
Teaching Model-Driven Low-Code Development Platforms
Joel Charles

charles@se-rwth.de
Software Engineering, RWTH Aachen University

Aachen, Germany

Judith Michael
michael@se-rwth.de

Software Engineering, RWTH Aachen University
Aachen, Germany
larst@affiliation.org

Lukas Netz
netz@se-rwth.de

Software Engineering, RWTH Aachen University
Aachen, Germany

Bernhard Rumpe
rumpe@se-rwth.de

Software Engineering, RWTH Aachen University
Aachen, Germany

Abstract
Low-code development platforms (LCDPs) are becoming increas-
ingly important in industry, which confronts us in academic teach-
ing with the challenge of educating students in the basic principles,
critical engagement, and evaluation of LCDPs. This leads us to the
question, how to teach the usage of different LCDPs during an
university course. The short time frame of university-level courses
makes it challenging to teach more than only one LCDP. In our
teaching approach, students use two different LCDPs and create a
web-application with both of them. Firstly, we require the students
to define a target application with common modeling languages,
next they use the first LCDP, at about half the time they switch to
the second LCDP and present their findings of the differences in
methodology and development processes at the end. We discuss this
approach, show survey results from the participants, and explain
lessons learned. This concept allows students critical engagement
with LCDPs and model-driven software engineering. Supervisors
get an insight into the learnability of each LCDP and how novices
adapt to different domain-specific languages and their notations.

CCS Concepts
• Software and its engineering → Model-driven software en-
gineering; • Social and professional topics → Software engi-
neering education.

Keywords
Low-Code Development Platforms, Education, University-Level
Courses,Model-Driven Software Engineering, Problem-Based Learn-
ing

ACM Reference Format:
Joel Charles, Judith Michael, Lukas Netz, and Bernhard Rumpe. 2024. Teach-
ing Model-Driven Low-Code Development Platforms. In ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687805

(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3652620.3687805

1 Introduction
Low-Code Development Platforms (LCDPs) are gaining significant
importance in industry [31, 39, 41]. This presents us with a chal-
lenge in academic teaching on how to educate students in the basic
principles, critical handling, and evaluation of LCDPs. The gap be-
tween the problem domain, which domain experts understand, and
the software implementation predominantly understood by soft-
ware engineers is still a challenging field of research [19]. LCDPs
help to narrow this problem-implementation gap, as they empower
domain experts to take an active role in the development process. In
industry, a broad variety of LCDPs exist, e.g., A12 [30], Appian [5],
BESSER [4], Mendix Platform [23], MontiGem [1], Nintex[35], Out-
Systems [25], or Pega Platform [37]. The popularity of this type of
development platform results in the need to have software engi-
neers who are able to develop, operate, and maintain LCDPs. This
results in the need to educate students in the basic principles, crit-
ical engagement, and evaluation of LCDPs. Existing publications
focus either on the comparison of different LCDPs regarding their
functionalities or tool support [36, 40] or provide insights into the
teaching of one specific LCDP [24, 26, 28]. To the best of our knowl-
edge, there are no approaches published that allow students to
compare platforms by using them to develop concrete applications.

The questionwe tackle is how to teach the usage of different model-
driven LCDPs during a university course. Even though the short
time frame of university-level courses (14 weeks in one semester)
makes it challenging to teach more than only one LCDP, it was
important for us that the students were able to work with at least
two platforms to be able to compare them and thus derive a broader
understanding of LCDPs instead of only learning the usage of one
specific platform. Students were at least in their 4𝑡ℎ semester, which
means they already had several courses where they had learned
traditional software development with Java. As their development
skills are not well established at this point in time and with the
given time limit, the focus of the study could not be the comparison
between LCDP and a traditional approach but had to be between
different LCDPs.

In this paper, we propose a course structure and an established
procedure that allows students to experience the concepts of LCDPs
in an Model-Driven Software Engineering (MDSE) project, share

[CMNR24] J. Charles, J. Michael, L. Netz, B. Rumpe:
Teaching Model-Driven Low-Code Development Platforms.
In: Educators Symposium, MODELS Companion ’24:
International Conference on Model Driven Engineering Languages and Systems,
pp. 115-122, Association for Computing Machinery (ACM), Oct. 2024.

https://orcid.org/
https://doi.org/10.1145/3652620.3687805
https://doi.org/10.1145/3652620.3687805
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687778&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Joel Charles, Judith Michael, Lukas Netz, and Bernhard Rumpe

Figure 1: Basic MontiGem Architecture, Roles and Development Process

accumulated experiences with each other, and immediately experi-
ence an alternative approach for software development. Students
gained a critical understanding of LCDPs by practically pushing
the limits of each platform and learning about the individual differ-
ences of LCDPs and their Domain-Specific Languages (DSLs). To
help others make an informed decision about how to conduct their
teaching with LCDPs, we discuss our and the students’ experiences
with this teaching concept and present students’ feedback.

The paper is structured as follows: The next section explains the
research context and related work. Section 3 presents the project
class structure in different phases and its execution. Section 4 ad-
dresses the survey accompanying the course. Section 5 discusses
lessons learned before the last section concludes the paper.

2 Preliminaries & Related Work
We introduce the concept of LCDPs and their relationship to model-
driven software engineering and introduce the utilized LCDPs Mon-
tiGem and A12.

Low-Code Development Platforms. According to [10], low-
code development is a success story for MDSE. Both, low-code soft-
ware development and MDSE, are strongly related to each other, as
they try to reduce the problem-implementation gap [19] and rely on
abstraction methods. Di Ruscio et al. [14] examine the differences
and commonalities of low-code software development and MDSE in
detail. For the purpose of this paper, we are particularly interested
in the low-code and model-driven approaches that overlap in their
characteristics. Di Ruscio et. al [14] state that a characteristic of
low-code software development is the aim to reduce the amount
of hand-coding required to realize a system. This characteristic is
shared with some model-driven approaches [15, 16]. However, the
reduction of hand-written code can arise from the use of models,
data, or schema-less XML/JSON documents. To leverage low-code
software development to a low-code development platform, support
for deployment and life-cycle management capabilities is needed.
Bock and Frank [3] highlight the feature variance between seven
LCDPs represented on the market, e.g., data structure and workflow
specifications, connection to external APIs, or graphical editors.
A LCDP often features a graphical user interface for defining the

target software, e.g., through models [13, 44]. LCDPs may produce
entirely operational application software, but it may require devel-
opers to add a ’low’ amount of hand-written code. The abstraction
of low-level concerns empowers citizen developers to contribute
their expertise in a machine-processable manner [3, 7, 10].

Only a few approaches describe how to use LCDPs or low-code
approaches in education mainly using only one LCDP in teaching.
Wang and Wang [43] present a teaching methodology and peda-
gogical concept for one no-code development platform. Similar to
our approach a preliminary assessment was performed after the
course, but the focus lies within the target application and not in
the education on low-code development. Poe and Mew [38] use
the LCDP Mendix to teach agile methods of software development.
In contrast to our approach, is the course focused on teaching the
agile method, such as scrum and cooperative software development,
rather than the LCDP or MDSE. Tisi et al. [42] present a concept to
teach 15 PHD students cloud-based LCDPs. The authors focus in
this publication on the engineering challenges of a single platform
rather than educational concepts for classes. Adrian, Hinrichsen,
and Nikolenko [2] present a concept for a teaching unit within
an industrial engineering program focusing on app development.
Metrôlho et al. [27] give insights into an ITC training designed
to reskill unemployed people who mainly have already attained a
higher education level in the STEM area. In these trainings, they use
only the LCDP OutSystems. In another work, Metrôlho et al. [26]
use the LCDP OutSystems in a software engineering course for stu-
dents in Scrum processes. Again, only one concrete LCDP was used.
Lebens and Finnegan [24] present a course on agile development
where the LCDP Microsoft Power Apps platform was used to create
a web application. Their aim with using a low or no-code develop-
ment platform was to enable students to spend less time learning
to create apps and rather focus on getting an understanding of how
agile processes work. Mew and Field [28] use the LCDP Mendix to
teach an undergraduate project management course in the informa-
tion systems program. Fernandes et al. [17] report on their findings
on using the LCDP OutSystems for their project-based learning
approach in a software engineering course.

Teaching Model-Driven Low-Code Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 2: Basic A12 Architecture, Roles and Development Process

Within our university-level course, we use the LCDP MontiGem
and the LCDP A12 to teach two different low-code platforms and
enable the students to compare different LCDPs. The following
provides an overview of their usage from the modeling perspective.

LCDP MontiGem. MontiGem is a generator framework [1,
22] that creates a data-centric web-based information system [8],
e.g., for financial controlling [20], process-aware information sys-
tems [16], assistive systems [32, 33], IoT app stores [9], digital twin
cockpits [12], or LCDPs for digital twins [11]. The target appli-
cation is a three-tier server-client application, with an Angular
(Typescript) based front end and a Java-based TomeEE back end.
The model-driven architecture of the target application is defined
by the input of the generation process: a class diagram for domain
concepts and Graphical User Interface (GUI) models.

An application modeler defines a set of GUI and domain models,
setting up the data structure and user interfaces of the target appli-
cation (see Figure 1). MontiGem consists of two major generators.
The first one is a data structure generator, which processes class
diagrams and generates a database and basic infrastructure for both
the server and client to access and move data from and to the data-
base and between each other. The second one is a GUI generator,
which processes the GUI models [21, 22], that can reference data
structures defined in the input class diagrams. Each GUI model
defines a new web page in the example application.

If needed, the application can be customized by hand-written
code, that is developed by the application programmer. It extends
the generated code, both in server and client, adapting or replacing
the generated functions.

LCDP A12. The enterprise LCDP A12 [30] is developed by the
company mgm technology partners and used in customer projects
for the application domains insurance, e-commerce, and the public
sector. Applications realized with A12 are typically single-page
web applications, based on a client-server architecture. Software
development within A12 is divided into two parallelizable branches.

The application modeler begins to set up the modeling tools via
a provided installer (see Figure 2). He uses visual model editors to
describe domain specifics in data and UI models. Domain-specific
constraints (validation logic) can be formulated using a DSL. Val-
idation code is generated, that can validate data consistency at

runtime. Due to A12’s focus on enterprise business applications
mainly forms and documents are processed. Within UI models, data
models are referenced and mapped to UI components. Within the
target application, the models can be interpreted at runtime by en-
gines. They orchestrate reusable low-level UI components (widgets)
such as a data picker to render the modeled UI [29]. The engines
utilize the generated validation code along with the UI models to
automatically visualize incorrect entries. An application model de-
fines the layout structure of the UI and its behavior, and which
UI component is displayed. E.g., a tabular overview of the data is
displayed to the left of the details for a record in a form. The models
are deployed to the target application using the modeling tool.

In parallel, the application programmer is provided with a project
template. The template is a functional client-server application
with access management which establishes a recommended project
structure. Sample models are used to demonstrate the integration of
A12 models. It allows for the integration of third-party libraries and
other aspects via handwritten code. The application programmer
registers the UI components referenced in the application model
in the template. They can either be taken from the A12 widgets
library or developed independently. In addition, handwritten code
allows for an optional customization of the engine’s interpretation
of the models in case there are special requirements. The result is
an executable, tailored A12 application.

3 Teaching Method & Execution in a Software
Engineering Lab

Our teaching method is based on a software engineering lab and
relies on problem-based learning [6, 18] to teach MDSE with LCDPs.

The variation between LCDPs requires teaching to differentiate
between platform specifics and generic low-code approaches. In a
university context, there are specific external constraints within
which the methodology may be chosen. Our objective is to teach
a mixed group of bachelor and master students of computer sci-
ence (or closely related study programs) the usage of model-driven
LCDPs. The course aim is to be fulfilled within the framework of
a semester lab (14 weeks, see lab structure in Figure 3). Successful
completion of a programming lecture is a prerequisite for participa-
tion in our course. Furthermore, all students had initial modeling

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Joel Charles, Judith Michael, Lukas Netz, and Bernhard Rumpe

Figure 3: Project classes can be divided into four phases (P1-P4). Black diamonds indicate, a meeting where students give a
presentation, and white diamond represents a regular meeting, where a student can get support.

experience with UML in previous semesters. However, this does not
imply that the students are experienced full-stack developers. We
have developed a methodology to convey the teaching objectives.

By teaching two LCDPs in the lab, we aim to prevent platform
specifics from being misconstrued as generic LCDP functionality
by the students. We have chosen the LCDPs A12 and MontiGem as
representatives for two model-driven LCDPs. They were selected
firstly because they differed sufficiently in the modeling phase and
runtime (e.g. A12: generation & model interpretation at runtime;
MontiGem: pure generative approach) as well as the technology
stack. Secondly, the supervisors had prior expertise in the platforms.
Due to the external constraints of the course, a time frame must
be adhered to. By dividing the course into four phases with their
respective teaching objectives and deadlines, adherence to the time
frame and objectives is encouraged.

Once students have progressed through the phases, they should
have modeled and developed a web application using two different
LCDPs. In particular, students are expected to focus not only on the
development as such but also on the development process within
the LCDPs. Conclusions should be inferred about the differences
between the platforms and low-code development in general. By
engineering the same application with two LCDPs we expect to be
more time-efficient, as we only need one modeling phase instead
of two. In addition, it is easier for the students to compare both
platforms and draw generalized conclusions about LCDPs.

3.1 Phase 1: Requirement Analysis and
Software Design

The intended deliverables of this phase are a set of models that
describe the target application to be implemented. To achieve the
objectives, the heterogeneous levels of knowledge of the partici-
pants concerning the required technologies (e.g. web development)
are aligned. The students are asked to assess their knowledge of
software development and familiarity with LCDPs, and indicate a
preferred grouping. At the beginning of the first phase the students
have to recapitulate and present fundamentals of the framework-
s/libraries used in the LCDPs, that will be needed in the upcoming
phases. The presentation of the topics in the first week is intended
to equalize the knowledge levels of the participants and to stimu-
late collaboration. This process helps the supervisors to establish a
balanced set of groups in which the tasks are processed. In general,

due to the completed courses in their computer science curricula,
the students are expected to have a basic understanding of Model-
Driven Software Engineering and basic programming skills.

In the run of the lab, 16 participants were registered. Half indi-
cated that they would like to be in a group with a preferred partner.
The self-assessed skill sets ranged from beginner-level program-
mers to individuals with a lot of experience and who had already
used LCDPs. The students could be divided into a set of four groups
with comparable skill sets.

In a subsequent step, the students are introduced to the overar-
ching theme of the target software. In our case, this was an online
store offering goods that the students could define. Students were
free to choose the domain of their store and came up with the
following ideas:

App Theme: Block Chain Store
Motivation: An online shop sells two item categories:
blockchains and chain blocks.
Approach: Students defined a data structure for shop clerks and
clients and added different types of blockchain and chain blocks
and the shopping process (cart, payment, shipping).

App Theme: Boston Consulting Fruit
Motivation: A web application in which multiple consulting
services can be purchased.
Approach: The students modeled a data structure to set up a
consulting team with their respective skills and defined classes
to handle fictive consulting forms.

App Theme: Online Corner Shop
Motivation: A shop that sells all kinds of everyday items.
Approach: The students modeled a data structure for shop clerks
and clients. Shop clerks could edit items, e.g. change stock or
prices.

App Theme: Tea Shop
Motivation: A web shop specializing in Tea.
Approach: The students modeled a data structure defining a tea
warehouse. Teawas notmodeled as separate items, but purchased
by weight. Similar to the other apps, there were two types of
users, management, and clients.

Teaching Model-Driven Low-Code Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Based on their store, the students have to provide requirements
and design models that define the store and its features. Before their
modeling attempt, they are presented with a use case to provide a
reference for the size and complexity of the models. The students
are not bound to specific modeling languages, however, they are
required to define the data structure, features, and access permis-
sions for users interacting with the application. Thus, students are
encouraged to use modeling languages and modeling paradigms
learned in previous lectures. To prevent participants from being
influenced by the specific functional scopes of the LCDPs, they are
not yet introduced to the LCDPs used.

At the end of the first phase, the students present and discuss the
developed models and requirements for each shop. All groups chose
class diagrams to describe the data structure and described intended
features with bullet point lists. Although Feature Diagrams, Use
Case Diagrams or BPMN provide the means to define large aspects
of an application, the four groups used more informal ways of
representing functionalities, features, and processes. The meetings
in the first phase (Figure 3) are used to refine and optimize the
models and adjust the planned software’s complexity and difficulty.
At this point, the supervisors must have experience with the LCDPs
that should be used by the students later, as they need to be able to
evaluate whether a model is feasible to be implemented with the
provided platforms in the given time.

3.2 Phase 2: First LCDP
In phase 2, the groups are assigned one of two LCDPs in which they
are supposed to replicate their modeled web-application as closely
as possible. It is ensured that each of the platforms is used by half
of the groups. At the end of the second phase, the students present
their progress. Additionally, the students present the challenges
they encountered during the development process and discuss how
they managed to overcome those. The hints can be used by the
groups in the subsequent phase. In case all requirements defined
by the models are realized within the given time frame of phase
2, the students can add further functionality and apply software
engineering best practices, such as automated testing.

During the lab execution, the meetings have been separated
according to the LCDP used in the phase. For this lab, we cooperated
with an industry partner, mgm technology partners, to provide the
students with two LCDPs with different modeling notations. Each
group gets an introduction to their platform by their supervisors.
Subsequently, students are required to work with the platform
and realize the system they have previously defined. For support,
weekly question and answer sessions are offered in addition to
the possibility of contacting the supervisors at short notice.The
meetings addressed arising challenges and progress was discussed.

Within the time frame, no group was able to completely realize
their planned application. However, many achieved a system having
basic functionality such as user management, shop item manage-
ment, and a rudimentary shopping process. This was combined
with user interfaces in varying levels of sophistication. In their pre-
sentations, they highlighted the features of their application as well
as the gaps in their requirements and models, and the process that
was used to create the software. At this point, the first differences
between the two LCDPs were discussed. For example, this concerns

the DSLs used by the platform and the platform’s tooling. Other
aspects include the code creation process (generative/interpretive),
the amount and complexity of the required hand-written code, as
well as the overall usability/learnability of the platform.

3.3 Phase 3: Second LCDP
In this phase, the students use the same requirements and models
that were defined in the first phase but use a different LCDP to
realize the web application. Similar to phase two, the students
developed a web application as close to their plans from the first
phase as possible. At the end of this phase, the final applications are
presented and discussed. At this point, each student has attempted
to develop a web application based on the same requirements and
models in two different LCDPs. Thus, they can draw conclusions
about the differences in the development processes and about low-
code development in general. Among other topics, the subsequent
discussions were held on the following topics:

• Pragmatism of the low-code approach for the specific pre-
sented use case

• Benefits and drawbacks of the development approaches
• Differences in capabilities of the platforms
• Differences in platform usability/learnability
• Differences in amount and complexity of required hand-
written code

Based on the know-how gained from the second phase, and
the feedback of their colleagues, we expected this development
segment to progress faster and still reach comparable development
results. The advantages of each group compared to the previous
phase were:

• The gap between the proposedmodel (Phase 1) and the actual
data structure of the target application is now known. Thus,
it was expected that the students need fewer iterations to de-
velop the data structure for the second low-code application
and they would spend less time on creating models.

• The students have heard experiences from their colleagues
who have already used the platform. They know in advance
which challenges they will face and how to overcome them.

• The students have established a general development con-
cept for the application, resulting in less time to spend on
figuring out what to do and how to do it.

In the kick-off meeting of this phase, each group gets an intro-
duction to their respective platform. In this meeting, the questions
of the students from the last introduction, and weekly meetings
from the previous phase were included to streamline the process of
getting familiar with the platform. Similar to the previous phase,
there were weekly meetings, in which questions of the students
to each platform were answered and progress was ensured. The
students reached comparable development results despite a shorter
amount of time for the second platform.

At the end of the third phase, the students present their sec-
ond version of their application and highlight the features and
capabilities of their hand-in. At this point, each group has the ex-
perience of using two low-code platforms to develop two versions
of one application idea. Figure 4 and Figure 5 shows an example,
of the tea shop of Group D implemented in each platform. In this

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Joel Charles, Judith Michael, Lukas Netz, and Bernhard Rumpe

phase, the groups were required to highlight the differences in the
development process and approaches taken in both platforms.

3.4 Phase 4: Evaluation
The final phase contains a formal recording of the student’s experi-
ences with the different LCDPs. Therefore, we set up a study.

Study Design. The main goal of our study was to evaluate
the teaching method. Additionally, we wanted to explore to what
extent both LCDPs are suitable for this lab. The questions of the
study focused on the different modeling techniques, code creation
capabilities, and limitations of both platforms. The questionnaire
included seven topics: (1) self-assessment (2) differences in low-code
approaches (3) visual and textual modeling notations (4) different
modeling languages (5) gaps between models and implementation
(6) development process and methodology (7) provided tooling and
debugging. The students were also allowed to give anonymous
feedback on the structure and organization of the course. Finally,
we used this phase to gather feedback from the students regarding
the organization of the project class to provide a better learning
experience in the next iteration of this project class.

4 Survey
At the end of the course, the students participated in two surveys:
the general student course evaluation of the university and a specific
survey targeting the exact teaching content. Both surveys were
conducted anonymously in compliance with GDPR and were online
available to the students. Seven students participated in the general
student course evaluation and thirteen took part in the specific
survey. Table 1 shows the asked questions and main results.

SurveyParticipants.The course is only part of computer science-
related study programs. Therefore we expected that the participants
have knowledge in programming and computer science. We in-
cluded a self-assessment section in the survey as expert knowledge
in computer science is often also gained outside the study program,
e.g., employment as a software developer or hobby. The question-
naire was completed by 13 of the 16 students that took part in the
lab. The study data can be found at [34]. Three participants are
studying for a Computer Science Bachelor, the others are enrolled
in a Master’s program, either in Computer Science or a subject
strongly related to it. About half claim to have five or more years
of software development experience, whereas the remaining claim
to have almost no experience (1 year or less). Three of the experi-
enced software developers are experts in web development as well,
whereas the others have little to no experience (1 year or less) in
that particular field of software development. None of the students
claim to be an expert in MDSE or low-code development.

Low-Code Platforms. The students were asked to answer ques-
tions about the LCDPs on a scale between 1 and 5: ’1’ in case they
disagreed with the statement and ’5’ in case they agreed. The ma-
jority of the students perceived the LCDPs as helpful and could
see time savings even for the relatively small target applications
they created. Due to the nature of the modeling approach used, the
students faced limitations in their means to define the application
and had to add hand-written code or custom components. On aver-
age the students agreed that these limitations in modeling visual

Figure 4: User Interface for a Tea shop, generated with Mon-
tiGem by Group D

Figure 5: User Interface for a Tea shop, generated with A12

components, and data structures helped to ease the development
process compared to less constrained implementation by hand.

Visual and Textual Modeling Methodology. The two plat-
forms differ in the way they can be used to define models. One
platform provides a lot of visual tool-support to design and config-
ure models whereas the other platform relies on textual input and
command line interfaces. In this context we refer to the method-
ology using visual aids and visual representations to review and
define models as ’visual’ and the methodology that requires the user
to define and review the models on a text-only based representation
as ’textual’. Table 1 shows questions from the survey, regarding
the students’ experiences with both modeling methodologies. The
students could state which modeling methodology they perceived
fitted best to answer the question, ranging from 1 "visual methodol-
ogy" to 5 "textual methodology". The parameter in the last column
of Table 1 is the arithmetic mean of the given answers.

There does not seem to be a clear tendency towards one specific
modelingmethodology (Table 1, Q1.1). The lack of visual aids results
in easier copying and editing of given textual examples and tutorials
(Q1.5, Q1.9), on the other hand, models with a visual notation help
to create completely new models without the need for examples
(Q1.4, Q1.7, Q1.8). The students grasped the information contained
in a model faster when using a visual methodology (Q1.3, Q1.10).
However, the purely textual variant benefits from easy integration
into cooperative software development infrastructure and thus is
perceived as easier to design cooperatively (Q1.11, Q1.12, Q1.13).

Student course evaluation. The students participated in an
evaluation conducted by the university. They were asked to answer
the questions Q2.1 - Q2.8 on a scale between 1 and 5: ’1’ in case
they disagreed with the statement and ’5’ in case they agreed. The
presented value in Table 2 is the median value over all answers pro-
vided by the university. Based on these answers, one can conclude

Teaching Model-Driven Low-Code Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Table 1: Participant Questionnaire: Q1.x: ModelingMethodol-
ogy, Q2.x: Student course evaluation. Answers from 1-5 with
1 visual and 5 textual. The results are the arithmetic mean.

Question Results
Q1.1 I would rather use this modeling variant in a low-

code platform
2,5

Q1.2 It is easier to analyze and understand small models
in this modeling variant

3,5

Q1.3 It is easier to analyze and understand complex and
large models in this modeling variant

2

Q1.4 It is easier to create completely new models in this
modeling variant

2

Q1.5 It is easier to create new models based on existing
ones in this modeling variant

4

Q1.6 It is faster to develop models in this modeling variant 3
Q1.7 It is less error-prone to develop models in this mod-

eling variant
2

Q1.8 It is easier to understand what I can model with this
modeling variant (e.g what elements can be used to
create a model)

3

Q1.9 It is easier to apply learned concepts from documen-
tation in this modeling variant

4

Q1.10 It is easier to navigate in complex and large models
in this modeling variant

3

Q1.11 It is easier to comprehend changes in models in this
modeling variant

4

Q1.12 It is easier to develop models cooperatively in dis-
tributed teams in this modeling variant

4

Q1.13 In general I prefer tooling based on this modeling
method

4

Table 2: Student course evaluation. Answers from 1-5 with 1
disagreeing and 5 agreeing. Results are the arithmetic mean.

Question Results
Q2.1 The course is interesting 4
Q2.2 During the lab I can apply what I have learned. 4
Q2.3 The trials improve my experimental skills. 4
Q2.4 Supervisors could assist with problems that arose 4
Q2.5 Materials provided were helpful 3
Q2.6 The preliminary talks regarding the experiments help

me conduct the experiment.
4

Q2.7 The lab begins and ends on time. 5
Q2.8 The time invested in the work with the digital teach-

ing material was appropriate for the learning objec-
tive.

4

that the students were mainly satisfied with the organization of the
course but the materials provided should be more helpful.

5 Lessons learned
Despite differing levels of experience, we can conclude that the time-
saving properties of the LCDPs enabled the students to create the
applications while remaining within the time constraints of the course
(Q 2.7, Q 2.8). Although the time frame with the second platform
has been shorter, comparable results are achieved. We have to

acknowledge that LCDPs require a certain level of experience (mod-
eling/coding) with the platform. Each platform has its own concepts
that need to be internalized. They differ in their sophistication and
characteristics and depend on the positioning of the platform in
the market. In general, low-code approaches aim to automate as
much of the development process as possible to reduce the time
and resources of the (citizen) developer. Students reported an easier
and less error-prone implementation process by using LCDPs. They
also reported that at least one of the used LCDPs shortened devel-
opment time. In general, the students stated that they were not
able to realize all planned models within the course. Every group
created a functional web application however in order to have more
flexibility both in modeling and in implementation stretch goals’
were discussed with each group. Thus we have to state that the
applications handed in by the students were not completed.

The students using the platform successfully to create concepts and
models, discussing the platforms, and creating an application with
them lead to the conclusion that the students learned how to develop
software with model-driven LCDPs. As stated above, the proposed
course is intended to teach students software development and fa-
miliarize them with LCDPs. In addition to the knowledge acquired
through the practical implementation of the course, students re-
ported learning success by being able to apply their knowledge and
having improved on their skills (Q2.1- Q2.4).

The students would have preferred if the LCDPs would have been
provided with graphical tooling (Table 1, Q1.1), although they have
a general preference for text-based tooling (Q1.13), thus, they do not
favor one specific variant to developmodels as seen in Q1.6.Within the
Computer Science curriculum, students are used to define models
graphically and develop software with textual code editors. In the
course, the students had to rely on both methodologies to create
the web applications. We expected the students to prefer graphical
editing tools. However, there was not a strong tendency towards any
of the variants. The ’textual’ variant was easier to edit cooperatively
(Q1.11, Q1.12) and the examples from documentation were easier
to adapt for the own use case (Q1.5, Q1.9). With visual aids and
graphical editors, students reported getting a better overview of
complex models (Q1.1 - Q1.4, Q1.7).

6 Conclusion
The proposed method teaches important findings about software
engineering processes while providing an insight into the usage
and capabilities LCDPs. When applying this teaching method at
other universities, we suggest the following aspects based on our
findings: (1) Use two LCDPs and choose one with a visual and one
with a textual model representation to show students the differ-
ences in grasping information, copying and editing given examples,
creating new models, and cooperative development. (2) Choose
familiar platforms or ones that are easy to get started with as time
is limited within the lab. Most of the time should be spent by the
students on using the platforms rather than getting to know them.
(3) LCDPs are well suited to teach software development not only in
the context of smaller application prototypes but also for complete
software such as web applications. (4) Supervisors must be familiar
with the platforms and available to students on short notice. LCDPs

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Joel Charles, Judith Michael, Lukas Netz, and Bernhard Rumpe

mantra of reducing hand-written code eliminates many program-
ming errors. However, platform-specific modeling errors can occur
while modeling, for which there are fewer proposed resolutions
online than for general-purpose programming languages. For this
reason, proper documentation and support is critical.

References
[1] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2020.

Enterprise Information Systems in Academia and Practice: Lessons learned from
a MBSE Project. In 40 Years EMISA (EMISA’19) (LNI, Vol. P-304). GI, 59–66.

[2] Benjamin Adrian, Sven Hinrichsen, and Alexander Nikolenko. 2020. App Devel-
opment via Low-Code Programming as Part of Modern Industrial Engineering
Education. In Advances in Human Factors and Systems Interaction. Springer.

[3] Bock Alexander and Frank Ulrich. 2021. In Search of the Essence of Low-Code
An Exploratory Study of Seven Development Platforms. In Int. Conf. on Model
Driven Engineering Languages and Systems Companion (MODELS-C). ACM/IEEE.

[4] Iván Alfonso, Aaron Conrardy, Armen Sulejmani, Atefeh Nirumand, Fitash
Ul Haq, Marcos Gomez-Vazquez, Jean-Sébastien Sottet, and Jordi Cabot. 2024.
Building BESSER: An Open-Source Low-Code Platform. In Enterprise, Business-
Process and Information Systems Modeling. Springer Nature Switzerland, 203–212.

[5] Appian. 2021. Low-Code Application Development. https://appian.com/platform/
low-code-development/low-code-application-development.html

[6] Brigid JS Barron, Daniel L Schwartz, Nancy J Vye, Allison Moore, Anthony
Petrosino, Linda Zech, and John D Bransford. 1998. Doing with understanding:
Lessons from research on problem-and project-based learning. Journal of the
learning sciences 7, 3-4 (1998), 271–311.

[7] Mariana Bexiga, Stoyan Garbatov, and João Costa Seco. 2020. Closing the Gap
between Designers and Developers in a Low Code Ecosystem. In 23rd ACM/IEEE
Int. Conf. on Model Driven Engineering Languages and Systems: Comp. ACM.

[8] Constantin Buschhaus, Arkadii Gerasimov, Jörg Christian Kirchhof, Judith
Michael, Lukas Netz, Bernhard Rumpe, and Sebastian Stüber. 2024. Lessons
Learned from Applying Model-Driven Engineering in 5 Domains: The Success
Story of the MontiGem Generator Framework. Science of Computer Programming
232 (2024), 103033. https://doi.org/10.1016/j.scico.2023.103033

[9] Arvid Butting, Jörg Christian Kirchhof, Anno Kleiss, Judith Michael, Radoslav
Orlov, and Bernhard Rumpe. 2022. Model-Driven IoT App Stores: Deploying Cus-
tomizable Software Products to Heterogeneous Devices. In 21th ACM SIGPLAN
Int. Conf. on Generative Programming: Concepts and Experiences (GPCE 22). ACM.

[10] Jordi Cabot. 2020. Positioning of the Low-Code Movement within the Field
of Model-Driven Engineering. In 23rd Int. Conf. on Model Driven Engineering
Languages and Systems: Companion (MODELS ’20). ACM. https://doi.org/10.
1145/3417990.3420210

[11] Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme Pfeiffer,
Bernhard Rumpe, Simon Varga, and Andreas Wortmann. 2022. Generating
Customized Low-Code Development Platforms for Digital Twins. Journal of
Computer Languages (COLA) 70 (2022).

[12] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas
Wortmann. 2020. Towards a Model-Driven Architecture for Interactive Digital
Twin Cockpits. In Conceptual Modeling. Springer, 377–387.

[13] G. Daniel, J. Cabot, L. Deruelle, and M. Derras. 2020. Xatkit: A Multimodal
Low-Code Chatbot Development Framework. IEEE Access 8 (2020), 15332–15346.
https://doi.org/10.1109/ACCESS.2020.2966919

[14] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo
Tisi, and Manuel Wimmer. 2022. Low-code development and model-driven
engineering: Two sides of the same coin? Software and Systems Modeling 21, 2
(2022), 437–446.

[15] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe,
and Simon Varga. 2021. A Methodology for Retrofitting Generative Aspects
in Existing Applications. Journal of Object Technology (JOT) 20 (2021), 1–24.
https://doi.org/10.5381/jot.2021.20.2.a7

[16] Imke Drave, Judith Michael, Erik Müller, Bernhard Rumpe, and Simon Varga.
2022. Model-Driven Engineering of Process-Aware Information Systems. Springer
Nature Computer Science Journal 3 (2022).

[17] João Paulo Fernandes, Ricardo Araújo, and Mário Zenha-Rela. 2020. Achieving
Scalability in Project Based Learning through a Low-Code platform. In XXXIV
Brazilian Symposium on Software Engineering (SBES ’20). ACM, 710–719. https:
//doi.org/10.1145/3422392.3422482

[18] Víctor M Flores Fonseca and Jesica Gomez. 2017. Applying active methodolo-
gies for teaching software engineering in computer engineering. IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje 12, 4 (2017), 182–190.

[19] Robert France and Bernhard Rumpe. 2007. Model-driven Development of Com-
plex Software: A Research Roadmap. Future of Software Engineering (FOSE ’07)
(2007), 37–54.

[20] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe, Judith
Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2020. Generated

Enterprise Information Systems: MDSE for Maintainable Co-Development of
Frontend and Backend. In Comp. Proc. of Modellierung 2020 Short, Workshop and
Tools & Demo Papers. CEUR-WS, 22–30.

[21] Arkadii Gerasimov, Judith Michael, Lukas Netz, and Bernhard Rumpe. 2021. Agile
Generator-Based GUI Modeling for Information Systems. InModelling to Program
(M2P). Springer, 113–126.

[22] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. 2020. Continuous Transition from Model-Driven Prototype to Full-Size
Real-World Enterprise Information Systems. In 25th Americas Conf. on Information
Systems (AMCIS 2020) (AISeL). AIS, 1–10.

[23] Martin Henkel and Janis Stirna. 2010. Pondering on the key functionality of
model driven development tools: The case of mendix. In International Conference
on Business Informatics Research. Springer, 146–160.

[24] Mary Lebens and Roger Finnegan. 2021. Using a Low Code Development Environ-
ment to Teach the Agile Methodology. In Agile Processes in Software Engineering
and Extreme Programming. Springer International Publishing, 191–199.

[25] Ricardo Martins, Filipe Caldeira, Filipe Sá, Maryam Abbasi, and Pedro Martins.
2020. An overview on how to develop a low-code application using OutSystems.
In 2020 International Conference on Smart Technologies in Computing, Electrical
and Electronics (ICSTCEE). IEEE, 395–401.

[26] Jose Carlos Metrôlho, Fernando Reinaldo Ribeiro, and Pedro Passão. 2020. Teach-
ing Agile Software Engineering Practices Using Scrum and a Low-Code Devel-
opment Platform – A Case Study. In 15th Int. Confe. on Software Engineering
Advances (ICSEA 2020). IARIA, 160–165.

[27] Jose Carlos Metrôlho, R. Araújo, F. Ribeiro, and N. Castela. 2019. An approach
using a low-code platform for retraining professionals to ICT. In EDULEARN19
Proc. IATED, 7200–7207. https://doi.org/10.21125/edulearn.2019.1719

[28] Lionel Mew and Daniela Field. 2018. A Case Study on Using the Mendix Low
CodePlatform to support a Project Management Course. In EDSIG Conference on
Information Systems and Computing Education (EDSIGCON). ISCAP.

[29] mgm technology partners GmbH. 2020. Low Code und Co-Innovation fuer in-
dividuelle Enterprise Software. https://a12.mgm-tp.com/download-whitepaper-
a12-enterprise-low-code.html

[30] mgm technology partners GmbH. 2021. Widget Showcase. https://a12.mgm-
tp.com/showcase/#/

[31] Judith Michael, Dominik Bork, Manuel Wimmer, and Heinrich C. Mayr. 2024.
Quo Vadis Modeling? Findings of a Community Survey, an Ad-hoc Bibliometric
Analysis, and Expert Interviews on Data, Process, and SoftwareModeling. Journal
Software and Systems Modeling (SoSyM) 23, 1 (2024), 7–28. https://doi.org/10.
1007/s10270-023-01128-y

[32] Judith Michael, Bernhard Rumpe, and Simon Varga. 2020. Human Behavior, Goals
and Model-Driven Software Engineering for Assistive Systems. In Enterprise Mod-
eling and Information Systems Architectures (EMSIA), Vol. 2628. CEUR-WS.org.

[33] Judith Michael and Volodymyr Shekhovtsov. 2024. A Model-Based Reference
Architecture for Complex Assistive Systems and its Application. Journal Software
and Systems Modeling (SoSyM) (2024).

[34] Lukas Netz and Judith Michael. 2024. LCPD usage in Education, public survey
results. https://github.com/Lukas-Netz/LCDPs-in-education-survey-data

[35] Nintex. 2024. Nintex - New ways to fast-forward your workflows. https://www.
nintex.com/

[36] Jose Ignacio Panach, Óscar Dieste, Beatriz Marín, Sergio España, Sira Vegas, Óscar
Pastor, and Natalia Juristo. 2021. Evaluating Model-Driven Development Claims
with Respect to Quality: A Family of Experiments. IEEE Transactions on Software
Engineering 47, 1 (2021), 130–145. https://doi.org/10.1109/TSE.2018.2884706

[37] Pega. 2021. Pega Platform. https://www.pega.com/products/platform
[38] Laura Poe and Lionel Mew. 2019. Implementing Agile as an Instructional Method-

ology for Low-Code Software Development Courses.
[39] Clay Richardson and John R. Rymer. 2014. New Development Platforms Emerge

For Customer-Facing Applications. (2014).
[40] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieranto-

nio. 2020. Supporting the understanding and comparison of low-code develop-
ment platforms. In 46th Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA). 171–178. https://doi.org/10.1109/SEAA51224.2020.00036

[41] Raquel Sanchis, Oscar García-Perales, Francisco Fraile, and Raul Poler. 2020. Low-
Code as Enabler of Digital Transformation in Manufacturing Industry. Applied
Sciences 10, 1 (2020). https://doi.org/10.3390/app10010012

[42] Massimo Tisi, Jean-Marie Mottu, Dimitrios Kolovos, Juan De Lara, Esther Guerra,
Davide Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. 2019. Lowco-
mote: Training the next generation of experts in scalable low-code engineering
platforms. In STAF 2019.

[43] Shouhang Wang and Hai Wang. 2021. A Teaching Module of No-Code Business
App Development. Journal of Information Systems Education 32, 1 (2021), 1–8.

[44] Robert Waszkowski. 2019. Low-code platform for automating business processes
in manufacturing. IFAC-PapersOnLine 52, 10 (2019), 376–381. https://doi.org/10.
1016/j.ifacol.2019.10.060

https://appian.com/platform/low-code-development/low-code-application-development.html
https://appian.com/platform/low-code-development/low-code-application-development.html
https://doi.org/10.1016/j.scico.2023.103033
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1109/ACCESS.2020.2966919
https://doi.org/10.5381/jot.2021.20.2.a7
https://doi.org/10.1145/3422392.3422482
https://doi.org/10.1145/3422392.3422482
https://doi.org/10.21125/edulearn.2019.1719
https://a12.mgm-tp.com/download-whitepaper-a12-enterprise-low-code.html
https://a12.mgm-tp.com/download-whitepaper-a12-enterprise-low-code.html
https://a12.mgm-tp.com/showcase/#/
https://a12.mgm-tp.com/showcase/#/
https://doi.org/10.1007/s10270-023-01128-y
https://doi.org/10.1007/s10270-023-01128-y
https://github.com/Lukas-Netz/LCDPs-in-education-survey-data
https://www.nintex.com/
https://www.nintex.com/
https://doi.org/10.1109/TSE.2018.2884706
https://www.pega.com/products/platform
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.3390/app10010012
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.ifacol.2019.10.060

	Abstract
	1 Introduction
	2 Preliminaries & Related Work
	3 Teaching Method & Execution in a Software Engineering Lab
	3.1 Phase 1: Requirement Analysis and Software Design
	3.2 Phase 2: First LCDP
	3.3 Phase 3: Second LCDP
	3.4 Phase 4: Evaluation

	4 Survey
	5 Lessons learned
	6 Conclusion
	References

