented-Language-Development-COLD-Fostering-Reuse-in-Language-Engineering.pdf
http://www.se-rwth.de/publications/Concern-Oriented-Language-Development-COLD-Fostering-Reuse-in-Language-Engineering.pdf
https://doi.org/10.5381/jot.2022.21.4.a4
https://doi.org/10.18420/modellierung2022ws-006
https://doi.org/10.18420/modellierung2022ws-006
http://voelter.de/data/workshops/EfftingeVoelterEclipseSummit.pdf
http://voelter.de/data/workshops/EfftingeVoelterEclipseSummit.pdf
https://doi.org/10.1016/j.entcs.2010.08.035
https://sparxsystems.com/
https://sparxsystems.com/
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2427048.2427055

2427048.2427055 doi: 10.1145/2427048
Erdweg, S., Storm, T. v. d., Völter, M., Boersma, M., Bosman,

R., Cook, W. R., . . . others (2013). The state of the art
in language workbenches. In International Conference on
Software Language Engineering (pp. 197–217). Retrieved
from https://doi.org/10.1007/978-3-319-02654-1_11 doi:
10.1007/978-3-319-02654-1_11

Forsythe, Charles. (2013). Instant FreeMarker Starter. Packt
Publishing Ltd.

Gupta, R., Jansen, N., Regnat, N., & Rumpe, B. (2022a, Oc-
tober). Design Guidelines for Improving User Experience
in Industrial Domain-Specific Modelling Languages. In Pro-
ceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion
Proceedings. Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/3550356.3561595 doi:
10.1145/3550356

Gupta, R., Jansen, N., Regnat, N., & Rumpe, B. (2022b,
June). Implementation of the SpesML Workbench in Mag-
icDraw. In Modellierung 2022 Satellite Events (p. 61-
76). Gesellschaft für Informatik. Retrieved from https://
doi.org/10.18420/modellierung2022ws-008 doi: 10.18420/
modellierung2022ws-008

Gupta, R., Kranz, S., Regnat, N., Rumpe, B., & Wortmann, A.
(2021, May). Towards a Systematic Engineering of Indus-
trial Domain-Specific Languages. In 2021 IEEE/ACM 8th
International Workshop on Software Engineering Research
and Industrial Practice (SE&IP) (p. 49-56). IEEE. Retrieved
from https://doi.org/10.1109/SER-IP52554.2021.00016 doi:
10.1109/SER-IP52554.2021.00016

Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez,
A., Rumpe, B., Völkel, S., & Wortmann, A. (2015). Inte-
gration of Heterogeneous Modeling Languages via Exten-
sible and Composable Language Components. In Model-
Driven Engineering and Software Development Conference
(MODELSWARD’15) (p. 19-31). SciTePress. Retrieved from
https://doi.org/10.5220/0005225000190031 doi: 10.5220/
0005225000190031

Harel, D., & Rumpe, B. (2004, October). Meaningful Modeling:
What’s the Semantics of ”Semantics”? IEEE Computer,
37(10), 64-72. Retrieved from https://doi.org/10.1109/MC
.2004.172 doi: 10.1109/MC.2004.172

Heidenreich, F., Johannes, J., Karol, S., Seifert, M., & Wende,
C. (2009). Derivation and refinement of textual syntax
for models. In European Conference on Model Driven
Architecture-Foundations and Applications (pp. 114–129).
Retrieved from https://doi.org/10.1007/978-3-642-02674-4_9
doi: 10.1007/978-3-642-02674-4_9

Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., &
Völkel, S. (2009, July). Scaling-Up Model-Based-
Development for Large Heterogeneous Systems with
Compositional Modeling. In Conference on Software Engi-
neeering in Research and Practice (SERP’09) (p. 172-176).
Retrieved from http://www.se-rwth.de/publications/
Scaling-Up-Model-Based-Development-for-Large
-Heterogeneous-Systems-with-Compositional-Modeling.pdf

Hölldobler, K., Kautz, O., & Rumpe, B. (2021). Monti-

Core Language Workbench and Library Handbook: Edition
2021. Shaker Verlag. Retrieved from https://doi.org/10.2370/
9783844080100 doi: 10.2370/9783844080100

Hölldobler, K., Rumpe, B., & Wortmann, A. (2018). Software
Language Engineering in the Large: Towards Composing
and Deriving Languages. Computer Languages, Systems
& Structures, 54, 386-405. Retrieved from https://doi.org/
10.1016/j.cl.2018.08.002 doi: 10.1016/j.cl.2018.08.002

Ibm rhapsody. (2022). Retrieved from https://www.ibm.com/
products/systems-design-rhapsody/

Kats, L. C., & Visser, E. (2010). The Spoofax language work-
bench: rules for declarative specification of languages and
IDEs. In Proceedings of the ACM international conference on
Object oriented programming systems languages and applica-
tions (pp. 444–463). Retrieved from https://doi.org/10.1145/
1932682.1869497 doi: 10.1145/1932682.1869497

Khaled, L. (2009). A comparison between UML tools. In
2009 second international conference on environmental and
computer science (pp. 111–114). Retrieved from https://doi
.org/10.1109/ICECS.2009.38 doi: 10.1109/ICECS.2009.38

Krahn, H., Rumpe, B., & Völkel, S. (2006). Roles in Software
Development using Domain Specific Modelling Languages.
In Domain-Specific Modeling Workshop (DSM’06) (p. 150-
158). Jyväskylä University, Finland. Retrieved from
http://www.se-rwth.de/staff/rumpe/publications20042008/
Roles-in-Software-Development-using-Domain-Specific
-Modeling-Languages.pdf

Lara, J. D., Guerra, E., & Cuadrado, J. S. (2014, dec). When and
How to Use Multilevel Modelling. ACM Trans. Softw. Eng.
Methodol., 24(2). Retrieved from https://doi.org/10.1145/
2685615 doi: 10.1145/2685615

Leduc, M., Degueule, T., Van Wyk, E., & Combemale, B.
(2020). The software language extension problem. Soft-
ware and Systems Modeling, 19, 263–267. Retrieved from
https://doi.org/10.1007/s10270-019-00772-7 doi: 10.1007/
s10270-019-00772-7

Magicdraw enterprise. (2022). Retrieved from
https://www.3ds.com/products-services/catia/products/
no-magic/magicdraw/

Maro, S., Steghöfer, J.-P., Anjorin, A., Tichy, M., & Gelin, L.
(2015). On integrating graphical and textual editors for a
UML profile based domain specific language: an industrial
experience. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering
(pp. 1–12). Retrieved from https://doi.org/10.1145/2814251
.2814253 doi: 10.1145/2814251

Méndez-Acuña, D., Galindo, J. A., Degueule, T., Combemale,
B., & Baudry, B. (2016). Leveraging software product
lines engineering in the development of external dsls: A
systematic literature review. Computer Languages, Systems
& Structures, 46, 206–235. Retrieved from https://doi.org/
10.1016/j.cl.2016.09.004 doi: 10.1016/j.cl.2016.09.004

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and
how to develop domain-specific languages. ACM computing
surveys (CSUR), 37(4), 316–344. Retrieved from https://
doi.org/10.1145/1118890.1118892 doi: 10.1145/1118890
.1118892

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 19

https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1145/3550356.3561595
https://doi.org/10.18420/modellierung2022ws-008
https://doi.org/10.18420/modellierung2022ws-008
https://doi.org/10.1109/SER-IP52554.2021.00016
https://doi.org/10.5220/0005225000190031
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/978-3-642-02674-4_9
http://www.se-rwth.de/publications/Scaling-Up-Model-Based-Development-for-Large-Heterogeneous-Systems-with-Compositional-Modeling.pdf
http://www.se-rwth.de/publications/Scaling-Up-Model-Based-Development-for-Large-Heterogeneous-Systems-with-Compositional-Modeling.pdf
http://www.se-rwth.de/publications/Scaling-Up-Model-Based-Development-for-Large-Heterogeneous-Systems-with-Compositional-Modeling.pdf
https://doi.org/10.2370/9783844080100
https://doi.org/10.2370/9783844080100
https://doi.org/10.1016/j.cl.2018.08.002
https://doi.org/10.1016/j.cl.2018.08.002
https://www.ibm.com/products/systems-design-rhapsody/
https://www.ibm.com/products/systems-design-rhapsody/
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1109/ICECS.2009.38
https://doi.org/10.1109/ICECS.2009.38
http://www.se-rwth.de/staff/rumpe/publications20042008/Roles-in-Software-Development-using-Domain-Specific-Modeling-Languages.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Roles-in-Software-Development-using-Domain-Specific-Modeling-Languages.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Roles-in-Software-Development-using-Domain-Specific-Modeling-Languages.pdf
https://doi.org/10.1145/2685615
https://doi.org/10.1145/2685615
https://doi.org/10.1007/s10270-019-00772-7
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://doi.org/10.1145/2814251.2814253
https://doi.org/10.1145/2814251.2814253
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892

Meyers, B., Cicchetti, A., Guerra, E., & De Lara, J. (2012).
Composing textual modelling languages in practice. In
Proceedings of the 6th International Workshop on Multi-
Paradigm Modeling (pp. 31–36). Retrieved from https://
doi.org/10.1145/2508443.2508449 doi: 10.1145/2508443
.2508449

Orloff, R. W., Harland, D. M., Orloff, R. W., & Harland, D. M.
(2006). Apollo 13: The seventh manned mission: in-flight
abort 11–17 April 1970. Apollo: The Definitive Source-
book, 361–392. Retrieved from https://doi.org/10.1007/
0-387-37624-0_16 doi: 10.1007/0-387-37624-0_16

Ozkaya, M. (2019). Are the uml modelling tools powerful
enough for practitioners? a literature review. IET Software,
13(5), 338–354. Retrieved from https://doi.org/10.1049/iet
-sen.2018.5409 doi: 10.1049/iet-sen.2018.5409

Rumpe, B. (2016). Modeling with UML: Language, Concepts,
Methods. Springer International. Retrieved from https://
doi.org/10.1007/978-3-319-33933-7 doi: 10.1007/978-3
-319-33933-7

Rumpe, B., & Wortmann, A. (2018). Abstraction and Re-
finement in Hierarchically Decomposable and Underspec-
ified CPS-Architectures. In Lohstroh, Marten and Der-
ler, Patricia Sirjani, Marjan (Ed.), Principles of Model-
ing: Essays Dedicated to Edward A. Lee on the Occasion
of His 60th Birthday (p. 383-406). Springer. Retrieved
from https://doi.org/10.1007/978-3-319-95246-8_23 doi:
10.1007/978-3-319-95246-8_23

Sánchez Cuadrado, J., Guerra, E., & Lara, J. d. (2011).
Generic model transformations: write once, reuse every-
where. In International Conference on Theory and Prac-
tice of Model Transformations (pp. 62–77). Retrieved from
https://doi.org/10.1007/978-3-642-21732-6_5 doi: 10.1007/
978-3-642-21732-6_5

Scheidgen, M. (2008). Textual modelling embedded into graph-
ical modelling. In European Conference on Model Driven
Architecture-Foundations and Applications (pp. 153–168).
Retrieved from https://doi.org/10.1007/978-3-540-69100-6
_11 doi: 10.1007/978-3-540-69100-6_11

Seidewitz, E. (2014). UML with meaning: executable mod-
eling in foundational UML and the Alf action language. In
Proceedings of the 2014 ACM SIGAda annual conference
on High integrity language technology (pp. 61–68). Re-
trieved from https://doi.org/10.1145/2692956.2663187 doi:
10.1145/2692956.2663187

Spinellis, D. (2001). Notable design patterns for domain-
specific languages. Journal of systems and software,
56(1), 91–99. Retrieved from https://doi.org/10.1016/S0164
-1212(00)00089-3 doi: 10.1016/S0164-1212(00)00089-3

Sprinkle, J., Rumpe, B., Vangheluwe, H., & Karsai, G. (2010).
Metamodelling: State of the Art and Research Challenges. In
Model-Based Engineering of Embedded Real-Time Systems
Workshop (MBEERTS’10) (p. 57-76). Springer. Retrieved
from https://doi.org/10.1007/978-3-642-16277-0_3 doi: 10
.1007/978-3-642-16277-0_3

Şutîi, A. M., van den Brand, M., & Verhoeff, T. (2018). Ex-
ploration of modularity and reusability of domain-specific
languages: an expression dsl in metamod. Computer Lan-

guages, Systems & Structures, 51, 48–70. Retrieved from
https://doi.org/10.1016/j.cl.2017.07.004 doi: 10.1016/j.cl
.2017.07.004

Talcott, C., Ananieva, S., Bae, K., Combemale, B., Heinrich, R.,
Hills, M., . . . Vangheluwe, H. (2021, July). Composition of
Languages, Models, and Analyses. In Heinrich, Robert and
Duran, Francisco and Talcott, Carolyn and Zschaler, Steffen
(Ed.), Composing Model-Based Analysis Tools (p. 45-70).
Springer. Retrieved from https://doi.org/10.1007/978-3-030
-81915-6_4 doi: 10.1007/978-3-030-81915-6_4

Tiwari, S., & Gupta, A. (2015). A systematic literature review
of use case specifications research. Information and Software
Technology, 67, 128–158. Retrieved from https://doi.org/
10.1016/j.infsof.2015.06.004 doi: 10.1016/j.infsof.2015.06
.004

Tolvanen, J.-P., & Kelly, S. (2005). Defining domain-specific
modeling languages to automate product derivation: Col-
lected experiences. In International conference on software
product lines (pp. 198–209). Retrieved from https://doi.org/
10.1007/11554844_22 doi: 10.1007/11554844_22

Tolvanen, J.-P., & Rossi, M. (2003). Metaedit+ defining and us-
ing domain-specific modeling languages and code generators.
In Companion of the 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages,
and applications (pp. 92–93). Retrieved from https://doi.org/
10.1145/949344.949365 doi: 10.1145/949344.949365

Vallecillo, A. (2010). On the combination of domain specific
modeling languages. In European Conference on Modelling
Foundations and Applications (pp. 305–320). Retrieved
from https://doi.org/10.1007/978-3-642-13595-8_24 doi:
10.1007/978-3-642-13595-8_24

Voelter, M. (2010). Implementing feature variability for mod-
els and code with projectional language workbenches. In
Proceedings of the 2nd International Workshop on Feature-
Oriented Software Development (pp. 41–48). Retrieved from
https://doi.org/10.1145/1868688.1868695 doi: 10.1145/
1868688.1868695

Voelter, M. (2011). Language and IDE Modularization and
Composition with MPS. In International Summer School
on Generative and Transformational Techniques in Software
Engineering (pp. 383–430). Retrieved from https://doi.org/
10.1007/978-3-642-35992-7_11 doi: 10.1007/978-3-642
-35992-7_11

Voelter, M., & Pech, V. (2012). Language Modularity with
the MPS Language Workbench. In 2012 34th International
Conference on Software Engineering (ICSE) (pp. 1449–1450).
Retrieved from https://doi.org/10.1109/ICSE.2012.6227070
doi: 10.1109/ICSE.2012.6227070

Völter, M., & Visser, E. (2010). Language extension and
composition with language workbenches. In Proceedings
of the ACM international conference companion on Object
oriented programming systems languages and applications
companion (pp. 301–304). Retrieved from https://doi.org/
10.1145/1869542.1869623 doi: 10.1145/1869542.1869623

Wirth, N. (1996). Extended Backus-Naur Form (EBNF).
ISO/IEC, 14977(2996), 2–21.

20 Butting et al.

https://doi.org/10.1145/2508443.2508449
https://doi.org/10.1145/2508443.2508449
https://doi.org/10.1007/0-387-37624-0_16
https://doi.org/10.1007/0-387-37624-0_16
https://doi.org/10.1049/iet-sen.2018.5409
https://doi.org/10.1049/iet-sen.2018.5409
https://doi.org/10.1007/978-3-319-33933-7
https://doi.org/10.1007/978-3-319-33933-7
https://doi.org/10.1007/978-3-319-95246-8_23
https://doi.org/10.1007/978-3-642-21732-6_5
https://doi.org/10.1007/978-3-540-69100-6_11
https://doi.org/10.1007/978-3-540-69100-6_11
https://doi.org/10.1145/2692956.2663187
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1007/978-3-642-16277-0_3
https://doi.org/10.1016/j.cl.2017.07.004
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1016/j.infsof.2015.06.004
https://doi.org/10.1016/j.infsof.2015.06.004
https://doi.org/10.1007/11554844_22
https://doi.org/10.1007/11554844_22
https://doi.org/10.1145/949344.949365
https://doi.org/10.1145/949344.949365
https://doi.org/10.1007/978-3-642-13595-8_24
https://doi.org/10.1145/1868688.1868695
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1145/1869542.1869623
https://doi.org/10.1145/1869542.1869623

About the authors
Arvid Butting is a researcher working on the systematic com-
position of language components in the language workbench
MontiCore. His research interests cover software language engi-
neering, software architectures, and model-driven development.
You can contact him at butting@se-rwth.de.

Rohit Gupta is a researcher in model-based software and sys-
tems engineering at Siemens AG in Munich, Germany. You can
contact him at rg.gupta@siemens.com.

Nico Jansen is a research assistant at the Department of Soft-
ware Engineering at RWTH Aachen University. His research
interests cover software language engineering, software archi-
tectures, and model-based software and systems engineering.
You can contact him at jansen@se-rwth.de.

Nikolaus Regnat is a researcher and a key expert in model-
based software and systems engineering at Siemens AG
in Munich, Germany. You can contact him at niko-
laus.regnat@siemens.com.

Bernhard Rumpe is a professor heading the Software Engineer-
ing department at the RWTH Aachen University, Germany. His
main interests are rigorous and practical software and system
development methods based on adequate modelling techniques.
This includes agile development methods as well as model-
engineering based on UML/SysML-like notations and domain-
specific languages. You can contact him at rumpe@se-rwth.de
or visit https://www.se-rwth.de/staff/rumpe/.

Towards Modular Development of Reusable Language Components for DSMLs in MagicDraw and MontiCore 21

mailto:butting@se-rwth.de?subject=Your paper "Towards Modular Development of Reusable Language Components for Domain-Specific Modeling Languages in the MagicDraw and MontiCore Ecosystems"
mailto:rg.gupta@siemens.com?subject=Your paper "Towards Modular Development of Reusable Language Components for Domain-Specific Modeling Languages in the MagicDraw and MontiCore Ecosystems"
mailto:jansen@se-rwth.de?subject=Your paper "Towards Modular Development of Reusable Language Components for Domain-Specific Modeling Languages in the MagicDraw and MontiCore Ecosystems"
mailto:nikolaus.regnat@siemens.com?subject=Your paper "Towards Modular Development of Reusable Language Components for Domain-Specific Modeling Languages in the MagicDraw and MontiCore Ecosystems"
mailto:nikolaus.regnat@siemens.com?subject=Your paper "Towards Modular Development of Reusable Language Components for Domain-Specific Modeling Languages in the MagicDraw and MontiCore Ecosystems"
mailto:rumpe@se-rwth.de?subject=Your paper "Towards Modular Development of Reusable Language Components for Domain-Specific Modeling Languages in the MagicDraw and MontiCore Ecosystems"
https://www.se-rwth.de/staff/rumpe/

