
Teaching Playground for C&C Language EmbeddedMontiArc
Evgeny Kusmenko, Ievgen Strepkov, Bernhard Rumpe, Michael von Wenckstern

Software Engineering RWTH Aachen University
http://www.se-rwth.de

ABSTRACT
Self-driving vehicles are a very important part of our future. To
inspire students to be involved in this technology we created a web-
playground which allows us to model controllers for a simulator
and almost instantly see the results in a 3D environment. We believe
that visualization will motivate students and make the studying
process more attractive due to gamification. Furthermore, they are
going to study the Component and Connector (C&C) modeling
paradigm. This paper uses EmbeddedMontiArc as C&C language;
but the presented approach can be easily adopted to any other C&C
based language and/or tooling.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Software and its engineering→ Data flow architectures; • Com-
puting methodologies → Online learning settings;

KEYWORDS
C&C, Component and Connector, Tutorial, Playground
ACM Reference Format:
Evgeny Kusmenko, Ievgen Strepkov, Bernhard Rumpe, Michael von Wenck-
stern. 2018. Teaching Playground for C&C Language EmbeddedMontiArc.
In Proceedings of ModComp’18, Federico Ciccozzi, Antonio Cicchetti, and An-
dreas Wortmann (Eds.). ACM, New York, NY, USA, Article 4, 6 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Self-driving vehicles are a very important part of our future and thus
an important research area. To inspire students to be involved in
this future technology we created a web-playground which allows
us to model controllers for a simulator and almost instantly see
the results in a 3D environment. We believe that visualization will
motivate students and make the studying process more attractive
due to gamification [11].

To create an outstanding tutorial platform for C&C models, we
analyzed existing playgrounds and tutorials (also including pro-
gramming languages) in order to understand which tools can be
reused and how we should present the knowledge to students so
that it is easy to understand and well-structured.

C&C models are often used to model software functionalities in
embedded domains such as avionics [8], robotics [18], and auto-
motive [5]. The advantage of C&C models is that their approach

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ModComp’18, October 14th – 16th 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

allows one to hierarchically decompose components as you would
decompose the functionality of complex software systems. C&C
models only allow direct (no hidden) communication via connected
ports. Thus, C&C models consist of components at different levels,
directed and typed ports, and connectors between them. Encap-
sulation and logical decomposition allows efficient development,
modular reuse, and evolution.

EmbeddedMontiArc[13, 14] is a textual domain-specific language
for the modeling of logical functions based on the C&C paradigm.
Thus, its main elements are components and connectors. Each com-
ponent has ports that can be either incoming or outgoing. Through
these ports, components are interconnected. Each port has a unit
and a range. Units are the inherent part of signal types and there-
fore perform the role of preventing the connection of physically
incompatible signals like km/h and kg. The given range of the port
type specifies that an incoming signal must be within specified
boundaries, which prevents potential errors. Furthermore, the Em-
beddedMontiArc language supports generics. It allows creating
generic components for multiple purposes.

A powerful standalone simulator for EmbeddedMontiArc models
called MontiSim already exists [10]. It has a built-in physics en-
gine, creates its road network from OpenStreetMap data and even
provides weather effects. However, due to its multitude of features
it rather aims at expert users rather than newcomers. The set up
procedure is too lengthy to be performed during a lecture and a lot
of configuration is required.

Code sharing between a standalone application and a separate
tutorial is often not convenient. Furthermore, at the moment, there
is no tutorial for the existing simulator which can teach the C&C
paradigm by using EmbeddedMontiArc language step-by-step. Be-
cause of the explained reasons, we decided to develop a completely
new simulator, which takes into account fewer details during the
simulation. While it can manage all basic actions and use a full
version of the existing language EmbeddedMontiArc.

We believe, that the community can benefit from this paper.
We provide two nice tutorials for students and solutions for C&C
models. Due to our modular architecture, the tutorials and the
domain solutions are nearly language independent. Therefore the
models and solutions provided in our paper can be used for other
C&C languages such as Modelica [2], Simulink [15], LabView [12],
or AutoFocus3 [1]. The light-weight 3D simulator which works
entirely in a browser can be used for other projects to visualize
the various scenarios as in the paper Specifying Intra-Component
Dependencies for Synthesizing Component Behaviors [7] where an
example of a car overtaking is shown.

The outline of this paper is the following: section 2 presents the
parking and elk test tutorial as running example for this paper;
section 3 summarizes current related work for tutorial and play-
grounds of other languages; section 4 shows the technical aspects of
the online teaching playground for EmbeddedMontiArc; section 5

[KRSvW18a] E. Kusmenko, B. Rumpe, I. Strepkov, M. von Wenckstern:
Teaching Playground for C\&C Language EmbeddedMontiArc.
In: Proceedings of MODELS 2018. Workshop ModComp, Copenhagen, Oct. 2018.
www.se-rwth.de/publications/

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ModComp’18, October 14th – 16th 2018, Copenhagen, Denmark Kusmenko, Strepkov, Rumpe, von Wenckstern

illustrates how students or other persons being interested in C&C
modeling can use this playground - it shows the users’ viewpoint;
and finally section 6 concludes this paper.

2 RUNNING EXAMPLE
The final aim is to create a controller for a self-driving car. But the
problem here is that the task is too complex. We have borrowed
the idea from the agile development manifest[3] to divide the large
task into small ones.

The small tutorials are based on user-stories which allow to get
faster feedback for students. Implementing simple tutorials and
learning the basics of the language, students gain experience in
solving important tasks of which controllers for self-driving cars
consist. It is extremely hard to solve the big and complex task in
one step. Due to this reason, the dividing of the task is important.
Successfully solved scenarios give important success feeling which
motivates students.

The running example presents the process of creating controllers
that solve given small but common tasks. To achieve the goal we
have to understand the key aspects of the tasks. It helps to find out
which components are needed. The first task is to carry out parallel
parking between two cars, and the last task is to successfully pass
the elk test.

Parking Tutorial. Parallel parking is a well-known every days
scenario for students having a car. But it is not so easy to perform
this maneuver for an inexperienced driver. Therefore, a standard
solution is proposed by German driving schools to accomplish this
task (see fig:ParkingTutorial).

Figure 1: Screenshot of the parking tutorial

The most interesting point in this example for C&C developers
is that this maneuver consists of several independent steps. This

enables us to delegate different tasks to different components such
that each component only solves one simple task. To manage the
maneuver we have to perform the following steps: find a parking
spot; go back pulling the car over in the parking space; and drive
forward aligning the car with the curb.

During the parking process the given requirements must be met:
(P1) the car must not get into an accident during parking; (P2) at
the end of the parking process, the car is parallel to a curb; (P3)
distances to the front and to the rear car should be about the same;
and (P4) the car should only perform three steps to park (as shown
in Figure 1).

Elk Test Tutorial. Another test that we want to introduce is the
elk test. It is performed to determine how well a certain vehicle
evades a suddenly appearing obstacle. These days, the test is per-
formed by major automotive OEMs, because it proves the ability
of a car to maneuver on average speed (60 km/h) without losing
control. In our context, this test gives an idea how the car responds
to objects on the track and how maneuverable it is depending on
its current speed.

To pass the elk test the following requirements must be met: (E1)
the car does not drive into cones during the test; (E2) it drives on
the shortest path, being as close as possible to the cones; (E3) the
does not leave the testing area by violating track boundaries; (E4)
the start and end positions are specified; and (E5) the car has to
drive between every two cones (as shown in Figure 3).

Tutorial Set-up. Each tutorial is organized as a module, it has
all required elements inside its package. It comprises several files
including: Description of the tutorial: this is the text which stu-
dents are given to understand the task and to find some useful hints
and recommendations for the implementation; Solution descrip-
tion: this gives a detailed specification how to solve the current task
and displays a working code solution which can be used directly;
Sample controller: a controller which has been implemented in
advance and is able to pass the current test; Environment con-
figuration: a file, which contains all important objects and their
positions; Reference trajectory, used to check the students’ solu-
tions.

To prepare the simulator environment for tutorials, a configura-
tion file is used. The configuration defines an initial position of the
car. For each tutorial the position specified depends on the task and
an area on the track where an action is going to happen. The con-
figuration also defines the positions of further objects relevant for
the scenario. It is very convenient to have configurations for differ-
ent tutorials, because it provides flexibility during the preparation
tutorial process and simplifies the creation of new ones.

3 EXISTING SOLUTIONS WITH TUTORIAL
CHARACTER

This section presents how tutorials are created by other tool ven-
dors for their languages. We have taken in consideration different
tutorials from different areas.

Simulink. Simulink [15] is a C&Cmodeling environment for sim-
ulation andmodel-based Design of various domain. There are plenty
of tutorials from many different areas with detailed descriptions
and videos explaining the solution step-by-step. But the problem

Teaching Playground for C&C Language EmbeddedMontiArc ModComp’18, October 14th – 16th 2018, Copenhagen, Denmark

here is, that they don’t have methods for validating the correctness
of the user’s solution and do not encourage the users to try it out
by themselves instead of just copying the sample solution. It is
however obvious that the learning effect rises dramatically when
the student has to find the solution in his own.

Rust. Rust [16] is a very popular programming language the
prevalence of which is growing every day. It has a consistent tutorial
which describes language constructs with gradually increasing
complexity. It has the informative and structured index, where
users can easily jump from one topic to another almost instantly
and then just go back to the place they were reading before. They
use highlighted ares to show some code examples, which facilitate
understanding of the presented material.

Microsoft Z3 Solver. Z3 [6] is a state-of-the art theorem prover
from Microsoft. They provide an experience similar to the Rust
tutorial. Additionally, they provide the possibility to execute the tu-
torial code directly in the browser accelerating the learning process.
It helps to see the direct connection between written commands
and the real result improving the understanding of given material.

Octave Online. Octave [17] Online is a web-playground for the
high-level language Octave primarily intended for numerical com-
putations. It has a simple and intuitive interface despite the com-
plexity of the internal implementation. It provides fast execution
and error handling directly in the browser. Even if you do complex
computations it is not needed to install any software on the PC.
Everything works on-line out of the box.

Wolfram Alpha. Wolfram Alpha [19] is a very powerful tool,
which works by using expert-level knowledge and algorithms to
automatically answer questions, do analysis and generate reports.
It supports matrix operations and calculations similar to the Em-
beddedMontiArcMath language, to describe atomic components. It
can do even more than solving linear equations, it allows to specify
the behavior of controllers, and then by solving the equations they
synthesize the controller. Furthermore, it has one very interesting
and useful feature providing an interactive visualization of given
data. The idea behind is that you can "feel" how certain parameters
influence the final result. It promises a better understanding of the
dependencies between the components or elements of the system.

TypeScript Playground. TypeScript [4] is a typed superset of
JavaScript. It has a clean and simple playground which shows
the difference and benefits of TypeScript over JavaScript. It has
preloaded examples showing the actual difference and thus provide
a direct comparison giving a better understanding of the language
and facilitating further analysis(R7).

Swift Playgrounds. Swift [9] Playgrounds has been created for
teaching the Swift language in a hands-on experience. You can
create small programs that instantly show the results of the code
that you write. On the right side of the screen a 3D world is shown.
The tutorials are pretty simple but the concept is very interesting.
They have automatic verification of the correctness of an imple-
mented solution in the 3D environment. To produce many diverse
game oriented tutorials, it would be convenient to have a simple
3D model import for various 3D formats designed in different tools.

Summary. Having thoroughly analyzed the solutions listed above,
we have derived the following list of requirements for our tutorial:
(R1) 3D visualization for demonstration purposes; (R2) Simple,
clean and intuitive interfaces; (R3) Support for all common op-
erating system and no need for an installation; (R4) Automatic
verification of obtained results; (R5) Import and reuse of exist-
ing 3D models for the visualization; (R6) Displaying the object’s
trajectory; (R7) Integrated unit testing support.

Table 1: The table summarizes the comparison between the
all considered tutorials. (+ support, P partially support, - no
support)

Z3 Octa-
ve

Wol-
fram

Type-
Script

Swift Rust Simu-
link

EMAM

R1 - + + - + - + +
R2 + + + + + + + +
R3 + + + + - + - +
R4 - - - - + - + +
R5 - - - - - - + +
R6 - - P - P - P +
R7 - - - - - - + +

Table 1 summarizes the differences between the tutorials regard-
ing the derived requirements.

(R1) 3D visualization for demonstration purposes: Four
considered tutorials have a 3D visualization. Octave online has
a possibility to generate plots and graphs for given data. Wolfram
Alpha has a powerful tool for the generation of 3D models. The
student can interact with these models and see the changes in a
real time. The Swift Playground has the most advanced 3D world
which is part of the tutorial and result presentation. Simulink pro-
vides means to build appealing 3D models which can be involved in
the simulation process. However, the user has to build everything
herself.

(R2) Simple, clean and intuitive interface: This is the only
requirement which all tutorials were able to satisfy. We believe that
it is very important to have an understandable and clear interface
which does not distract from the educational process.

(R3) Work on any operating system and without installa-
tion:Almost all examined tutorials have a web-implementation and
work without installation, except the Swift tutorial and Simulink.
The Swift tutorial has only an iOS realization. Simulink does not
provide an on-line interface, however Matlab has a partial web-
implementation.

(R4) Automatic verification of obtained results: Only one
among the examined tutorials, the Swift tutorial, has a hands-on
verification of the solution provide by the student. It generates
additional interest during the studying process, and can be a moti-
vation to keep solving the tasks by analogy with computer games.
In Simulink such a feature can at least be implemented by the user
but is not provided out-of-the-box.

(R5) Import and reuse of existing 3D models for the sim-
ulation: Only Simulink provide the ability to import 3D models. It
helps to create tutorials quickly and efficiently by using the previ-
ously created models and configurations. An example of reusing a

ModComp’18, October 14th – 16th 2018, Copenhagen, Denmark Kusmenko, Strepkov, Rumpe, von Wenckstern

3D object can be a cone that is used in many exercises. This feature,
in our opinion, simplifies the process of creating new tutorials and
decreases the time which has to be invested in the creation process.

(R6)Displaying the object’s trajectory:WolframAlpha, Swift
and Simulink have partial support for this feature in case that you
can see the whole process of movement of the object from the
very beginning to the end. But we decided to improve the concept
and to add a separate window which permanently displays the
traversed route of the object, for better visual perception and visual
comparison of results. In our case the object is a car.

(R7) Integrated testing support:Only Simulink has integrated
testing capabilities. Due to the specificity of our tutorial play an im-
portant role for us. By writing blackbox unit tests for a component
(called stream tests in EmbeddedMontiArc) we can ensure correct
handling of incoming data. Tests make the components more re-
liable and robust. What is more, we think that today’s tutorials
should teach students to develop test before starting to work on the
implementation. Taking into account all these derived requirements
we are going to present our solution.

We want to emphasize that our platform is not the best
although it outperforms the presented tools regarding the
proposed requirements according to Table 1. The other tu-
torial platforms, especially Simulink and Swift, support a much
broader domain for tutorials; Simulink for example provides excel-
lent tutorials including high-quality videos and Matlab on Ramp
for image processing, deep learning, aerospace, and an electrical
powertrain.

The main purpose of Simulink is to provide templates showing
how a problem can be solved using this tool; our main purpose
is to teach the students the C&C modeling paradigm including
testing. We chose the domain of self-driving cars for our tutorials
and therefore developed a simple TypeScript based simulator.

4 ARCHITECTURE
This section presents the software architecture referring to the
high-level structures of our online web tutorial; it also discusses
some decisions we needed to revert due to technical problems.

At the very beginning, we came up with the idea of a serverless
application which can be hosted on GitHub pages. First, the solution
looked very promising, as there already exists a Clang In Browser
(CIB) project to compile the generated C++ code to web-assembly
and to run it directly in a browser. But then we figured out some
issues with this approach: CIB does not support dynamic linking
yet; and therefore, we cannot link against the large Armadillo math-
ematics library, which is used by EmbeddedMontiArc and static
compilation would extend the linking process to several minutes.

Due to this reason, we decided to use a stateless server applica-
tion: a user sends the C&C files to the server which translates them
to web assembly[14]. Then the client receives the web assembly
controller which is used by the web simulator. The huge advantage
here is that the server is not involved in the simulation process.
Thus, it is much easier to handle multiple users and it does not
run into critical performance issues, due to multiple requests. The
browser-based simulation runs fluently due to local execution for
each user and, in our opinion, it has a massive impact on the user

Figure 2: Architecture of C&C online tutorial platform.
experience. Also, the maintenance of a stateless server is much
simpler than the maintenance of a stateful one.

The disadvantage is that users have to wait for the compilation
on the server side (compilation for a single tutorial for one user
needs about 15s) and it can take longer due to multiple requests.
Furthermore, compilation is not possible without a connection to
the server Nevertheless, the user can observe a fluent visualization
showing the car driving in the simulator.

In our case, EmbeddedMontiArc is already developed as a self-
contained service based on jar archives. Due to the derived require-
ment (R3), we have to develop a web-based application. Therefore,
on the server-side some services from EmbeddedMontiArcStudio
can be selected and integrated.

But still, one server-side component is missing. The server must
handle multiple users at the same time, and the server must do
the messaging from the back-end to the front-end. Students should
get a response from the server, to receive compiled controllers or
just fix errors which can appear during the compilation process.
EmbeddedMontiArcStudio, the offline development IDE of Embed-
dedMontiArc, has its own 3D simulator having a lot of powerful
features. But it has some weaknesses which do not allow us to use
it in our case. It can not handle multiple users, requires a powerful
computer and has to be installed. It contradicts some of the require-
ments. So we decided to develop a new simple simulator satisfying
our requirements. For implementation, we have picked TypeScript.

The simulator which is working on the front-end gives much
smoother and fluent experience for the user. Therefore we are using
fully independent front-end for the simulator and back-end for the
preparation phase of the controller. We went even further and
decided to use WebAssembly for the controller. web assembly is a
new type of code that runs in modern web browsers; it is a low-level
assembly-like languagewith a compact binary format that runswith
near-native performance. WebAssembly compilers are available for
different source languages such as C/C++ facilitating the usage of
such languages in web applications. WebAssembly is well suited
for our task due to the fact, that EmbeddedMontiArc comes with
a C++ code generator, i.e. a generator taking EmbeddedMontiArc
models as input and producing equivalent C++ code as output. For
this reason, the EmbeddedMontiArc to WebAssembly converter
was developed.

Figure 2 shows the architecture overview.
To clarify the goal of each component which is shown in the

picture, we will consider the seven most important components
that are linked together:

Teaching Playground for C&C Language EmbeddedMontiArc ModComp’18, October 14th – 16th 2018, Copenhagen, Denmark

IDE for the EmbeddedMontiArc language: it helps to write
components, reveals the errors and shows incoming and outgoing
ports of the components.

Web-server: it receives the requests for compiling the Embed-
dedMontiArc models and sends back a finished controller, packs
and extracts models, controls the compilation process providing
error handling for users. The server has a queue which provides
the handling of multiple users simultaneously.

EMAM2WASM generator: it gets the model from the web-
server and compiles it, generating the web-assembly file, which is
the "brain" of the simulator.

Testing toolchain: it provides stream testing for incoming mod-
els. The toolchain consists of EMAM2CPP (EmbeddedMontiArc to
C++) generator, which generates tests, then the tests are compiled
and executed. The output from the stream testing phase can be
used to be shown to a user or for generating the web assembly file.

SVG generator: it generates a picture of the components and
connections for better readability. Users can find errors easier using
the visual component schema.

Browser-based simulator: it receives a compiled model from
the server and instantiates it directly in the browser. Then the
controller is used to process data from sensors, which are located
in the car to produce command for the actuator.

Trajectory builder and comparator: It builds a trajectory of
the car movements in real time and performs a comparison with
the reference trajectory. The comparator allows some deviations
from the reference trajectory.

In this architecture we reuse some previously developed compo-
nents and introduce new ones allowing us to accomplish our goal
in the most efficient and optimal way.

5 USERS’ VIEWPOINT
This section shows the users’ viewpoint of the C&C tutorial; e.g.
how students are going to use the web-playground to understand
how to work with C&C modeling languages like EmbeddedMon-
tiArc.

The main idea of the playground is to increase interest in the
learning process using gamified tutorials. There are several simple
steps in the learning process. The first tutorial is a task which
already has a solution but the idea behind it is to show the main
constructions and principles of the language and the playground.

Following tutorials have tasks with increasing complexity and
provide some hints motivating students to use particular patterns.
The visualization of the process provides a feeling for the language
and an understanding of the connection between written code and
real actions caused by this code.

The process of writing tests shows benefits of test-driven devel-
opment and helps to understand the importance of independent test-
ing of the components. The process of using the web-playground is
very simple. Students don’t have to install any applications on their
computers and it is possible to use it from any platform, e.g. Mac,
Windows, or Linux; only a modern browser with web assembly and
HTML 5 support is needed. IDE, tutorials, and the visualization are
located in one window and have a very intuitive interface as shown
in Figure 3.

Solution for Example 1 (Parking Scenario). To start working on
the solution we have to know the way how to communicate with
the car to achieve the desired behavior. For this purposes, there
is an interface to the simulator which is given for every tutorial.
The interface is shown in Listing 1. The interface has 8 sensors to
measure distances to objects, velocity, steering angle, acceleration,
a position of the car and execution time.

As shown in Listing 1, ports have units and ranges in Embedded-
MontiArc. The ranges give an advantage during the testing phase
and provide the possibility to use a variety of units depending on
the particular case, e.g. km/h or m/s.

Listing 1: Interface of MainController to communicate with
TypeScript simulator
component Ma inCon t r o l l e r {

p o r t s
in Q(0m: 2 0 0m) f l , / / f r o n t l e f t s en so r from 0m to 200m
in Q(0m: 2 0 0m) f r , / / f r o n t r i g h t s en so r
in Q(0m: 2 0 0m) s l f , / / s i d e l e f t f r o n t s en so r
in Q(0m: 2 0 0m) s l b , / / s i d e l e f t back s en so r
in Q(0m: 2 0 0m) s r f , / / s i d e r i g h t f r o n t s en so r
in Q(0m: 2 0 0m) srb , / / s i d e r i g h t back s en so r
in Q(0m: 2 0 0m) bl , / / back l e f t s en so r
in Q(0m: 2 0 0m) br , / / back r i g h t s en so r
in Q(0 s : oos) t ime , / / s imu l a t i o n t ime from 0 s to i n f i n i t y
in Q(0m/ s : 2 5m/ s) v e l o c i t y , / / c a r v e l o c i t y
in Q(−200m: 2 0 0m) x , / / c a r p o s i t i o n X
in Q(−200m: 2 0 0m) y , / / c a r p o s i t i o n Y
out Q(−2m/ s \ ^ 2 : 2m/ s \ ^ 2) a c c e l e r a t i o n , / / c a r a c c e l e r a t i o n
out Q(−180Âř : 1 8 0 Âř) s t e e r i n g ; / / c a r s t e e r i n g

. . . }

Based on the predefined interface, students can now create new
subcomponents and connect their ports to solve this task. In this
particular example (see Listing 2), we use three components which
are responsible for different actions during the parking process:
VelocityController: this component controls the velocity of the
car depending on the current action (e.g. parking, searching a park-
ing place, etc.). ParkingController: this component controls the
steering angle of the car during the parking process. SearchPark-
ingPlace: this component looks for a gap between cars for the
parking.

Whenwe have decided which component is responsible for what,
it is necessary to understand which ports are needed and how they
have to be interconnected.

Listing 2: Add subcomponents to MainController and con-
nect the ports of the subcomponents
i n s t a n c e V e l o c i t y C o n t r o l l e r v e l o c i t y C o n t r o l l e r ;
i n s t a n c e P a r k i n gCon t r o l l e r p a r k i n gCon t r o l l e r ;
i n s t a n c e S e a r c hPa r k i n gP l a c e s e a r c hP a r k i n gP l a c e ;

connec t v e l o c i t y −> v e l o c i t y C o n t r o l l e r . v e l o c i t y ;
connec t v e l o c i t y C o n t r o l l e r . a c c e l e r a t i o n −> a c c e l e r a t i o n ;
connec t s l f −> s e a r c hP a r k i n gP l a c e . f r s ;
. . .

To improve the visual perception of the interconnections, the
demonstrator has an SVG generator producing a graphical C&C
model. Figure 4 shows the graphical model of the solution controller.
The complete models including the mathematical expressions for
the atomic components are available at our websitelink.

ModComp’18, October 14th – 16th 2018, Copenhagen, Denmark Kusmenko, Strepkov, Rumpe, von Wenckstern

Figure 3: Screenshot of Tutorial Environment: left IDE, right top: 3D visualization, right bottom: trajectory

mainController

velocity

backLeft

backRight

frontLeft

frontRight

frontLeftSide

backLeftSide

SearchParking

Place

parking

Controller

velocity

Controller

found

Place

move

Forward

steering

Angle

acceleration

status

steering

input
port

output
port

port
name

component
component
name C&C

connector

junction

Figure 4: Graphical C&C model of Listing 1 and Listing 2

Solution for Example 2 (Elk Test). Due to paper length limita-
tion, the solution of this example is only available at our website:

http://www.se-rwth.de/materials/ema_tutorial/ .

6 CONCLUSION
In this paper, we have analyzed existing tutorials from various do-
mains. Our aim was to find the most important features having
an influence on the studying process of modeling languages, to
discover weaknesses of existing approaches and to overcome them.
We came up with a suitable architecture using already implemented
building blocks thereby decreasing the amount of work without
having a negative influence on the user experience. Furthermore,
we showed how to use the tutorials and demonstrated two inter-
esting real-world examples presenting the main concepts of our
component and connector modeling language and revealing impor-
tant integrated features like stream testing and result verification.

REFERENCES
[1] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and Bernhard

Schätz. 2015. AutoFOCUS 3: Tooling Concepts for Seamless, Model-based Devel-
opment of Embedded Systems.. In ACES-MB.

[2] Modelica Association et al. 2005. Modelica language specification. Linköping,
Sweden (2005).

[3] Kent Beck, Mike Beedle, Arie van Bennekum, et al. [n. d.]. Agile Manifesto
http://agilemanifesto.org/.

[4] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding type-
script. In Conference on Object-Oriented Programming. Springer, 257–281.

[5] Eckard Bringmann et al. 2008. Model-based testing of automotive systems. In
2008 International Conference on Software Testing, Verification, and Validation.
IEEE, 485–493.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[7] Stefan Dziwok, Sebastian Goschin, and Steffen Becker. 2014. Specifying Intra-
Component Dependencies for Synthesizing Component Behaviors.. In Mod-
Comp@ MoDELS. Citeseer, 16–25.

[8] Peter H Feiler and David P Gluch. 2012. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley.

[9] Cristian González García, Jordán Pascual Espada, Begoña Cristina Pelayo García
Bustelo, and Juan Manuel Cueva Lovelle. 2015. Swift vs. objective-c: A new
programming language. IJIMAI 3, 3 (2015), 74–81.

[10] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and
Michael vonWenckstern. 2017. Simulation Framework for Executing Component
and Connector Models of Self-Driving Vehicles. In Proceedings of MODELS 2017.
Workshop EXE.

[11] Wendy Hsin-Yuan Huang and Dilip Soman. 2013. Gamification of education.
Research Report Series: Behavioural Economics in Action, Rotman School of Man-
agement, University of Toronto (2013).

[12] National Instruments. 1998. BridgeView and LabView: G Programming Reference
Manual. Technical Report 321296B-01. National Instruments. 667 pages.

[13] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. 2017. Modeling Architectures of Cyber-Physical Systems. In ECMFA.

[14] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, andMichael vonWenck-
stern. 2018. Highly-Optimizing and Multi-Target Compiler for Embedded System
Models: C++ Compiler Toolchain for the Component and Connector Language
EmbeddedMontiArc. In MODELS.

[15] Mathworks. 2016. Simulink User’s Guide. Technical Report R2016b. MATLAB &
SIMULINK. 4022 pages.

[16] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

[17] Sandeep Nagar. 2018. Introduction to Octave: For Engineers and Scientists, volume
1 of 1. Apress.

[18] Christian Schlegel, Thomas Haßler, Alex Lotz, and Andreas Steck. 2009. Robotic
software systems: From code-driven to model-driven designs (International Con-
ference on Advanced Robotics). IEEE, 1–8.

[19] Stephen Wolfram. 2013. Wolfram research. Inc., Mathematica, Version 8 (2013),
23.

http://www.se-rwth.de/materials/ema_tutorial/

	Abstract
	1 Introduction
	2 Running example
	3 Existing Solutions with Tutorial Character
	4 Architecture
	5 Users' Viewpoint
	6 Conclusion
	References

