
Software Language Engineering in the Large: Towards
Composing and Deriving Languages

Katrin Hölldobler, Bernhard Rumpe, Andreas Wortmann
Software Engineering, RWTH Aachen University, Aachen, Germany www.se-rwth.de

Abstract

Suitable software languages are crucial to tackling the ever-increasing
complexity of software engineering processes and software products. They
model, specify, and test products, describe processes and interactions with
services and serve many other purposes. Meanwhile, engineering suitable
modeling languages with useful tooling also has become a challenging en-
deavor - and far too often, new languages are developed from scratch. We
shed light on the advances of modeling language engineering that facilitate
reuse, modularity, compositionality, and derivation of new languages based
on language components. To this end, we discuss ways to design, combine,
and derive modeling languages in all their relevant aspects. We illustrate the
application of advanced language engineering throughout the paper, which
culminates in the example of deriving complete domain-specific transforma-
tions language from existing language components.

Keywords: Software Language Engineering, Language Composition,
Language Derivation

The limits of my language
mean the limits of my world

– Ludwig Wittgenstein
1. Motivation

Using models to understand and shape the world is a very foundational
technique that has already been used in ancient Greece and Egypt. Scientists
model to comprehend while engineers model to design (parts of) the world.
Although modeling has been employed for ages in virtually all disciplines it is
fairly recent that the form of models is made explicit in modeling languages.

Preprint submitted to Computer Languages, Systems and Structures October 15, 2018

[HRW18] K. Hölldobler, B. Rumpe, A. Wortmann:
Software Language Engineering in the Large: Towards Composing and Deriving Languages.
In: Computer Languages, Systems & Structures, 54, 2018.
www.se-rwth.de/publications/

www.se-rwth.de

Computer science invented this approach to enable formality and a precise
understanding of what is a well-formed model for the communication between
humans and machines.

Programming languages in general, SQL [1], XML [2], and the Unified
Modeling Language (UML) [3, 4, 5] in particular have been developed to
enable such highly precise communication. Despite these efforts, it is ob-
vious that researchers and practitioners of many domains are dissatisfied
by solving domain-specific problems with general purpose languages or uni-
fied languages that try to cover all domains. The general aspiration of
such languages creates a conceptual gap between the problem domains and
the solution domains giving rise to unintended complexities [6]. As a re-
sult, Domain-Specific Languages (DSLs) and Domain-Specific Modeling Lan-
guages (DSMLs) [7, 8, 9, 10] were created to meet domain-specific needs. Due
to the ongoing digitization of virtually every domain in our life, work, and
society, the need for more specific languages arises. It is apparent, that we
need to be able to accommodate new and changing domains with appropriate
domain-specific languages – ideally on-the-fly. This raises three questions:

1. How to design new DSLs that fit specific purposes?

2. How to engineer a DSL from predefined components?

3. How to derive DSLs from existing DSLs?

In this paper, we discuss means to efficiently engineer DSLs and to enable
their composition to facilitate language engineering in the large. One partic-
ular mechanism towards this is language derivation, in which new languages
are derived from existing ones. We present and discuss such a mechanism for
the derivation of transformation languages as well as its application in detail.
Using this can prevent designing new languages from scratch each time and
facilitates efficient engineering of languages from reusable components. The
discussed mechanisms to compose and derive languages are the core of what
we call Software Language Engineering (SLE) [11] today: the discipline of
engineering software languages, which are not only applied to computer sci-
ence, but to any form of domain that deals with data, their representation
in form of data structures, smart systems that need control, as well as with
smart services that assist us in our daily life. This paper extends our previous
work presented in [12, 13] by a refined software language derivation mecha-
nism for domain-specific transformation languages and a detailed description

of the derived MontiArc transformation language. Overall, the contributions
of this paper are

• A presentation of the state of software language engineering with an
example using the MontiCore language workbench (Section 2).

• An investigation of software language composition mechanisms (Sec-
tion 3).

• A detailed presentation of a language derivation mechanism that presents
its derivation rules and a comprehensive example describing the deriva-
tion of the MontiArcTL transformation language (Section 4).

• A discussion of challenges in language engineering (Section 5).

2. Language Engineering

Model-Driven Development [14, 15, 6] lifts abstract models to primary
development artifacts to facilitate software analysis, communication, docu-
mentation, and transformation. Automated analysis and transformation of
models require that these adhere to contracts. Such automation is feasible,
if models conform to contracts in the form of languages specifications. For
many popular modeling languages, such as UML [3], AADL [16], or Mat-
lab/Simulink [17], research and industry have produced useful analyses and
transformations. These rely on making the constituents and concerns of lan-
guages machine processable. To this effect, the discipline of SLE investigates
disciplined and systematic approaches to the design, implementation, testing,
deployment, use, evolution, and recovery of modeling languages.

Similar to research in natural languages, SLE commonly defines languages
as the set of sentences they can produce [18]. Operationalizing languages,
however, requires more precise characterizations. To this effect, languages
usually are defined in terms of their syntax (possible sentences) and semantics
(meaning) [19]. Syntax comprises concrete syntax (words) and abstract syn-
tax (structure), while semantics comprises static semantics (well-formedness)
and dynamic semantics (behavior) [18]. The technical realizations of mod-
eling languages often implement the latter concretization. As “software lan-
guages are software too” [20], their technical realizations are as diverse as
implementations of other software kinds. This complicates comprehensibil-
ity, maintenance, evolution, testing, deployment, and reuse.

To shed light on this diversity of language realization mechanisms, this
section presents different mechanisms to define modeling languages and high-
lights selected language development environments employing these mecha-
nisms. Afterwards, we illustrate the development of a language to represent
a variant of UML class diagrams that will serve as running example for the
subsequent sections.

2.1. Engineering Modeling Languages
Research has produced various means to develop solutions for representing

the different concerns of modeling languages. Lately, two different language
implementation techniques have been distinguished:

1. Internal modeling languages can be realized as fluent APIs [7] in host
programming languages whose method names resemble keywords of
the language. Omitting syntactic sugar (such as dots and parentheses)
as supported by modern programming languages (cf. Groovy, Scala)
enables creating chains of method calls that resemble models. This
method is suitable for language prototyping and promotes reusing the
host language’s tooling (such as parsers, editors, compilers, etc.). The
expressiveness of the modeling language depends on the host program-
ming language.

2. External modeling languages feature a stand-alone syntax that requires
tooling to process its models into machine-processable representations.
While this creates additional effort over internal languages, external
languages can leverage a greater language definition flexibility. How-
ever, language-related tooling must be provided by the language engi-
neer.

The majority of modeling language research focuses on external lan-
guages, which yield greater flexibility in language design. Consequently, re-
search has produced more solutions to the definition of external languages,
which is why we focus on their realization techniques in the following.

Engineering language syntaxes historically is related to the development
and processing of (context-free) grammars [21], which are sets of derivation
rules that at least enable describing the languages’ abstract syntaxes. Many
approaches to grammar-driven language engineering [22] support specifying
a language’s concrete syntax in the same grammar as well [23]; hence, they

enable efficient language development and maintenance. Metamodels are
another popular means to develop the abstract syntax of languages [9]. Here,
classes and their relations structure the syntax of a language. While these do
not support the integration of the concrete syntax (and, hence, always require
providing editors), they enable reifying references between model elements
that are name-based in grammars, as first level references.

Concrete syntaxes are either textual [24, 25], graphical [26], or projec-
tional [9]. Textual syntaxes require parsing, whereas graphical and projec-
tional syntaxes (e.g., forms enabling editing the abstract syntax directly [27])
usually are bound to specific editors. In contrast, textual syntaxes enable
reusing established software engineering tooling, such as editors or version
control systems.

Whether the well-formedness of models is subject to their syntax or their
static semantics is subject to debate [18, 28]. Nonetheless, various techniques
have been established to enforce well-formedness of models with respect to
properties that cannot be captured by grammars or metamodels (e.g., pre-
venting two class members of the same name). Popular approaches to well-
formedness checking are programming language rules and Object Constraint
Language (OCL) [29] constraints. Both require a model’s internal represen-
tation and raise errors if these are not well-formed according to the individual
rule. As OCL is a modeling language itself, it requires interpreting it or trans-
lating the constraints to programming language artifacts actually executed
on the models under development.

Executing models is a popular way to realize their dynamic semantics.
This can have the form of interpretation [30] or transformation [31]. With
the former, a software (the interpreter) processes the models and executes
according to their description. This interpreter can be part of the models
or a separate software. Transformations process models and translates these
into other formalisms with established semantics, such as a programming
language. Model-to-text (M2T) transformations [32] read models of a specific
language and translate these to plain text (such as programming language
code), whereas model-to-model (M2M) transformations [32] translate models
from an input modeling language to an output modeling language. The
former lends itself for ad-hoc transformation development using template
engines or string concatenation (as the output language is not required) but
lacks the structure and verifiability of M2M transformations.

Language workbenches [33] – such as GEMOC Studio [34], Neverlang [35],
MontiCore [36], MPS [27], Rascal [37], or Spoofax [38] – are software develop-

ment environments supporting language engineering. Based on an, usually
fixed, integration of language definition constituents, they facilitate creat-
ing languages and corresponding tooling. For instance, GEMOC Studio [34]
employs ECore [39] metamodels for abstract syntax, OCL for static seman-
tics, and Kermeta [30] for weaving interpretation capabilities into its lan-
guages. Concrete syntax can, e.g., have the form of Xtext [40] grammars
or Sirius [41] editors. The meta programming system (MPS) features pro-
jectional language engineering on top of a metamodel and combines this
with well-formedness checking and execution through M2M transformations.
Neverlang [35] supports grammar-based language definition and focuses on
combining these with language processing tools. It executes models via in-
terpretation.

Other approaches to engineering reusable languages and language mod-
ules focus on defining languages through attribute grammars [42], which sup-
port encoding semantics (such as behavior) into the abstract syntax itself.
While this enables incremental language engineering [43], a more compact
definition of languages and enforces considering language reuse with respect
to syntax and semantics, it usually forces language engineers to master ad-
ditional formalisms and tooling (e.g., a grammar-embedded behavior lan-
guage [44, 45]) instead of being able to reuse established mechanisms (such
as Xtend [46] or FreeMarker [47]). Similarly, ASF+SDF environment enables
specifying syntax through SDF in a BNF-like fashion and supports algebraic
specification of semantics with ASF [48]. While this is even more expressive
than attribute grammars, it again demands specific metalanguage tooling
that language engineers rarely are familiar with.

The next section illustrates engineering of a textual modeling language
for class diagrams (CDs) with the MontiCore language workbench.

2.2. Language Engineering with MontiCore
MontiCore [24, 49, 36] is a language workbench for the efficient engi-

neering of compositional modeling languages. The concrete and abstract
syntax of languages are defined as extended context-free grammars (CFG).
From these grammars, MontiCore generates parsers and abstract syntax
classes. The parser enables processing textual models into instances of the
languages’ abstract syntax classes. To ensure well-formedness of parsed mod-
els, MontiCore also supports a Java-based well-formedness checking frame-
work. With this, Java context conditions process these models to check their

well-formedness prior to applying M2M transformations [12] or template-
based code generators [50]. MontiCore supports language inheritance, lan-
guage embedding, and language aggregation [49] to reuse and combine lan-
guages with little effort. Language inheritance resembles language extension
as presented in [51, 52], but in contrast to operating on attribute gram-
mars, MontiCore operates on CFGs, focuses on code generation, and leaves
the choice of model behavior implementation language to the developer (al-
though FreeMarker [47] is supported out-of-the-box).

Various MontiCore languages have been engineered for and applied to
different domains1, including automotive [53], cloud computing [54], smart
homes [55], robotics [50], and software engineering [4, 5] itself. For the latter,
we have developed the UML/P family of modeling languages [5], which is a
subset of UML [3] that is refined to enable pervasive model-driven engineer-
ing. The UML/P includes the class diagram for analysis (CD4A) modeling
language, which is used to illustrate language engineering techniques in the
following.

Consider the excerpt of the CD4AnalysisMontiCore grammar depicted
in Figure 1, which defines the syntax of the CD4A modeling language. The
grammar comprises productions that define the integrated concrete and ab-
stract syntax of language elements. After the keyword grammar and its
name, the grammar extends the grammar Basics to reuse previously de-
fined productions (l. 1), such as rules for types and names. Afterwards,
the productions follow that characterize this variant of UML class diagrams.
Each rule is defined by a head (before the “=”, e.g., CDDefinition in l. 2)
and a body. The head of a rule declares a new language element and the
body defines its properties. To this effect, the body contains terminals (e.g.,
"classdiagram" in l. 2) and non-terminals (e.g., Class in l. 3). Different
operators (e.g., “*” in l. 3, “?” in l. 13, and “+” in l. 15) define the quantity
or presence of a part in a rule’s body.

Based on this grammar, the CD4A model, shown as an excerpt in Fig-
ure 2, can be created. It describes a simplified banking system consisting of
a package declaration (l. 1), an abstract Account class to describe different
types of accounts (ll. 3-7), an interface to model employees (l. 17) and its
implementation (ll. 18-20), as well as multiple associations (e.g., l. 55). From
this grammar, MontiCore produces a parser and an abstract syntax class for

1See http://monticore.de/languages/

http://monticore.de/languages/

grammar CD4Analysis extends Basics {
CDDefinition = "classdiagram" Name "{"

(Class | Interface | Enum | Association)*
"}"

Class = Modifier? "class" Name
("extends" superclass:ReferenceType)?
("implements" interfaces:(ReferenceType || ",") +)?
(ClassBody | ";");

ClassBody = "{" (Attribute)* "}";
Modifier = abstract:["abstract"];
Attribute = "private" Type Name;

}

01
02
03
04
…
13
14
15
16
17
18
19
20
21

MCG

language extension

iteration of
alternatives

optionality

comma-separated list of
ReferenceType instances

concrete syntax keyword

Figure 1: An excerpt of a MontiCore grammar for the CD4A language.

each rule. The latter captures the rule’s right-hand side by providing mem-
bers capable of storing its content. Additionally, MontiCore’s infrastructure
applies context conditions – manually created Java rules defined relative to
the abstract syntax of CD4A – to determine the well-formedness of mod-
els. This is used, for instance, to ensure uniqueness of class names within a
diagram.

3. Composing Modeling Languages

Model-Driven Development is successful when initiated bottom-up [56],
i.e., developers employ modeling languages considered suitable for their domain-
specific challenges instead of using predefined, monolithic general-purpose
modeling techniques. For efficient language engineering, evolution, valida-
tion, and maintenance, these languages should be retained as independent as
possible. Ultimately, however, combining such languages mandates their ef-
ficient composition [18]. Considering, for instance, the software of the smart
and modular factories imagined within Industry 4.0, which demand integrat-
ing business processes, domain models, behavior models and failure models
of the automation systems, assembly plan models, manipulator kinematics,
and more. Integrating these modeling languages into a combined software
requires well-defined operations for their composition.

Software engineering itself is another prime example of a domain leverag-

package banking;

classdiagram BankingSystem {

abstract class Account {

long number;

int balance;

int overdraft;

}

interface Employee;

class Consultant implements Employee {

String name;

}

association [1] Account <-> [[name]] Consultant;

}

01

02

03

04

05

06

07

…

17

18

19

20

…

55

56

CD4A

Figure 2: An example of a CD4A model describing a lightweight banking system.

ing language composition to facilitate development, evolution, and mainte-
nance. To this effect, research and industry have produced languages for
(1) modeling structure and behavior of the software under development,
such as UML [3]; (2) describing database interaction, such as SQL [1] or
HQL [57]; (3) describing software build processes, such as Maven’s Project
Object Models [58]; (4) describing configuration of product lines [59], such as
feature diagrams [31]; (5) describing model changes in a structured fashion,
such as delta modeling languages [60] (6) extending models with additional,
external information (tagging languages [61]); (7) coordinating the use of
different modeling languages, such as the BCOol language [62]; (8) trans-
forming models of other languages, such as ATL [63] or the FreeMarker [47]
template language; and (9) describing the syntax and semantics of modeling
languages, such as ECore [39], Kermeta [30], Melange [64], or MontiCore [24].

Consequently, structured reuse of language parts is crucial to enable
efficient SLE. While research on language integration has produced reuse
concepts and relations to language definition concerns [18], the diversity
of language realization techniques has spawned very different reuse mecha-
nisms [51]. Generally, we distinguish language integration, which produces a
new language, from existing languages, from language coordination, in which
the sentences of two languages (i.e., their models) are related to achieve
common goals [18].

For integrating languages, concepts such as merging of metamodels [64],

inheriting and embedding of grammars [52, 49], importing or combining of
metamodel and grammar elements [65, 66, 67, 68, 69] as well as interoperabil-
ity by translating between different metamodels using horizontal model trans-
formations [70, 71] have been conceived. These mechanisms enable a white-
box integration to extend and refine existing abstract syntaxes to domain-
specific requirements but rarely consider including integration of other lan-
guage concerns. For instance, efficient creation of models conforming to lan-
guages produced through merging, inheritance, or importing of parts of other
languages requires creating or extending proper editors. Even when editors
for the base languages exist, this requires handcrafting editing capabilities for
the extensions. Similar challenges arise for reusing language semantics. As
these usually are realized through model interpretation or model transforma-
tion, the corresponding tools of extended languages must also be extended.
Yet, there are only a few approaches that support compositional semantics
realizations, such as code generator composition mechanisms [50] or code
generator reuse by translating between metamodels [70, 72, 71]. Further-
more, when integrating different grammars, ambiguities in parsing can arise
as discussed in [73].

Coordination of modeling languages is less invasive, but mandates means
to reason over models of coordinated languages – either for their joint analysis
or their joint execution. The former, for instance, requires checking the valid-
ity of feature models or model transformations with respect to the referenced
models. To prevent tying the referencing languages to abstract syntax inter-
nals of the referenced languages, abstraction mechanisms, such as the symbol
tables of MontiCore [49] have been developed. Joint execution of models of
different languages requires exposing and combining their execution mecha-
nisms. Where languages originate from the same language workbench, this
integration has been addressed (e.g., by exposing the executable interfaces
of model elements [74]). Truly heterogeneous, generalizable coordination has
yet to be achieved.

In the next section, we sketch how applying language integration mecha-
nisms to the CD language enables preparing it for code generation.

3.1. Extending and Refining a MontiCore Language
To enable describing software-related properties of domain models more

precisely (e.g., their behavior), we extend the CD4A language by additional
language constructs such as methods and their bodies. On the other hand,

grammar CD4Code extends CD4Analysis {
start CDDefinition;

ClassBody = "{" (Attribute | Method)* "}";
Method = returnType:Type Name Parameters "{" Statement* "}";
Parameters = "(" (Parameter || ",")* ")";
Parameter = Type Name;
interface Statement;
// various implementations of interface Statement

}

01
02
03
04
05
06
07
08
…
82

MCG

Figure 3: An excerpt of the CD4Code extension of CD4A.

modeling abstract classes should be prevented without breaking existing
CD4A-processing tooling.

For the former, the CD4Code grammar extends CD4Analysis (cf. Fig-
ure 1) and introduces methods with return types and bodies. For the latter,
we introduce a new well-formedness rule that rejects models with abstract
classes. An excerpt of the newly created CD4Code language is shown in Fig-
ure 3. It extends the CD4Analysis language (l. 1) and reuses its start rule
(l. 2). In addition, the ClassBody rule is overridden and adds methods
(ll. 4-8) and leverages MontiCore’s interface productions to enable vari-
ous statement implementations for method bodies (e.g., assignments, condi-
tionals, loops, etc.).

The rule Class of CD4Analysis also features an optional Modifier,
which is translated to a field of the corresponding type in the abstract syn-
tax representing Class. Consequently, reused CD4A tooling expecting a
Modifier field (e.g., a model checker) will not break as the field still is
present in the abstract syntax. However, due to the new well-formedness
rule, there will never be a CD4Code diagram instance with an “abstract”
modifier. Ambiguity between nonterminal names is detected by MontiCore
and handled by choosing the first occurrence replacing all further references
to this nonterminal [36]. Further ambiguities are detected by the underlying
ANTLR parser generator [75].

4. Deriving Modeling Languages

Software engineering leverages modeling languages to mechanize working
with models of other languages, such as transformation languages [63, 76],

delta modeling languages [60], or tagging languages [61]. Such languages
have in common that they are either overly generic or are specifically tied
to a base language (i.e., the languages whose models are transformed or
tagged). The former requires developers to learn completely new languages
that are independent of a (possibly well-known) base language, while the
latter raises the challenge of engineering and maintaining specific languages
as well as their specific tooling (editors, analyses, transformations), which is
hardly viable.

To address the latter, methods to develop new languages by deriving their
syntaxes from related base languages have been developed. These meth-
ods rely on processing the base languages’ (abstract) syntaxes and creat-
ing new (abstract) syntaxes from them. Where the base languages are de-
fined by grammars, such derivation can produce derived concrete syntaxes.
For metamodel-based language definition, this would require deriving editor
(parts) instead. Automating the creation of well-formedness rules and be-
havior implementations of derived languages is more challenging as both may
differ from the base languages completely. Where, for example, Statecharts
describe state-based behavior, a transformation language derived from State-
charts describes how to translate Statechart models into something else. The
behaviors of both languages are unrelated. The same holds for their well-
formedness rules.

After an example illustrating the benefits of deriving modeling languages
from other languages, this section presents a mechanism to derive Domain-
Specific Transformation Languages (DSTLs) and demonstrates it by deriving
the grammar MontiArcTL.

4.1. Example for Modeling Language Derivation
Consider developing software architectures for cyber-physical systems. A

recent study on architecture description languages (ADLs) [77] identified
over 120 different ADLs for different domains and use cases [78]. These
range from industrial, comprehensive languages for specific domains (such
as AADL [16] for avionics) to less complex, academic languages (such as
ACME [79]). Nonetheless, learning a new ADL requires considerable effort.

Many of the ADLs identified in [78] have in common that they enable
decomposing complex architectures into hierarchically composed, intercon-
nected components that operate individually and exchange messages through
explicit ports. An example for such an architecture, formulated in the Mon-
tiArc ADL [80], is depicted in Figure 4 (a), which sketches the composed

component Robot {

port in Image img,

out State state;

component Controller ctrl {

port in Image img;

}

connect img -> ctrl.img;

}

01

02

03

04

05

06

07

08

MA

composed component

typed, directed
message ports

subcomponent

connector

component Robot {

port in Image img,

out State state;

component Controller ctrl {

port in Image img;

}

connect img -> ctrl.img;

component Monitor monitor {

port in Image trigger,

out State state;

}

connect img -> monitor.trigger;

connect monitor.state -> state;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

MA

new system elements achieved
through model transformation

(a) Robot architecture prior to transformation .

(b) After transformation, Robot includes a

monitor and related connectors.

Figure 4: Robot architecture before and after transformation.

component Robot receiving an input Image via its incoming port img
and passes that to its Controller that decides on its reaction. A typi-
cal pattern for such systems is to include run-time monitoring, which can
be achieved through integrating a monitor component and connectors as de-
picted in Figure 4 (b). For each affected component, a new sub-component
of type Monitor should be introduced that receives the same input as the
containing component. The monitor evaluates the input and determines
the containing component’s state based on the input. This state is emitted
through the containing component’s state port, such that other compo-
nents can take this state into consideration.

Instead of integrating this infrastructure manually for every component, it
should be added automatically through appropriate transformations. Learn-
ing a general-purpose transformation language to describe transformations
for the ADL of choice requires additional effort. Creating a transformation
language that uses the syntax of the ADL of choice can reduce this effort
accordingly. Obviously, using the exact same syntax is not feasible as trans-
formation languages usually describe patterns of replacing model elements.
Hence, such languages require means to describe patterns with static and
variable parts. Ideally, architecture developers can describe these patterns in
familiar syntax.

For the integration of monitoring infrastructure as illustrated in Figure 4
(b), a transformation should check whether the affected component does not
contain a monitor yet and integrate a monitor and connectors accordingly.

component $_ {

port in $portType $portName;

out State state;

component Controller $_ {

port in $portType $portName;

}

not [[component Monitor monitor {}]]

[[:- component Monitor monitor { port in $portType trigger, out State state; }]]

[[:- connect $portName -> monitor.trigger;]]

[[:- connect monitor.state -> state;]]

}

01

02

03

04

05

06

07

08

09

10

11

12

MATrans

part of the pattern

replacement operators
(replace left-hand side
with right-hand side)

schema variable

pattern matching arbitrary component names

Figure 5: A domain-specific transformation that integrates monitoring infrastructure
into composed components using the base ADL’s syntax.

Figure 5 depicts such a pattern in a DSTL derived from MontiArc. The pat-
tern begins with matching arbitrary, composed components that contain a
Controller sub-component that receives inputs from its containing com-
ponent (ll. 1-6). This yields an outgoing State port, and does not contain a
Monitor sub-component yet (l. 8). If such a component is met, a Monitor
with corresponding ports and connectors is added to the containing compo-
nent (ll. 9-11).

Evidently, this pattern resembles the input language very closely: it uses
the same concrete syntax to describe patterns and replacements, i.e., it uses
vocabulary the developers are already familiar with [81, 82]. However, trans-
formations require greater flexibility (e.g., to match arbitrary composed com-
ponents) than the base languages to enable more powerful patterns. This
relaxation [83, 84] requires to ease constraints of the base language, to, for
instance, enable omitting base language model elements in patterns that are
irrelevant to it.

Deriving such languages often enables to retain large parts of the syntax of
the base language and, hence, reduces the effort of learning the new language.
Therefore, the following sections explain how to derive a DSTL and detail
the resulting MontiArcTL grammar.

4.2. Elements of a DSTL
This section describes the elements that a derived DSTL supports. Based

on this, the derivation of DSTLs is explained in the subsequent sections. The
explanation partly reproduces the explanation given in our previous work
[76], presents new derivation rules, and provides additional details.

4.2.1. Concrete Syntax and Schema Variables for Pattern
First of all, a derived DSTL needs to be able to describe the model part

being transformed, i.e., the pattern. As DSTLs are tailored to their corre-
sponding DSLs, the syntax for describing patterns is taken from the DSL
and complemented with transformation specific operators explained in this
section. Consequently, every model itself is a valid pattern described us-
ing the DSTL. In addition, a DSTL relaxes the constraints of its DSL such
that a pattern does not necessarily need to be a complete model [83, 84].
Instead, every model element defined by a non-terminal in the DSL is al-
lowed as a top-level element in the pattern. For example, a pattern for a
MontiArc model can describe connectors without specifying its surrounding
component. Furthermore, only properties of the model element relevant to
the pattern need to be described. For instance, if a component’s ports are ir-
relevant for the transformation they need not be specified within the pattern
even though the component in the model could have ports. Omitted proper-
ties do not specify their absence, instead, there is nothing said about these
properties. To explicitly prevent the occurrence of certain model elements
within the model, negation can be used (cf. Section 4.2.3). These elements
are explained subsequently. Finally, DSTLs provide schema variables for ab-
straction purposes, i.e., they can be used instead of specifying the pattern
element and thus only specify the presence of a certain element, and bind
pattern elements to variables. Schema variables consist of a “$” sign and
a name, e.g., $portName in Figure 5. Furthermore, using the application
constraint explained in Section 4.2.7, constraints based on the schema vari-
ables can be expressed. Finally, schema variables can serve as a placeholder
for values calculated and assigned to them as described in Section 4.2.6.

There are three possible way to use schema variables. The simplest form
regards names in the model, i.e., usages of the non-terminal Name in the
grammar of the DSL. In MontiArcTL, this form can be used, for instance, to
match component names and port names, for instance. Instead of a concrete
name, a schema variable is used. In Figure 5, this form is used for the names
of the ports ($portName). Using the same schema variable multiple times
– as in the example – expresses that the corresponding name occurrences in
the model must be identical.

The second way of using schema variables is to bind pattern elements.
For this purpose, the pattern element is enclosed in double square brackets
and preceded by a schema variable, e.g., $C [[component Monitor

{}]].
The third way is suitable for model elements defined by non-terminals

such as components ports or connectors. In this case, a schema variable is
used instead of a pattern element. This form consists of the schema variable
and the type of the variable which is the name of the non-terminal in the
DSL’s grammar. Therefore, the pattern just expresses that an element cor-
responding to the type of the schema variable must be present in the model
but does not restrict its structure, e.g., MAComponent $C.

A match for the pattern is found in a model if a corresponding model
element for every element of the pattern is found. If no match for the pattern
exists the transformation is not applicable.

4.2.2. Replacement Operator
Graph transformations [85] typically express transformations by describ-

ing two graphs, the left-hand side (LHS) and the right-hand side (RHS). The
LHS describes the pattern, while the RHS describes the same model part
after applying the transformation. Elements only present in the graph of the
LHS are deleted, elements present on both sides are kept and elements only
present on the RHS are created. Separating these graphs complicates writing
and understanding transformations. All elements that should be kept need
to be repeated on the RHS and the modification needs to be understood by
comparing both graphs. Thus, an integrated notation that only marks added
and deleted elements is preferable as realized by several tools such as Hen-
shin [86, 87] or eMoflon [88]. Derived DSTLs also use an integrated notation
and provide a replacement operator for this purpose. The operator has the
following syntax:

"[[" Element? ":-" Element? "]]" (1)

The operator replaces the element specified on the left of :- by the one
on its right. Furthermore, both sides can be left blank. If there is an element
on the left-hand side only it is removed, if it is on the right-hand side only
it is added. For example, in Figure 5, the operator is used to add a monitor
component and connecting ports (ll. 9-11). Besides replacing, adding and
removing elements, moving elements is possible using the replacement oper-
ator. Therefore, this operator is used in conjunction with schema variables.
In this case, an element is bound to a schema variable and the replacement
operator is used to remove it in one location and add it to another location

within the model. Due to the schema variable, the bound element is added
instead of a newly created one.

4.2.3. Negative Elements
Another feature derived DSTLs require is to prevent the presence of cer-

tain model elements, for instance, those elements that should be added. To
express this, DSTLs provide an operator that marks elements as forbidden.
The operator has the following syntax:

"not" "[[" Element "]]" (2)

Thus, an element is enclosed in brackets and marked with the keyword
not to mark it as a negative and thus forbidden element. If negative elements
are present within the pattern a match for this pattern is found if a match for
the “simple” pattern elements is found and no match for the negative elements
is found. In this case, the transformation is applicable. For example, the
operator is used in Figure 5 (l. 8) to ensure no monitor component is present
before applying the transformation.

For simplicity and usability reasons negative elements are not allowed
to be nested. However, this limitation is compensated by the application
constraint explained in Section 4.2.7.

4.2.4. Collection Operator
A further feature of the derived DSTLs is the collection operator similar

to the set nodes in PROGRES [89] or multi objects in Fujaba [90]. Using this
operator, it is possible to match several similar structures within the model.
In contrast, to set nodes and multi objects, the collection operator allows to
match subpatterns multiple times. The operator has the following syntax:

"list" "[[" Element "]]" (3)

The operator encloses a pattern element – and attached child elements
– in double square brackets and marks it with the keyword list. Other
approaches provide collection operators as well [91, 92, 93, 94, 95, 96, 97],
however, these do not use the concrete syntax of the DSL for the opera-
tor. The collection operator is greedy, i.e., it matches its pattern as often
as possible but at least once. In case the collection operator is used, the
transformation is applicable if a match for the "simple" pattern elements,
no match for the negative elements and at least one match for the pattern

inside the collection operator is found. An example for the collection opera-
tor is provided in Figure 6. Here, the pattern matches a component and all
connectors defined inside it.

component $_ {

list [[connect $_ -> $_ ;]]

}

MATrans
01

02

03

Figure 6: Example for the collection operator.

4.2.5. Optionality Operator
The DSTLs also provide an optionality operator, which enables marking

pattern elements as optional. Optional elements are matched if they are
present within the model. However, in case no match for an optional pattern
element is found, the transformation is still applicable. Thus, this operator
is useful to reduce the number of necessary transformations as this operator
allows to handle two cases – the element is present or absent – within the
same transformation. The operator has the following syntax:

"opt" "[[" Element "]]" (4)

Thus, this operator encloses a model element in brackets and marks it
with the keyword opt. If an optional element is present in the pattern,
the transformation is applicable if the transformation without the optional
part is applicable. However, in case a match for the optional element is
present it is matched by the transformations and – if combined with the
replacement operator – modified. An example for the optional operator is
shown in Figure 7. This transformation matches an arbitrary component and
a port of type State of this component, if present.

component $_ {

opt [[port in State $_ ;]]

}

MATrans
01

02

03

Figure 7: Example for the optionality operator.

4.2.6. Variable Assignment
Derived DSTLs also feature an assignment block that allows calculating

values for schema variables that only occur on the RHS. This is useful for

values calculated based on other pattern elements, e.g., uncapitalize compo-
nent types for deriving instance names [98]. The assignment block has the
following syntax:

"assign" "{"

(SchemaVar "=" Expression ";")+

"}"

(5)

An example of an assignment is shown in Figure 8. Here, the transfor-
mation adds an instance name to a subcomponent [98] and derives the name
based on the component’s type.

component $type [[:- $name]] ;

assign { $name = uncapitalize($type) }

MATrans
01

02

03

Figure 8: Example for the assignment block.

4.2.7. Application Constraint
Finally, the application constraint allows constraining the applicability of

a transformation. Therefore, the application constraint allows formulating
an expression that needs to be fulfilled. All variables used in the pattern
are available within the application constraint. Thus, if a pattern element
needs to be further constrained, a variable needs to be attached to it. The
application constraint has the following syntax:

"where" "{"

BooleanExpression

"}"

(6)

component $type {}

where { $type.equals("Monitor") }

MATrans
01

02

03

Figure 9: Example for application constraints.

An example of an assignment is shown in Figure 9. The transformation
matches a component but uses a variable for the component’s type. For
demonstration purposes, it uses the application constraint to constrain the
possible type of the component.

4.3. Deriving a Domain-Specific Transformation Language
Transformation languages support pattern descriptions and replacement

operations over elements of modeling languages. Domain-specific transfor-
mation languages realize both using the syntax of the DSL they are derived
from. In [76], we presented rules to derive DSTLs from a given DSL. Such
a DSTL consists of a common base grammar providing DSL-independent el-
ements and of a grammar derived from the base language that defines the
DSL-specific elements. This section presents the corresponding derivation
rules to create the non-terminals for the DSTL’s operators and introduces
new derivation rules to complement [76]. As presented in [12, 76] models of
the DSTL, i.e., transformations, are translated to Java implementations that
are used to apply the corresponding transformations.

4.3.1. Rule 1: Grammar Structure
The quintessential element of a DSTL is its grammar, which our deriva-

tion mechanism populates with individual non-terminals for the different
transformation operations. This rule distinguishes between monolithic and
modular base grammars. For monolithic base grammars, it derives a sin-
gle new DSTL grammar. For modular, i.e., inheriting, grammars, it retains
the inheritance relations and creates DSTL grammars for each super gram-
mar. The resulting DSTL grammar then inherits from the DSTL grammars
derived from the super grammars.

Rule 1. For a base grammar L, create a new grammar TL. If L is mono-
lithic, TL inherits from TFCommons, i.e.,

grammar TL extends TFCommons { }

Otherwise, for all of L’s super grammars SL1 . . . SLn, create the according
DSTL TSL1 . . . TSLn and create a new grammar header that inherits from
these grammars, i.e.,

grammar TL extends TSL1, ..., TSLn { }

Here, the names TSL1, ..., TSLn are derived from their respective base
grammars by adding the suffix TL (for “transformation language”).

The grammar TFCommons is a basis used for all DSTLs either directly or
transitively. This grammar provides DSL-independent non-terminals, such
as TfIdentifier that is used for schema variables and replacements of
names, as well as the non-terminals for the assignment block and the appli-
cation constraints as explained later on.

4.3.2. Rule 2: Concrete Syntax and Schema Variables
For each non-terminal and each relevant keyword of the base grammar, we

create an interface non-terminal in the DSTL’s grammar. Keywords repre-
sented in the abstract syntax of the DSL are changeable and thus considered
as relevant. For instance, the keyword component of a component in Mon-
tiArc is not changeable – and hence has no representation in the abstract
syntax – but a method’s visibility keyword may be changed from public to
private and could be reflected by Boolean attributes in the abstract syn-
tax. Implementation of the respective interfaces enables using not only the
base DSL’s concrete syntax but also schema variables and other operations
in its place. In the following, L denotes the base DSL’s grammar, TL the
DSTL under construction, N , K, and I are non-terminals and k a relevant
keyword. To capture the different alternatives for the DSL’s non-terminals,
this rule is split into six sub-rules.

Rule 2a. For each interface non-terminal N ∈ L, create a new interface
non-terminal N in the DSTL TL. If N ∈ L extends an interface non-termi-
nal I ∈ L, then N ∈ TL extends the interface non-terminal I ∈ TL.

Rule 2b. For each normal non-terminal N ∈ L, create a new interface non-
terminal N in the DSTL TL. If N ∈ L implements an interface non-termi-
nal I ∈ L, then N ∈ TL also extends the interface non-terminal I ∈ TL.
If N ∈ L extends a normal non-terminal Y ∈ L, then N ∈ TL extends the
interface non-terminal Y ∈ TL.

The first two sub-rules ensure that inheritance relations between non--
terminals of the DSL are represented in the DSTL. The next rule enables
patterns over keywords in the DSTL. Here, the interface non-terminal’s name
is derived from the keyword’s name by capitalizing its first letter, e.g., a
keyword abstract yields a DSTL non-terminal Abstract.

Rule 2c. For each relevant keyword k ∈ L, create a new interface non-ter-
minal K in TL.

To flexibly match underspecified parts of the base DSL, the DSTL must
support using patterns in place of the DSL’s concrete syntax. As we recon-
structed the DSL’s structure using interfaces, appropriate patterns can easily
be integrated through interface implementations as presented below:

Rule 2d. For each normal non-terminal N ∈ L, create a new non-terminal
N_Pat ∈ TL, such that:

N_Pat implements N =

SyntaxOfN
| "N" SchemaVar

| SchemaVar "[[" SyntaxOfN "]]";,

where SyntaxOfN is a modified copy of N ’s rule body. This copy is mod-
ified to replace (1) all occurrences of relevant keywords k ∈ L with their
corresponding interface non-terminals; and (2) all occurrences of the non--
terminal Name with the non-terminal TfIdentifier, which is defined in
the base grammar TFCommons.

This rule produces a disjunction of three parts. The first part is a copy
of the DSL’s syntax and, thus, allows describing the pattern by using the
same vocabulary as used in the model. Due to the derivation of interface
non-terminals described above, referenced non-terminals within the copied
syntax point to the created interface non-terminals. Consequently, the rep-
resentation of the base grammar’s non-terminals does not rely on the base
grammar’s productions but references the derived interface non-terminals of
the DSTL. This enables using the base grammar’s concrete syntax (includ-
ing schema variables) as well as the operators defined in the following. The
second part of the disjunction provides the option to use a schema variable
without specifying any properties of the matched model element (cf. Sec-
tion 4.2.1). The last part combines schema variables with copied syntax and
facilitates binding pattern elements to variables (cf. Section 4.2.1).

Interface non-terminals do not define the concrete syntax on their own.
Hence, the representation of interface non-terminals omits SyntaxOfN . More-
over, transformation developers should be enabled to underspecify which spe-
cific implementation of a grammar rule must be present in a model. Thus,
their representation introduces schema variables of the interface non-termi-
nal’s kind:

Rule 2e. For each interface non-terminal N ∈ L, create a new non-terminal
N_Pat ∈ TL, such that:

N_Pat implements N =

"N" SchemaVar | SchemaVar "[[" N "]]";

The concrete syntax of a keyword is the keyword itself. Thus, there
are no schema variables for keywords and the created DSTL elements omit
corresponding alternatives:

Rule 2f. For each relevant keyword k ∈ L, create a new non-terminalK_Pat ∈
TL, such that:

K_Pat implements K = k;

4.3.3. Rule 3: Replacement Operator
The replacement operator enables to create, update, and (re)move model

elements in an integrated notation. We derive a specific replacement op-
erator for each non-terminal and relevant keyword of the base grammar to
support this create, read, update and delete functionality. As replacing model
elements differs from replacing keywords, this rule is separated into two sub-
rules accordingly.

Rule 3a. For each normal non-terminal or interface non-terminal N ∈ L,
create a new non-terminal N_Rep ∈ TL, such that

N_Rep implements N = [[lhs:N? :- rhs:N?]];

These N_Rep non-terminals enable CRUD for model elements. The
second part of this rule is responsible for supporting CRUD for keywords.

Rule 3b. For each relevant keyword k ∈ L, create a non-terminal K_Rep ∈
TL, such that:

K_Rep implements K =

[[k :-]] | [[:- k]];

4.3.4. Rule 4: Negation Operator
Automated model transformation also needs to be able to react on omit-

ted model elements. This, for instance, is useful to ensure the creation of new
model elements only in case they are not already present. To support this, we
derive rules for each non-terminal and relevant keyword that support spec-
ifying its negation. Again, this rule is separated into two parts responsible
for model elements and keywords, respectively.

Rule 4a. For each normal non-terminal and interface non-terminal N ∈ L,
create a new non-terminal N_Neg, such that:

N_Neg implements N = not [[N]];

Rule 4b. For each relevant keyword k ∈ L, create a new non-terminal
K_Neg ∈ TL, such that:

K_Neg implements K = not [[k]];

4.3.5. Rule 5: Collection Operator
The patterns introduced so far enable matching a single occurrence of a

modeling element or keyword only. For better expressiveness, we introduce
a collection operator that matches the contained pattern one or multiple
times. The following rule creates the required non-terminals to use collection
operators.

Rule 5. For each normal non-terminal or interface non-terminal N ∈ L,
create a new non-terminal N_List ∈ TL, such that:

N_List implements N = list [[N]];

For keywords, such a collection operator would match models supporting
the same keywords at the same position several times. As this should be
prevented in general [99], a collection operator for keywords is not supported.

4.3.6. Rule 6: Optional Operator
Optional occurrences of model elements are a specific refinement of col-

lections that support zero or one of the specified model elements only. As
optionality can be applied to keywords, this rule is separated into parts re-
sponsible for model elements and keywords also.

Rule 6a. For each normal non-terminal or interface non-terminal N ∈ L,
create a new non-terminal N_Opt ∈ TL, such that:

N_Opt implements N = opt [[N]];

Rule 6b. For each relevant keyword k ∈ L, create a new non-terminal
K_Opt ∈ TL, such that:

K_Opt implements K = opt [[k]];

With these rules in place, transformations can act upon optional model
elements and keywords by matching the contained pattern at most one time.
This supports transforming elements that might be present in a model.

4.3.7. Rule 7: Starting Rules for DSTLs
Finally, each DSTL requires a dedicated starting rule combining the mod-

eling elements specific to the DSTL with DSTL-independent application con-
straints and assignments. To this end, we combine the interfaces derived via
rules 2-6 into the disjunction AlternativeOfNTs and concatenate appli-
cation constraints (Where clauses) as well as assignments (Assign block).
Application constraints and assignments leverage expressions and statements
imported from a language provided by the transformation framework.

Rule 7. Create a non-terminal TFRule such that:

TFRule = (AlternativeOfNTs)* Where? Assign?;

This lifts all modeling elements of the base language to the DSTLs top
level, which enables describing transformations beginning with nested el-
ements of the base language. This enables defining transformations that
match, for instance, ports of a component without having to model contain-
ing modeling elements of the host language. This allows for more efficient
transformation modeling. Moreover, it enables specifying patterns over dif-
ferent modeling elements that do not share a common parent element. This
especially enables addressing different models in a single transformation.

4.4. Deriving and Applying a Transformation Language
Figure 10 illustrates deriving and applying a transformation language

using MontiTrans. MontiTrans is a generator that implements the derivation
rules described in Section 4.3 and serves to demonstrate the applicability
of our approach. It generates the DSTL grammar and the infrastructure
to generate Java implementations for transformations described using the
DSTL. MontiTrans thus automates the development of DSTLs for language
developers and provides a generator for transformation developers to turn
their transformations into executable Java code.

For language developers, developing a DSTL according to the derivation
described in Section 4.3 consists of applying the MontiTrans generator and
providing the resulting DSTL including the created generator to transforma-
tion developers.

To apply a transformation, it is translated into a Java class that realizes a
pattern matching algorithm and is capable of modifying the model according
to the modifications described by the transformation. To ease the application

Model as

AST

DSL

DSTL
Transformation

Generator

Java

Implementation

Language Developer

Modeler

Transformation

Developer

Transformed

Model as AST

«instance»

«instance»

«generates»

«generates»

«generates»

«input»

«input»

«input»

Transformation

MontiTrans

Figure 10: Overview of deriving and applying a transformation language using Monti-
Trans.

of generated transformation implementations they share a uniform interface
as illustrated by Figure 11: Every generated transformation implementation
provides a constructor to pass one or multiple models to the transforma-
tion. Furthermore, methods to match the pattern and modify the model are
provided by every transformation: (1) the doPatternMatching method
executes the pattern matching part of the transformation and return true
in case the pattern was found, (2) the doPatternReplacement method
can be used to modify the model after the pattern was matched, and (3) the
doAll method first executes the pattern matching and afterwards modifies
the model. Finally, for every schema variable defined within a transformation
corresponding access methods are generated. These can be used to retrieve
the matched elements from the transformation (get) or to predefine the pat-
tern elements for the transformation (set). Thus, these methods turn schema

AddMonitor

AddMonitor(ASTNode� models)
boolean doPatternMatching()
doReplacement()
doAll()
set_$portName(String a)
String get_$portName()
String get_$portType()
set_$portType(String a)

CD
�

pass one or multiple models
to the transformation

get or set values for
schema variables used
within the transformation

matches the pattern within
the given model(s)modifies the model

matches the pattern
and modifies the model

Figure 11: Java class generated for the exemplary MontiArcTL transformation shown
in Figure 5.

variables into parameters of a transformation.
Creating Java transformation implementations that share a uniform inter-

face facilitates using transformations. Furthermore, these implementations
can easily be provided as libraries and used within different projects, such
as, for instance, different generators.

4.5. Deriving the MontiArcTL DSTL
Derivation of the MontiArcTL grammar begins with deriving transfor-

mation languages for the languages it extends. As MontiArc inherits from
the Types language provided by MontiCore to describe types and literals,
our automated transformation language derivation first derives the TypesTL
transformation language (cf. Section 4.3.1). Afterwards, it derives the Mon-
tiArcTL grammars as depicted in Figure 12 (right). While the MontiArc
grammar contains further elements (e.g., to model components, ports, or
connectors), these are not considered yet.

grammar MontiArcTL extends TypesTL {

}

MCGgrammar MontiArc extends Types {

// further elements

}

MCG

transformation language
derived for the Types language

Figure 12: Applying derivation rule 1.

The second derivation rule (cf. Section 4.3.2) iterates over interface non-
terminals and normal non-terminals of the MontiArc grammar and creates
an interface non-terminal of the same name in MontiArcTL for each. Rela-
tions between interface non-terminals and normal non-terminals are reflected
by non-terminal extensions between the created interface non-terminals in
MontiArcTL. Lifting non-terminals of the base language to interfaces in the

transformation language enables providing different implementations (such
as patterns) at the same place. Applying rule 2 also creates a first imple-
mentation for each new interface non-terminal in MontiArcTL: the pattern
capable of matching the processed non-terminals. This pattern is a disjunc-
tion of three parts that enables matching either (1) the concrete syntax of
the input non-terminal; (2) a schema variable matching a complete instance
of the input non-terminal; or (3) a schema variable matching instances of this
non-terminal with specific properties. To this end, it also replaces occurrences
of names with instances of TfIdentifier to ensure schema variables can
be used and replacements of names can be expressed.

For the input non-terminal MAComponent of MontiArc as depicted in
Figure 13 (left), this results in the interface MAComponent and its pattern
MAComponent_Pat. This non-terminal, for instance, enables matching the
component Robot with the pattern depicted bottom-left in Figure 13 with
the pattern depicted bottom-right.

component $_ {
// further elements

}

component Robot {
// further elements

}

MA

grammar MontiArcTL {

interface MAComponent extends Element;

MAComponent_Pat implements MAComponent =

Stereotype?
"component" Name:TfIdentifier
(instanceName:TfIdentifier)?
head:ComponentHead
body:ComponentBody

| "MAComponent" schemaVar:Name

| schemaVar:Name "[["

Stereotype?
"component" Name:TfIdentifier
(instanceName:TfIdentifier)?
head:ComponentHead
body:ComponentBody

"]]";
}

MCGgrammar MontiArc {

MAComponent implements Element =

Stereotype?
"component" Name
(instanceName:Name)?
head:ComponentHead
body:ComponentBody;

}

MCG

MATrans

TfIdentifier
replaces

Name

Figure 13: Applying derivation rule 2.

To create, replace, or delete instances of non-terminals, the third deriva-
tion rule (cf. Section 4.3.3) creates a replacement operator for each normal
non-terminal and interface non-terminal of MontiArc as depicted in Fig-

ure 14: for the non-terminal MAComponent (top left) derivation creates the
non-terminal MAComponent_Rep (top right). This rule introduces a re-
placement pattern that supports omitting its left-hand side or its right-hand
side, and, thus, enables creating or deleting instances of the MAComponent
non-terminal. To enable using this pattern in places where components can
be matched, the non-terminal MAComponent_Rep also becomes an imple-
mentation of MontiArcTL’s MAComponent interface. Applying this pattern
to component Robot (bottom left) enables, for instance, integrating a new
subcomponent to take care of monitoring the Robot’s behavior (bottom
right).

component $_ {

[[:- component Monitor monitor {

port in $portType trigger,

out State state;

}]]

}

component Robot {

// further elements

}

MA

grammar MontiArcTL {

interface MAComponent extends Element;

MAComponent_Rep implements MAComponent =

"[[" lhs:MAComponent? ":-" rhs:MAComponent? "]]";

}

MCGgrammar MontiArc {

MAComponent implements Element =

Stereotype?

"component" Name

(instanceName:Name)?

head:ComponentHead

body:ComponentBody;

}

MCG

MATrans

enables creating, replacing, and deleting components using
the interface non-terminal Component of MontiArcTL

Figure 14: Applying derivation rule 3.

Similarly, the derivation rules 4-6 (cf. Section 4.3.4 - 4.3.6) create new non-
terminals to negate patterns, list pattern instances, and handle optionality
in MontiArcTL, respectively. For MontiArc’s non-terminal MAComponent,
this produces the three rules MAComponent_Neg, MAComponent_List,
and MAComponent_Opt as depicted in Figure 15 (bottom right).

After applying these rules, MontiArcTL contains all patterns derived from
the interface non-terminals and normal non-terminals of MontiArc. To en-
able specifying any patterns, derivation rule 7 (cf. Section 4.3.7) creates the
TFRule starting non-terminal for MontiArcTL. TFRule is an iteration of
disjunctions over all interfaces derived from MontiArc’s non-terminals fol-
lowed by an assignments block and a where clause. This non-terminal enables
describing transformations over arbitrary many patterns, restricting their
appearances through the where clause if necessary, and computing complex
calculations without polluting the patterns.

component $_ {

not [[component Monitor monitor { }]]

list [[component $_ { }]]

opt [[component Logger log { }]]

}

component Robot {

component Monitor monitor {

port in Trigger trigger,

out State state;

}

}

MA

grammar MontiArcTL {

interface MAComponent extends Element;

MAComponent_Neg implements MAComponent = // Rule 4

"not" "[[" MAComponent "]]";

MAComponent_List implements MAComponent = // Rule 5

"list" "[[" MAComponent "]]";

MAComponent_Opt implements MAComponent = // Rule 6

"opt" "[[" MAComponent "]]";

}

MCGgrammar MontiArc {

MAComponent implements Element =

Stereotype?

"component" Name

(instanceName:Name)?

head:ComponentHead

body:ComponentBody;

}

MCG

MATrans

Figure 15: Applying derivation rules 4, 5, and 6.

4.6. Related Language Derivation Mechanisms
There are various approaches to engineer domain-specific transformation

languages. These, however, provide semi-automated support only [82, 83,
100, 101] or require fully manual language engineering [84, 102, 103]

Semi-automated approaches often derive pattern languages based on the
input languages’ metamodels [82, 83]. While this enables specifying the left-
hand side and right-hand side of the transformation, the DSTL developer
must provide a concrete syntax manually (e.g., through an editor). Similarly,
there are approaches to derive graphical DSTLs from graphical DSLs [100,
101]. Here, concrete syntax and abstract syntax must be integrated manually
as well.

Manual engineering of DSTLs often begins bottom-up, such that com-
plex DSTLs are composed of individual transformation modules [102, 103].
Lacking automated integration, manually engineering DSTLs from modules
is generally as complex as engineering new DSTLs from scratch. A tool to
overcome this challenge is AToMPM [104, 105], which supports automated
derivation of graphical DSTLs only. The ideas presented in [106] also sup-
port automated derivation of DSTLs. An implementation is yet to be pre-
sented. Another approach is presented in [48] here a language definition can
be accompanied by a set of rewriting rules. These rewriting rules provide
a similar functionality as a derived transformation language such as rewrit-

component $name {
}

assign { $name = $name + "Monitored"; }
where { !$name.contains("Monitored") }

component Robot {
// further elements

}

MA

grammar MontiArcTL {

TFRule =
(MAComponent | Port | Connector | /*…*/)*
TFAssignments? TFWhere?;

// Inherited from TFCommons
TFAssignments = "assign" "{" Assign* "}";

Assign =
variable:Name "=" value:Expression ";" ;

TFWhere =
"where" "{" constraint:Expression "}";

}

MCGgrammar MontiArc {

MAComponent implements Element = /*…*/;
Port implements Element = /*…*/;
Connector implements Element = /*…*/;

}

MCG

MATrans

Figure 16: Applying derivation rule 7.

ing for patterns, list operator or conditional rewriting rules described using
the languages concrete syntax. However, the intention of the approach pre-
sented in [48] differs as the underlying assumption is that all models of a
language are treated similarly and transformations are used to compile, i.e.,
generate the corresponding code and thus rewriting rules can be developed in
conjunction with the grammar. In contrast, our approach not only addresses
compiler or generator developers but in addition modelers that should be able
to express transformations for their models, e.g. to refactor or systematically
update their models. Transformations can be developed independently of the
grammar and thus be added without changing the grammar. It is also possi-
ble to develop different sets of transformations for different target platforms
[98]. Furthermore, the generated code is Java code instead of C code, which
integrates nicely with the MontiCore language workbench. The generated
pattern matching process is realized by graph transformation rather than
term rewriting and not limited to one input model. Matches for patterns can
even be distributed over several input models.

Other uses for language derivation are tagging, delta-modeling, and spec-
ification of edit operations. Tagging languages [61], for instance, enable at-
taching information (tags) to models of the language the tagging language is
derived from. This enables functionality similar to stereotypes but prevents

polluting the base model. Delta-modeling languages enable describing trans-
formations for specific models using the base language’s syntax [107, 60]. In
contrast to transformations, deltas rarely are generalizable to sets of mod-
els. Similarly, model-editing language [108, 109] derive syntax-preserving edit
operations for models of the base language.

Generating transformations from example models is another way to au-
tomatically derive transformations. However, these do not lead to reusable
DSTLs [110, 111, 112, 113, 114, 115].

5. Discussion

Research in software language engineering investigates the efficient engi-
neering, deployment, use, and evolution of software languages to support soft-
ware engineers and domain experts to efficiently model future systems. DSLs
foster innovation and efficiency in software engineering. They have become
crucial innovation drivers in many disciplines, including Automotive [116],
Avionics [16], Civil Engineering [117], Industry 4.0 [118], Robotics [119], and
Software Engineering.

Yet, many successful DSLs are engineered ad-hoc and proprietary. With-
out concentrated research on foundations, concepts, methods, and tools for
software language engineering, software engineering practitioners and re-
searchers will be unable to leverage these benefits to deploy the future’s
smart, distributed, cyber-physical systems. The adoption of DSLs raises
three challenges:

1. The lack of commonly accepted foundations of software languages that
practitioners and researchers of different domains can use, rely, and
advance upon;

2. The systematic reuse of DSLs and DSL components to efficiently engi-
neer new languages from existing ones;

3. The coordinated use of multiple DSLs each handling specific system
aspects that enable domain experts to contribute their expertise to
complex projects; and

Regarding commonly accepted foundations for SLE, there are some agree-
ments in some schools of thoughts. These include, for instance, agreeing on
the conceptual constituents of a software language, such as concrete syntax,

abstract syntax, static semantics, and dynamic semantics [18], as well as
agreeing on specific implementation technologies, such as EMF ECore [39].
While the former leaves much room for interpretation, the latter only touches
the abstract syntax. Commonly accepted technological foundations for im-
plementation of concrete syntax, static semantics, and dynamic semantics are
yet to be identified. Consequently, many language workbenches stipulate dif-
ferent notions of language components and feature different implementation
technologies [33].

Flexible reuse of DSLs and DSL components from different technologi-
cal spaces to construct new languages would greatly benefit from commonly
accepted foundations. Without these, reuse is restricted to specific techno-
logical spaces, such as between ECore-based languages or MontiCore lan-
guages. In these spaces, different approaches to reuse languages – either
through composition [51], integration [18], or derivation (cf. Section 4.3) –
have been achieved. The derivation mechanism explained in this paper fo-
cusses on transformation languages and illustrates that deriving languages
from another might be a worthwhile investigation as well. It has been applied
to deriving delta languages [60] and tagging languages [61] as well, but its
generalization requires further investigation.

Recently, concepts of reuse for DSLs have been presented that operate on
staging different reuse mechanisms according to the VCU [120] (variability,
customization, use) model [121]. While these can support reuse in the same
technological space, truly flexible reuse of DSLs and DSL components across
language workbench boundaries requires for efficiently bridging their respec-
tive technological spaces or agreeing on a “lingua franca” for DSL definition
– similar to many general-purpose programming languages being compatible
to the JVM (e.g., Scala, Groovy).

The efficient coordinated use of multiple DSLs for different system as-
pects currently is successful for apriori integrated language families (such as
the UML [3] or SysML [122] languages) only. For heterogeneous, indepen-
dent languages, their coordinated reuse still requires comprehensive efforts to
integrate both the DSLs and related software tools. Research in solutions to
the coordinated execution of models focuses on exchanging symbols between
the DSLs and having a mechanism to control the flow of symbols between
models of the different DSLs [62]. Coordinated use of DSLs would require an
understanding of possible DSL manifestations that is yet to be achieved.

6. Conclusion

Ludwig Wittgenstein once postulated that the limits of his language are
the limits of his world. Modern programming languages are suitable to de-
scribe structure, operations, and data, while general-purpose modeling lan-
guages, such as UML, are suitable for specifying structure, architecture, and
behavior of software systems. However, both kinds of languages suffer from
being designed for software engineers and raise a gap between the problem
domains (such as medicine, physics, robotics) and the solution domain of
software engineering.

Software is eating the world and domains are being digitalized with in-
creasing velocity. Consequently, an increasing number of non software ex-
perts (such as physicists, mechanical engineers, or even lawyers) have to
manage to encode their information, knowledge, methods, and procedures
digitally. Thus, providing suitable languages to these domain experts is cru-
cial. This includes models of various unforeseen forms and calls for a strong
and active field of software language engineering.

Software language engineering envisions a systematic way of developing
language components, integrating and composing these into larger languages,
modifying and extending these as desired, as well as to facilitate the evolution
of digitalized domains. We discussed these language engineering techniques
on three levels: domain-specific transformation models support domain ex-
perts in modifying their models without being forced to learn overly generic
transformation languages (level 1). The DSTL itself is generated based on
a DSL using a language derivation mechanism (level 2). This, in turn, is
engineered by means of a grammar-based language workbench – in this case,
MontiCore (level 3). Only on the level of language workbenches, language
engineering techniques become feasible.

Despite these principles being understood to some extent, it still takes
more time and joint research efforts to industrially capitalize on these ad-
vances.

References

[1] C. J. Date, H. Darwen, A Guide to the SQL Standard, Vol. 3, Addison-
Wesley New York, 1987.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,

Extensible markup language (XML), World Wide Web Journal 2 (4)
(1997) 27–66.

[3] Object Management Group, Unified Modeling Language (UML), Ver-
sion 2.5, http://www.omg.org/spec/UML/2.5/PDF/, [Online;
Accessed: 12.10.2017] (2015).

[4] B. Rumpe, Modeling with UML: Language, Concepts, Methods,
Springer International, 2016.

[5] B. Rumpe, Agile Modeling with UML: Code Generation, Testing,
Refactoring, Springer International, 2017.

[6] R. France, B. Rumpe, Model-driven Development of Complex Software:
A Research Roadmap, Future of Software Engineering (FOSE ’07) (2)
(2007) 37–54.

[7] M. Fowler, Domain-Specific Languages, Addison-Wesley Professional,
2010.

[8] P. Hudak, Domain Specific Languages, Handbook of programming lan-
guages 3 (39-60) (1997) 21.

[9] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, G. Wachsmuth, DSL Engineering - Designing, Imple-
menting and Using Domain-Specific Languages, dslbook.org, 2013.

[10] A. van Deursen, P. Klint, J. Visser, Domain-specific languages: An
annotated bibliography, ACM Sigplan Notices 35 (6) (2000) 26–36.

[11] A. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels, Addison-Wesley, 2008.

[12] L. Hermerschmidt, K. Hölldobler, B. Rumpe, A. Wortmann, Gener-
ating Domain-Specific Transformation Languages for Component &
Connector Architecture Descriptions, in: Workshop on Model-Driven
Engineering for Component-Based Software Systems (ModComp’15),
Vol. 1463 of CEUR Workshop Proceedings, 2015, pp. 18–23.

[13] K. Hölldobler, A. Roth, B. Rumpe, A. Wortmann, Advances in Model-
ing Language Engineering, in: International Conference on Model and
Data Engineering, Springer, 2017, pp. 3–17.

http://www.omg.org/spec/UML/2.5/PDF/

[14] C. Atkinson, T. Kuhne, Model-driven development: a metamodeling
foundation, IEEE software 20 (5) (2003) 36–41.

[15] B. Selic, The pragmatics of model-driven development, IEEE software
20 (5) (2003) 19–25.

[16] P. H. Feiler, D. P. Gluch, Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language,
Addison-Wesley, 2012.

[17] J. Abell, MATLAB and SIMULINK. Modeling Dynamic Systems, Cre-
ateSpace Independent Publishing Platform, 2016.

[18] T. Clark, M. G. J. van den Brand, B. Combemale, B. Rumpe, Con-
ceptual Model of the Globalization for Domain-Specific Languages, in:
Globalizing Domain-Specific Languages, Springer, 2015, pp. 7–20.

[19] D. Harel, B. Rumpe, Meaningful Modeling: What’s the Semantics of
”Semantics”?, IEEE Computer 37 (10) (2004) 64–72.

[20] J.-M. Favre, D. Gasevic, R. Lämmel, E. Pek, Empirical language anal-
ysis in software linguistics., in: SLE, Springer, 2010, pp. 316–326.

[21] D. E. Knuth, Semantics of context-free languages, Theory of Comput-
ing Systems 2 (2) (1968) 127–145.

[22] P. Klint, R. Lämmel, C. Verhoef, Toward an Engineering Discipline
for Grammarware, ACM Transactions on Software Engineering and
Methodology (TOSEM) 14 (3) (2005) 331–380.

[23] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel, Monti-
Core: A Framework for the Development of Textual Domain Specific
Languages, in: 30th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion Volume,
2008, pp. 925–926.

[24] H. Krahn, B. Rumpe, S. Völkel, MontiCore: a Framework for Composi-
tional Development of Domain Specific Languages, International Jour-
nal on Software Tools for Technology Transfer (STTT) 12 (5) (2010)
353–372.

[25] G. H. Wachsmuth, G. D. P. Konat, E. Visser, Language Design with
the Spoofax Language Workbench, IEEE Software 31 (5) (2014) 35–43.

[26] S. Ellner, W. Taha, The semantics of graphical languages, in: PEPM
’07: Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, ACM Press,
New York, NY, USA, 2007, pp. 122–133.

[27] M. Völter, K. Solomatov, Language modularization and composition
with projectional language workbenches illustrated with MPS, Software
Language Engineering, SLE 16 (2010) 3.

[28] H. Grönniger, B. Rumpe, Modeling Language Variability, in: Work-
shop on Modeling, Development and Verification of Adaptive Systems,
LNCS 6662, Springer, 2011, pp. 17–32.

[29] M. Richters, M. Gogolla, On formalizing the UML object constraint
language OCL, ER 98 (1998) 449–464.

[30] J.-M. Jézéquel, O. Barais, F. Fleurey, Model Driven Language Engi-
neering with Kermeta, GTTSE 9 (2009) 201–221.

[31] K. Czarnecki, Generative Programming-Principles and Techniques
of Software Engineering Based on Automated Configuration and
Fragment-Based Component Models, Ph.D. thesis, Technical Univer-
sity of Ilmenau (1998).

[32] T. Mens, P. van Gorp, A Taxonomy of Model Transformation, Elec-
tronic Notes in Theoretical Computer Science 152 (2006) 125 – 142.

[33] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al., Evaluating
And Comparing Language Workbenches: Existing Results And Bench-
marks For The Future, Computer Languages, Systems & Structures 44
(2015) 24–47.

[34] B. Combemale, J. Deantoni, O. Barais, A. Blouin, E. Bousse, C. Brun,
T. Degueule, D. Vojtisek, A Solution to the TTC’15 Model Execution
Case Using the GEMOC Studio, in: 8th Transformation Tool Contest,
CEUR, 2015.

[35] E. Vacchi, W. Cazzola, Neverlang: A framework for feature-oriented
language development, Computer Languages, Systems & Structures 43
(2015) 1–40.

[36] B. Rumpe, K. Hölldobler, MontiCore 5 Language Workbench. Edition
2017, Aachener Informatik-Berichte, Software Engineering Band 32,
Shaker Verlag, 2017.

[37] P. Klint, T. van der Storm, J. Vinju, RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation, in: Ninth IEEE
International Working Conference on Source Code Analysis and Ma-
nipulation, IEEE, 2009, pp. 168–177.

[38] L. Kats, E. Visser, The Spoofax Language Workbench, in: W. R. Cook
(Ed.), Proceedings of the ACM international conference on Object ori-
ented programming systems languages and applications, ACM, 2010,
p. 444.

[39] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse
Modeling Framework, Pearson Education, 2008.

[40] M. Eysholdt, H. Behrens, Xtext: implement your language faster than
the quick and dirty way, in: Proceedings of the ACM international
conference companion on Object oriented programming systems lan-
guages and applications companion, SPLASH ’10, ACM, New York,
NY, USA, 2010, pp. 307–309.

[41] V. Viyović, M. Maksimović, B. Perisić, Sirius: A rapid development
of DSM graphical editor, in: Intelligent Engineering Systems (INES),
2014 18th International Conference on, IEEE, 2014, pp. 233–238.

[42] P. Deransart, M. Jourdan, B. Lorho, Attribute grammars: definitions,
systems and bibliography, Vol. 323, Springer Science & Business Media,
1988.

[43] M. Mernik, V. Žumer, Incremental programming language develop-
ment, Computer Languages, Systems & Structures 31 (1) (2005) 1–16.

[44] I. F. Jr., T. Kosar, I. Fister, M. Mernik, Easytime++: A case study of
incremental domain-specific language development, ITC 42 (1) (2013)
77–85.

[45] M. Challenger, M. Mernik, G. Kardas, T. Kosar, Declarative specifica-
tions for the development of multi-agent systems, Computer Standards
& Interfaces 43 (2016) 91–115.

[46] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend, Packt Publishing Ltd, 2016.

[47] J. Radjenovic, B. Milosavljevic, D. Surla, Modelling and implementa-
tion of catalogue cards using FreeMarker, Program 43 (1) (2009) 62–76.

[48] M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier, Compiling
language definitions: the ASF+ SDF compiler, ACM Transactions on
Programming Languages and Systems (TOPLAS) 24 (4) (2002) 334–
368.

[49] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Völkel, A. Wortmann, Composition of Heterogeneous Modeling
Languages, in: Model-Driven Engineering and Software Development,
Vol. 580 of Communications in Computer and Information Science,
Springer, 2015, pp. 45–66.

[50] J. O. Ringert, A. Roth, B. Rumpe, A. Wortmann, Language and Code
Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems, Journal of Software Engineering
for Robotics (JOSER) 6 (1) (2015) 33–57.

[51] S. Erdweg, P. G. Giarrusso, T. Rendel, Language Composition Untan-
gled, in: Proceedings of the Twelfth Workshop on Language Descrip-
tions, Tools, and Applications, LDTA ’12, ACM, New York, NY, USA,
2012.

[52] M. Mernik, An object-oriented approach to language compositions for
software language engineering, Journal of Systems and Software 86 (9)
(2013) 2451–2464.

[53] C. Berger, B. Rumpe, Engineering Autonomous Driving Software, in:
C. Rouff, M. Hinchey (Eds.), Experience from the DARPA Urban Chal-
lenge, Springer, Germany, 2012, pp. 243–271.

[54] A. Navarro Pérez, B. Rumpe, Modeling Cloud Architectures as Inter-
active Systems, in: Model-Driven Engineering for High Performance

and Cloud Computing Workshop, Vol. 1118 of CEUR Workshop Pro-
ceedings, 2013, pp. 15–24.

[55] T. Kurpick, M. Look, C. Pinkernell, B. Rumpe, Modeling Cyber-
Physical Systems: Model-Driven Specification of Energy Effi-
cient Buildings, in: Modelling of the Physical World Workshop
(MOTPW’12), ACM, 2012, pp. 2:1–2:6.

[56] J. Whittle, J. Hutchinson, M. Rouncefield, The State of Practice in
Model-Driven Engineering, Software, IEEE 31 (3) (2014) 79–85.

[57] W. Iverson, Hibernate: A J2EE (TM) Developer’s Guide, Addison-
Wesley Professional, 2004.

[58] F. P. Miller, A. F. Vandome, J. McBrewster, Apache Maven, Alpha
Press, 2010.

[59] P. Clements, L. Northrop, Software Product Lines, Addison-Wesley„
2002.

[60] A. Haber, K. Hölldobler, C. Kolassa, M. Look, K. Müller, B. Rumpe,
I. Schaefer, C. Schulze, Systematic Synthesis of Delta Modeling Lan-
guages, Journal on Software Tools for Technology Transfer (STTT)
17 (5) (2015) 601–626.

[61] T. Greifenberg, M. Look, S. Roidl, B. Rumpe, Engineering Tagging
Languages for DSLs, in: Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’15), ACM/IEEE, 2015, pp. 34–43.

[62] M. E. V. Larsen, J. Deantoni, B. Combemale, F. Mallet, A behav-
ioral coordination operator language (BCOoL), in: Model Driven En-
gineering Languages and Systems (MODELS), 2015 ACM/IEEE 18th
International Conference on, IEEE, 2015, pp. 186–195.

[63] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transfor-
mation tool, Science of computer programming 72 (1-2) (2008) 31–39.

[64] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.-M. Jézéquel,
Melange: A Meta-language for Modular and Reusable Development of
DSLs, in: 8th International Conference on Software Language Engi-
neering (SLE), Pittsburgh, United States, 2015, pp. 25–36.

[65] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann,
E. Visser, Library-based Model-driven Software Development with Sug-
arJ, in: Proceedings of the ACM international conference companion
on Object oriented programming systems languages and applications
companion, ACM, 2011, pp. 17–18.

[66] A. Johnstone, E. Scott, M. G. J. van den Brand, Modular Grammar
Specification, Science of Computer Programming 87 (2014) 23 – 43.

[67] L. V. Reis, V. O. D. Iorio, R. S. Bigonha, An on-the-fly grammar mod-
ification mechanism for composing and defining extensible languages,
Computer Languages, Systems & Structures 42 (2015) 46 – 59, special
issue on the Programming Languages track at the 29th ACM Sympo-
sium on Applied Computing.

[68] B. Basten, J. van den Bos, M. Hills, P. Klint, A. Lankamp, B. Lisser,
A. van der Ploeg, T. van der Storm, J. Vinju, Modular language im-
plementation in Rascal - experience report, Science of Computer Pro-
gramming 114 (2015) 7 – 19, LDTA (Language Descriptions, Tools,
and Applications) Tool Challenge.

[69] A. M. Şutî, M. G. J. van den Brand, T. Verhoeff, Exploration of modu-
larity and reusability of domain-specific languages: an expression DSL
in MetaMod, Computer Languages, Systems & Structures 51 (2018)
48 – 70.

[70] H. Kern, Model Interoperability between Meta-Modeling Environments
by using M3-Level-Based Bridges, Ph.D. thesis, University of Leipzig
(2016).

[71] G. Kardas, E. Bircan, M. Challenger, Supporting the Platform Exten-
sibility for the Model-Driven Development of Agent Systems by the In-
teroperability Between Domain-Specific Modeling Languages of Multi-
Agent Systems., Computer Science and Information System 14 (2017)
875–912.

[72] J. M. Gascueña, E. Navarro, A. Fernández-Caballero, R. Martínez-
Tomás, Model-to-model and Model-to-text: Looking for the Automa-
tion of VigilAgent, Expert Systems 31 (3) (2014) 199–212.

[73] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, E. Visser, Disam-
biguation Filters for Scannerless Generalized LR Parsers, in: R. N.
Horspool (Ed.), Compiler Construction, Springer Berlin Heidelberg,
2002, pp. 143–158.

[74] J. Deantoni, Modeling the Behavioral Semantics of Heterogeneous Lan-
guages and their Coordination, in: Architecture-Centric Virtual Inte-
gration (ACVI), 2016, IEEE, 2016, pp. 12–18.

[75] T. Parr, The definitive ANTLR 4 reference, Pragmatic programmers,
The Pragmatic Programmers, 2014.

[76] K. Hölldobler, B. Rumpe, I. Weisemöller, Systematically Deriv-
ing Domain-Specific Transformation Languages, in: Conference on
Model Driven Engineering Languages and Systems (MODELS’15),
ACM/IEEE, 2015, pp. 136–145.

[77] N. Medvidovic, R. N. Taylor, A classification and comparison frame-
work for software architecture description languages, IEEE Transac-
tions on software engineering 26 (1) (2000) 70–93.

[78] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, What In-
dustry Needs from Architectural Languages: A Survey, Software Engi-
neering, IEEE Transactions on 39 (6) (2013) 869–891.

[79] D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural Description of
Component-Based Systems, Foundations of component-based systems
68 (2000) 47–68.

[80] A. Butting, A. Haber, L. Hermerschmidt, O. Kautz, B. Rumpe,
A. Wortmann, Systematic Language Extension Mechanisms for the
MontiArc Architecture Description Language, in: Modelling Foun-
dations and Applications (ECMFA’17), Held as Part of STAF 2017,
Springer International Publishing, 2017, pp. 53–70.

[81] B. Rumpe, I. Weisemöller, A Domain Specific Transformation Lan-
guage, in: Workshop on Models and Evolution (ME), 2011.

[82] T. Baar, J. Whittle, On the Usage of Concrete Syntax in Model
Transformation Rules, in: Perspectives of Systems Informatics, LNCS,
Springer, 2007, pp. 84–97.

[83] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer, Explicit
Transformation Modeling, in: Models in Software Engineering, Vol.
6002 of LNCS, Springer, 2010, pp. 240–255.

[84] E. Syriani, J. Gray, H. Vangheluwe, Modeling a Model Transforma-
tion Language, in: I. Reinhartz-Berger, A. Sturm, T. Clark, S. Cohen,
J. Bettin (Eds.), Domain Engineering, Springer, 2013, pp. 211–237.

[85] K. Czarnecki, S. Helsen, Feature-based survey of model transformation
approaches, IBM Systems Journal 45 (3) (2006) 621–645.

[86] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transforma-
tions, in: Proceedings of MoDELS’10, Vol. 6394 of LNCS, Springer,
2010, pp. 121–135.

[87] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf,
M. Tichy, Henshin: A Usability-Focused Framework for EMF Model
Transformation Development, Springer, 2017, pp. 196–208.

[88] E. Leblebici, A. Anjorin, A. Schürr, Developing eMoflon with eMoflon,
in: International Conference on Theory and Practice of Model Trans-
formations, Springer, 2014, pp. 138–145.

[89] A. Schürr, A. J. Winter, A. Zündorf, Graph grammar engineering with
PROGRES, in: W. Schäfer (Ed.), Software Engineering - ESEC ’95,
Vol. 989 of LNCS, Springer, 1995, pp. 219–234.

[90] L. Geiger, A. Zündorf, Tool Modeling with Fujaba, Electronic Notes in
Theoretical Computer Science 148 (1) (2006) 173–186.

[91] R. Grønmo, S. Krogdahl, B. Møller-Pedersen, A Collection Operator
for Graph Transformation, Software & Systems Modeling 12 (1) (2013)
121–144.

[92] C. Fuss, V. E. Tuttlies, Simulating Set-Valued Transformations with
Algorithmic Graph Transformation Languages, in: A. Schürr, M. Nagl,
A. Zündorf (Eds.), Applications of graph transformations with indus-
trial relevance, Vol. 5088 of LNCS, Springer, 2008, pp. 442–455.

[93] M. Minas, B. Hoffmann, An Example of Cloning Graph Transforma-
tion Rules for Programming, Electronic Notes in Theoretical Computer
Science 211 (2008) 241–250.

[94] D. Balasubramanian, A. Narayanan, S. Neema, F. Shi, R. Thibodeaux,
G. Karsai, A Subgraph Operator for Graph Transformation Languages,
Electronic Communications of the EASST 6.

[95] A. Rensink, Nested Quantification in Graph Transformation Rules,
in: A. Corradini (Ed.), Graph Transformation, Vol. 4178 of LNCS,
Springer, 2006, pp. 1–13.

[96] B. Hoffmann, D. Janssens, N. van Eetvelde, Cloning and Expanding
Graph Transformation Rules for Refactoring, Electronic Notes in The-
oretical Computer Science 152 (2006) 53–67.

[97] J. de Lara, C. Ermel, G. Taentzer, K. Ehrig, Parallel Graph Transfor-
mation for Model Simulation applied to Timed Transition Petri Nets,
Electronic Notes in Theoretical Computer Science 109 (2004) 17–29.

[98] K. Adam, K. Hölldobler, B. Rumpe, A. Wortmann, Modeling Robotics
Software Architectures with Modular Model Transformations, Journal
of Software Engineering for Robotics (JOSER) 8 (1) (2017) 3–16.

[99] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, S. Völkel,
Design Guidelines for Domain Specific Languages, in: Domain-Specific
Modeling Workshop (DSM’09), Techreport B-108, Helsinki School of
Economics, 2009, pp. 7–13.

[100] R. Grønmo, Using concrete syntax in graph-based model transforma-
tions, Ph.D. thesis, University of Oslo (2009).

[101] R. Grønmo, B. Møller-Pedersen, Concrete Syntax-based Graph Trans-
formation, research Report 389 (2009).

[102] E. Syriani, H. Vangheluwe, B. LaShomb, T-Core: a framework for
custom-built model transformation engines, Software & Systems Mod-
eling (2013) 1–29.

[103] J. Sánchez Cuadrado, E. Guerra, J. de Lara, Towards the System-
atic Construction of Domain-Specific Transformation Languages, in:

Modelling Foundations and Applications, Vol. 8569 of LNCS, Springer,
2014, pp. 196–212.

[104] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. van Mierlo,
H. Ergin, AToMPM: A Web-based Modeling Environment, in: MOD-
ELS’13: Invited Talks, Demos, Posters, and ACM SRC, 2013, pp. 21–
25.

[105] J. Corley, E. Syriani, H. Ergin, Evaluating the cloud architecture of
AToMPM, in: 2016 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 2016, pp.
339–346.

[106] T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger,
M. Stumptner, A Generator Framework for Domain-Specific Model
Transformation Languages, in: 8th International Conference on Enter-
prise Information Systems (ICEIS), 2006, pp. 27–35.

[107] A. Haber, K. Hölldobler, C. Kolassa, M. Look, K. Müller, B. Rumpe,
I. Schaefer, Engineering Delta Modeling Languages, in: Software Prod-
uct Line Conference (SPLC’13), ACM, 2013, pp. 22–31.

[108] M. Rindt, T. Kehrer, U. Kelter, Automatic Generation of Consistency-
Preserving Edit Operations for MDE Tools, in: Proceedings of the
Demonstrations Track of the ACM/IEEE 17th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS
2014), 2014, pp. 35–39.

[109] T. Kehrer, G. Taentzer, M. Rindt, U. Kelter, Automatically Deriv-
ing the Specification of Model Editing Operations from Meta-Models,
in: Theory and Practice of Model Transformations: 9th International
Conference, ICMT 2016, Springer, 2016, pp. 173–188.

[110] Y. Sun, J. Gray, J. White, A demonstration-based model transfor-
mation approach to automate model scalability, Software & Systems
Modeling 14 (3) (2015) 1245–1271.

[111] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, M. Wimmer,
Model Transformation By-Example: A Survey of the First Wave, in:
Conceptual Modelling and Its Theoretical Foundations, Vol. 7260 of
LNCS, Springer, 2012, pp. 197–215.

[112] P. Langer, M. Wimmer, G. Kappel, Model-to-Model Transformations
By Demonstration, in: L. Tratt, M. Gogolla (Eds.), Theory and Prac-
tice of Model Transformations, Vol. 6142 of LNCS, Springer, 2010, pp.
153–167.

[113] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel,
W. Retschitzegger, W. Schwinger, An Example Is Worth a Thousand
Words: Composite Operation Modeling By-Example, in: A. Schürr,
B. Selic (Eds.), Model Driven Engineering Languages and Systems:
12th International Conference, Springer, 2009, pp. 271–285.

[114] Y. Sun, J. White, J. Gray, Model Transformation by Demonstration,
in: A. Schürr, B. Selic (Eds.), Model Driven Engineering Languages
and Systems: 12th International Conference, Springer, 2009, pp. 712–
726.

[115] M. G. Nanda, S. Mani, V. S. Sinha, S. Sinha, Demystifying Model
Transformations: An Approach Based on Automated Rule Inference,
in: S. Arora (Ed.), Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications,
ACM, 2009, p. 341.

[116] P. Cuenot, P. Frey, R. Johansson, H. Lönn, M.-O. Reiser, D. Ser-
vat, R. T. Koligari, D. Chen, Developing Automotive Products Using
the EAST-ADL2, an AUTOSAR Compliant Architecture Description
Language, in: Embedded Real-Time Software Conference, Toulouse,
France, Vol. 40, Citeseer, 2008.

[117] S. Zhang, J. Teizer, J.-K. Lee, C. M. Eastman, M. Venugopal, Building
information modeling (BIM) and safety: Automatic safety checking of
construction models and schedules, Automation in Construction 29
(2013) 183–195.

[118] A. Wortmann, B. Combemale, O. Barais, A Systematic Mapping Study
on Modeling for Industry 4.0, in: Conference on Model Driven Engi-
neering Languages and Systems (MODELS’17), IEEE, 2017, pp. 281–
291.

[119] A. Nordmann, N. Hochgeschwender, S. Wrede, A survey on domain-
specific languages in robotics, in: International Conference on Simula-

tion, Modeling, and Programming for Autonomous Robots, Springer,
2014, pp. 195–206.

[120] J. Kienzle, G. Mussbacher, O. Alam, M. Schöttle, N. Belloir, P. Collet,
B. Combemale, J. Deantoni, J. Klein, B. Rumpe, VCU: The Three
Dimensions of Reuse, in: Conference on Software Reuse (ICSR’16),
Vol. 9679 of LNCS, Springer, 2016, pp. 122–137.

[121] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse,
W. Cazzola, P. Collet, T. Degueule, R. Heinrich, J.-M. Jézéquel,
M. Leduc, T. Mayerhofer, S. Mosser, M. Schöttle, M. Strittmat-
ter, A. Wortmann, Concern-Oriented Language Development (COLD):
Fostering Reuse in Language Engineering, Computer Languages, Sys-
tems & Structures 54 (2018) 139–155.

[122] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML: The
Systems Modeling Language, Morgan Kaufmann, 2014.

	Motivation
	Language Engineering
	Engineering Modeling Languages
	Language Engineering with MontiCore

	Composing Modeling Languages
	Extending and Refining a MontiCore Language

	Deriving Modeling Languages
	Example for Modeling Language Derivation
	Elements of a DSTL
	Concrete Syntax and Schema Variables for Pattern
	Replacement Operator
	Negative Elements
	Collection Operator
	Optionality Operator
	Variable Assignment
	Application Constraint

	Deriving a Domain-Specific Transformation Language
	Rule 1: Grammar Structure
	Rule 2: Concrete Syntax and Schema Variables
	Rule 3: Replacement Operator
	Rule 4: Negation Operator
	Rule 5: Collection Operator
	Rule 6: Optional Operator
	Rule 7: Starting Rules for DSTLs

	Deriving and Applying a Transformation Language
	Deriving the MontiArcTL DSTL
	Related Language Derivation Mechanisms

	Discussion
	Conclusion

