
Towards Model and Language Composition

Bernhard Rumpe
Software Engineering

RWTH Aachen
Aachen, Germany

http://www.se-rwth.de/

ABSTRACT
Programming languages have one essential advantage over
modeling languages: they have a well-defined and under-
stood mechanism for composition that comes along with a
good encapsulation of internal details. This is essential when
large and complex systems need to be developed. In this
extended abstract we discuss the problems of composition
techniques for models and compare them to the composi-
tion of program components.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development, Mod-
eling Methodologies, Model Languages

General Terms
Design, Languages

Keywords
Model Composition, Encapsulation, Model Interface

1. CURRENT SITUATION
Composition mechanisms and in particular the possibility to
decompose a system into smaller components for indepen-
dent development is an essential capability that today’s pro-
gramming languages –like Java– provide. Modularity and
composition mechanisms are essential for the ability to de-
velop large, complex systems in distributed teams and in
parallel [11]. They allow to reuse components from libraries
and they are the basis for efficient, incremental compilation,
generation and also many forms of analysis.

It is interesting to analyze how programming languages deal
with composition. Formally, composition is a mechanism
that takes two given artifacts A, B and composes them
based on their interfaces, but encapsulates all internals not
visible in the interface. This is a core principle of object
orientation as well as of function theory. In programming
languages we have an important coincidence between the

component (resp. class or module) that has an explicit in-
terface and an encapsulated implementation and the artifact
(i.e. file) that contains that component. While we logically
compose the components, the tools de facto compose the ar-
tifacts. Furthermore, the composition is not executed on the
sources, but very late on the compiled binaries. So compo-
sition remains a logical form of combining components that
consistently maps to the late binding of the binaries. As
a consequence compilers can incrementally recompile from
changed sources, without touching the whole project. That
way compilers are efficient enough to actually allow Agile
Methods like XP [2] and Scrum [12].

So what is different in the modeling domain? Indeed we
have quite a number of differences:

• We do not deal with a single form of model, instead
we have heterogenous, composed languages, such as the
UML, because modeling uses various viewpoints for
specific kinds of information. These viewpoints are
not capable of describing all aspects of the system.
Heterogeneity is a natural consequence.

• Some of the modeling languages do have a notion of in-
terface. For example state machines typically provide
input and output as an interface, while states remain
locally encapsulated. Other modeling languages, such
as class diagrams, do not provide a useful notion of
interface for the diagram at all. The idea of interfaces
is not very elaborated in the modeling domain. It is
also important to distinguish between the interface of a
model and the interface of the elements that the model
describes. This can be easily mixed up, for example in
class diagrams.

• Current modeling tool infrastructures try to load and
manage all models in their space at the same time.
This scales up only to a certain extent and makes mod-
eling tools very slow, such that agile development is not
possible anymore. Incremental development does not
play a major role as late binding of generated code is
not applied.

• The classical notion of artifact is not very present in
the modeling domain, as many tools only deal with one
big model that they store in the database. As model
elements are connected very much, it is impossible to
develop reusable, independent modeling artifacts and

4

[Rum13] B. Rumpe 
Towards Model and Language Composition. 
In: GlobalDSL '13 Proceedings of the First Workshop on the Globalization of Domain Specific Languages, ACM New York, NY, USA ©2013, pages 4-7, ISBN: 978-1-4503-2043-6. 
www.se-rwth.de/publications



libraries. Model libraries with reusable assets only ex-
ist, if interfaces of models and references to these in-
terfaces become part of the modeling language.

• Reuse of models is only in its infancy. First approaches
to collect models like ReMoDD [1] experience problems
of reuse because of missing techniques to incorporate
foreign models, but also due to a lack of a standard for
model interchange between tools.

These are major inhibitors that have not allowed us to come
up with solid and generally accepted notion of composition
for models and modeling languages so far. Instead a number
of approaches have suggested to use techniques like model
weaving and merging [4, 7], which are well known from as-
pect oriented programming, but disregard the idea of encap-
sulation.

However, as we see more and more projects using modeling
technologies, it is time to actually refine and enhance com-
position concepts on the modeling languages that we will
use in the future. In the remainder of this paper, we there-
fore classify a number of questions needed to be handled to
achieve model composition and take a look at the notion of
interface.

2. FORMS OF MODEL COMPOSITION
Composition is an often used term in Computer Science. It
dates back to mathematical function composition and was
reinterpreted by object composition that basically deals with
data structures and also data type composition as a combi-
nation of both in the abstract data type domain.

we define model composition as the derivation of a model
C = A⊗B from two base models A and B using an appropri-
ate composition operator ⊗. A core element of composition
is the existence of two artifacts A, B with a sound mean-
ing, precisely defined interfaces and internals that are not
to be exhibited to the outside. The composition C = A⊗B
glues both artifacts together on their common interfaces,
such that they have a combined meaning.

We can distinguish between the following forms of composi-
tion and the questions they try to tackle:

Syntactic composition:
How does A⊗B actually look like?

Semantic composition:
What does A⊗B mean?

Methodical composition:
How to develop the models A and B such that the
resulting composition conforms to the desired require-
ments?

Organizational composition:
How to decompose the development tasks into parallel
jobs for A and B when in a large team?.

Technical composition:
Is incremental, artifact-individual compilation and late
binding of the code from A and B possible?

As an aside it is necessary to clarify whether composition
is commutative (A ⊗ B = B ⊗ A) and associative (order is
irrelevant in A ⊗ B ⊗ C). That means we do not have to
explicitly determine the order of composition, but can leave
this open to generators and compilers.

2.1 Syntactic Composition
Syntactic composition is usually applied, when A and B are
used as views and are syntactically integrated and woven
together to come up with a complete model C. As a conse-
quence a tooling infrastructure even the smallest change of a
single model element in one of the views leads to a complete
re-generation and thus takes an unnecessary long time.

It is then also quite common to allow the user to read and
modify the composed model C. This is actually a bad idea,
as the original models are then out of sync and can never be
adapted and reused again. This is quite similar to allowing
programmers to adapt object code.

2.2 Semantic Composition
Semantics as understood in [6] deals with the question, what
a composed model means by deriving that from the seman-
tics of the composition operator and the semantics of the
individual models. Thus having a semantics for the compo-
sition allows us to uniquely understand what the result of a
composition is. Different tool vendors can then implement
their own, optimized, but semantically equivalent versions
of the composition.

Please note that semantic composition does not mean that
the composition is implemented exactly that way. Instead it
is used to understand, but not having to explicitly execute
the composition.

2.3 Methodical Composition
Composition of individual components is actually mainly
about being able to decompose the overall problem state-
ments early in the development process. It is important to
be able to do the decomposition of the requirements during
the process in a robust and stable way such that the result-
ing composition of solutions does what is desired. Among
others, coherence and decoupling guidelines play a role.

2.4 Organizational Composition
When it is clear how to decompose a (not yet developed)
model, we should then be able to organize our team and
project in such a way that the decomposed components can
be developed independently, but ideally with a continuous
integration process behind. Agile methods show how that
works using early testing. Modeling technologies can add
early analysis and consistency checks.

2.5 Technical Composition
When we know what composition actually means and when
we are able to refine our modeling languages in such a way
that interfaces become an intrinsic part of the models, then
we should be able to delay the composition of solution mod-
els after code respectively tests are generated.

This does not only create a tremendous speed up, as small
changes than just lead to small re-generations. It also allows

5



us to come up with pre-compiled code from model libraries
that can be used without the need to access to the source
models. This was a major breakthrough for programming
languages and is essential for further success of modeling
technologies.

One particular problem to be solved is the lack of coincidence
between the artifacts’ name and place in the directory versus
the name of the components described in the artifacts.

3. LANGUAGE COMPOSITION VERSUS
MODEL COMPOSITION

Above we strongly argue that model composition does not
mean to execute the composition on an syntactic level.

This is different, when we take heterogeneous languages into
consideration. In modeling it is often the case that even if an
artifact belongs to one modeling language, such as a class
diagram or a statechart, we find embedded elements from
other modeling languages, such as OCL expressions, code
statements and others.

We do not regard this to be model composition in a strict
form, as there are neither a composition operator nor have
the sub-artifacts ever been developed independently. In-
stead we see a single model artifact belongs to a composed
language.

A modeling language composition is a combination of sub-
languages into one complete language, where the individual
sub-artefacts adhere to their sub-languages and the complete
artefact derives its syntax and semantics from the composed
sub-languages [13].

Interestingly language composition shares many of its prob-
lems with model composition such that the above questions
(with the exception of syntactic composition) equally apply.

4. INTERFACES OF MODELS
Within our ongoing work, we have collected experiences
from more than 30 domain specific languages, a larger subset
of the UML that contains sequence diagrams, statecharts,
class diagrams and object diagrams and the OCL, as well as
the programming language Java. We developed the hypoth-
esis that interfaces between modeling artifacts always rely
on names (or their anonymous colleagues, the identifiers).
We are still searching, but are rather sure that this will at
least be valid in a majority of cases.

Interfaces are imported, exported and partially also their
elements passed through (imported and re-exported). An
artifact may export several interfaces. We know e.g. from
programming languages that an interface can be for sub-
classes, public or local to the package.

An interface contains names and these names consist of dif-
ferent kinds of elements. In programming languages we do
have the kinds: class, type, attribute, method, constant.
The UML e.g. additionally provides many more kinds like
state, message or activity. Domain specific languages may
have domain specific kinds of names. It would be wrong to
describe interfaces only on the level of a target programming

language. A more general mechanism of interface with dif-
ferent kinds of names is necessary and realized in MontiCore
[10, 9, 8].

For heterogeneous languages we need mappings between the
interfaces, as it may be that special kinds of elements are
exported by one language, but unknown by another. A good
example for this is the kind ”state” in state machines that
does not exist in Java. But we also need to be aware that this
form of composition using mappings between the interfaces
of heterogeneous languages is not necessarily unique. For
example language variability [5, 3] allows us to map state
T to programming constructs such as a constant T of an
enumeration, or into a class with the same name as indicated
by the state pattern or a method isinT() to check the status.
In OCL state T needs no mapping as OCL is state-aware
though built-in function oclIsInState().

5. SUMMARY
Composition of models in heterogeneous modeling environ-
ments is important for an even more successful use of mod-
eling technology in software development projects. Compo-
sition of models is, however, currently not very well elabo-
rated, partly because lots of good ideas from the program-
ming domain have not been carried over to the modeling
domains yet.

Composition influences how languages will look like. This
might lead to an enhanced version of the UML as well as
improved tooling infrastructures for the UML and domain
specific languages.

6. REFERENCES
[1] ReMoDD The Repository for Model-Driven

Development, 2013.
http://www.cs.colostate.edu/remodd/, [Online;
accessed 10-June-2013].

[2] K. Beck. Extreme Programming Explained. Embrace
Change. Addison-Wesley, 1999.

[3] M. V. Cengarle, H. Grönniger, and B. Rumpe.
Variability within modeling language definitions. In
Model Driven Engineering Languages and Systems
(MODELS) 2009, number 5795 in LNCS, Denver,
Colorado, USA, 2009. Springer.

[4] M. D. Fabro and P. Valduriez. Semi-automatic Model
Integration using Matching Transformations and
Weaving Models. In The 22th Annual ACM SAC, MT
2007, 2007.

[5] H. Grönniger and B. Rumpe. Modeling Language
Variability. In R. Calinescu and E. Jackson, editors,
Foundations of Computer Software, number 6662 in
LNCS, Redmond, Microsoft Research, Mar. 31- Apr.
2, 2011. Springer.

[6] D. Harel and B. Rumpe. Meaningful Modeling:
What’s the Semantics of “Semantics“? Computer,
37(10):64–72, 2004.

[7] F. Heidenreich and H. Lochmann. Using
Graph-Rewriting for Model Weaving in the context of
Aspect-Oriented Product Line Engineering. In First
Workshop on Aspect-Oriented Product Line
Engineering (AOPLE 06), Portland, Oregon, 2006.

[8] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and

6



S. Völkel. An Algebraic View on the Semantics of
Model Composition. In D. H. Akehurst, R. Vogel, and
R. F. Paige, editors, Model Driven Architecture -
Foundations and Applications (ECMDA-FA), number
4530 in LNCS, pages 99–113, Haifa, Israel, June 2007.
Springer.

[9] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[10] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a
Framework for Compositional Development of Domain
Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5):353–372,
September 2010.

[11] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules. Commun. ACM,
15(12):1053–1058, 1972.

[12] K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall, 2002.

[13] S. Völkel. Kompositionale Entwicklung
domänenspezifischer Sprachen. PhD thesis, TU
Braunschweig, 2011.

7




