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Abstract  

The architecture of a software system consists of different artifacts with hierarchy and other 
dependency relations between them. This architecture is developed in stages. It starts with an 
abstract and conceptual form and ends with a concrete form with many details, describing 
many technical details of the shipped system.  

This paper deals with the specific question, how these stages of the architecture have to be 
organized. What is the order of these architectures and what are the relations between them? 
The order is connected to the methodology of the design process and to the properties of the 
resulting design, as e.g. adaptability. The underlying architectural language should be able to 
express these relations. Two examples, one from business administration and one from em-
bedded systems, are discussed. 

Keywords: software architecture modelling, different stages of the architecture and mutual 
dependency, order of the stages and adaptability, desirable uniform architecture language 
and methodology for the stages 

1 Introduction 

What is a software architecture? It is a collection of artifacts, which (or some of which) corre-
spond to different goals, as overview/ detailed, according to hierarchical relations as e.g. lay-
ers, according to different degrees of detail, according to the art of presentation (graphical or 
textual), according to the type of description as static (structure) or dynamic (execution), etc.  

All these artifacts are related to each other and are aggregated in the architectural configura-
tion. This architectural configuration is part of the overall configuration of the complete de-
velopment process, which, in addition, contains all the artifacts belonging to requirements, 
programming, quality assurance, documentation, and management. 

This is rather similar in all engineering design and development processes. What we call ar-
chitecture in the software business is there called conceptual design or modeling, what we call 
programming or implementation is there called detail design or engineering. This view of the 
overall configuration, having different technical parts and others for management, documen-
tation, or quality assurance, exists also in the field of architecture for buildings and civil en-
gineering. There, the overall configuration is called “building information model” (in short 
BIM /ET 08, KN 07, Kr 07/). 

This paper concentrates on the architectural configuration and there on the statement that 
there is not only one architecture. The architecture runs through different stages from abstract 
to concrete. The question “What are these stages and how should they be ordered in the de-
sign process?” is the topic of this paper. We assume that the underlying architecture language 
is able to express a variety of concepts. 
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The architectures of the series belong to different stages of development. These different stag-
es correspond to different aspects and views. The order, in which these architectures appear, 
should be carefully organized. The architectural language, in which these different architec-
tures are denoted, should be able to cover these different aspects, it should be universal /Na 
21a/ in the sense of integrating these different aspects and views. This avoids that different 
architectural languages are used, where it is not clear, how they are combined w.r.t. syntax, 
semantics, pragmatics, and methodology. 

This paper is as follows: We start in section 2 with examples in order to show the different 
stages for two scenarios, which belong to different application areas. Section 3 discusses the 
rules to apply on the way to find the suitable order of architectures. Using these rules, sections 
4 and 5 explain the order we have found for the scenarios of section 2 and sketches the con-
tents of the different architecture stages. Section 6 sums up, which different aspects the uni-
versal architecture language should cover, thereby defining the requirements for the architec-
ture language. Section 7 summarizes the findings of this paper. 

2 Scenario Examples  

Before going into details, let us discuss two example scenarios as introduction to the main 
part of this paper. Both are valuable scenarios, many others are also possible. 

A business administration application 

We regard a business administration application, e.g. a system in an insurance company, 
which supports employees in preparing an insurance contract for a client, who is interested in 
getting such a contract. We do not look deeply into the application system, we only sketch the 
different stages, the architecture of the system could go through, see fig. 1. 

We first assume that the system is new. The architecture is carefully designed, but in a rather 
abstract way. So, the services are planned, the main components have been found, and the 
system is divided into different layers. We call the result the logical architecture as it is rather 
abstract, thus reflecting an idealized built plan. This is the first step. 

In the next step it might be useful to precisely specify at least some components, for example 
the components which are mostly important for the success of the system. Thus, we define 
their semantics. It might be desirable to specify the semantics of the whole system. However, 
this can get complicated or impossible (as formulating the taste of the UI interface or non-
functional parameters of the requirements make it difficult). Therefore, only the semantics of 
some of the main components are defined formally. This is done by annotations to these com-
ponents. This is the second step. 

Such a system runs on different machines. Client machines process the inputs of the company 
employees, i.e. to check them for plausibility or mutual dependency. The main functionality is 
executed on a mainframe, possibly on different mainframes by reasons of flexibility, redun-
dancy, safety, and security. The underlying data are stored on one data server or different 
ones, again by reasons of redundancy and security, being located behind thick concrete walls. 
Distribution is described by annotations. A methodology can help later by realizing the dis-
tribution of the system (deployment), using a specific platform. We put these two tasks to-
gether and regard the distributed and deployed architecture as step 3. 
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Distribution induces concurrency. For example, different parts of the system might be execut-
ed concurrently. The accesses to common resources, therefore, have to be synchronized. Alt-
hough the whole system is not concurrent by nature, concurrency here comes with distribution 
as a technical aspect. The result is step 4. 

Finally, it might become clear that the system must be modified in order to fulfill the demand-
ed efficiency parameters. So, efficiency transformations are used. They usually are placed 
only, where absolutely necessary. We get step 5. 

Summing up: We started with an abstract system¶s architecture, and with an understanding of 
modular architectures as usual /Bö 94, GS 94, Le 88, Na 99, Na 21a/. After 5 steps - logical 
architecture, adding semantics, determining distribution and deployment, adding induced con-
currency, and making efficiency transformations - our example system looks very differently. 
We call the result of all these transformations the physical or concrete architecture. This ar-
chitecture describes, how the final system looks like. The regarded example could even have 
run through further transformation steps. 

 

 

 

 

 

 

 

 
Fig. 1: Architecture sequence for an example from the domain business administration 

Now we change our scenario. We start with an existing and old system. This old system was 
developed without an architectural design. Therefore, the first step is to find out what the ar-
chitecture of the program system could be (reverse engineering /PD 07/). This result is usual-
ly not a clean architecture.  

The then following step finds a new and suitable form of the architecture (reengineering) and 
tries to modify the program according to this new architecture. The architectural and program 
modifications do not try to make the system completely new. We are glad, if we have elimi-
nated the most important weak points and if we have a chance to make future modifications in 
direction of extending the system, integrate it with other systems, and alike.  

We call this approach modification in the large. It was shown that by reverse and reengineer-
ing we get rid of many unnecessary technical details /Cr 00/, which hinder adaptability and 
further maintenance. Now, the above steps of fig. 1 can possibly follow. 

Embedded systems 

As second example we regard a possible architecture sequence from the domain embedded 
systems, see fig. 2. The first step again is to design the logical architecture, which is free from 
details. Then, the sequence of changes can start. 
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Embedded systems are usually concurrent from their nature. So, the second step is to specify 
which parts of the architecture may run concurrently. Thus, we add annotations which parts 
are processes and which other parts need a synchronization protocol /BF 95/, as they are ac-
cessible by these processes.  

Embedded systems usually run for ever. Thus, they have to be explicitly started and they have 
to be explicitly shut down. Starting means to wake up and start the internal processes and 
shutting down to finalize them and to stop them. Therefore, explicit start and explicit stop 
need further technical processes and further communication in order to do the job. The design 
of that part is done in step 3. 

An embedded system may also need an emergency handling, which immediately shuts down 
the system in dangerous situations. This avoids that the underlying technical system (a chemi-
cal plant, a production line, etc.) gets damaged. The emergency handling cares about these 
situations (pressure too high, temperature out of limit), shuts down the usual execution in or-
der to care about these possible damages. Therefore, it acts according to the scheme to mini-
mize the damage. The result of step 4 includes this emergency handling. 

Embedded systems usually run on a distributed infrastructure. This distribution has to be 
specified. So, we define distribution lines and the deployment of the different parts in step 5.  

As above, due to distribution technical concurrency may come up (further processes, further 
synchronization), which is formulated in step 6.  

Finally, having the system deployed and integrated and carried out the first efficiency test, it 
becomes clear that some efficiency transformations must be done. If they are not restricted to 
the bodies of components, then the architecture of the system has to be modified in step 7. 

At the end of these transformation sequence, we see again how the final architecture looks 
like. This final architecture shows all technical details of the system which is shipped to the 
customers. 

 

 

 

 

 

 

 

 

 

Fig. 2: Architecture sequence for an embedded system 

Using processes and synchronization has advantages: We can better control the concurrency 
at runtime. The disadvantage is that this type of development is rather complicated. Therefore, 
in practice solutions are built, which often use a fixed scheduling by fixed control loops. In 
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this case, a control process masters all the interactions of the child processes. This usually 
makes handling of start/ stop and also emergency handling easier. By using fixed control 
loops, we get a different architecture in step 2 and also a different architectural sequence. We 
do not discuss this here. 

Summing up: Again, similar to the BA example of above, we get a sequence of steps, starting 
from the logical architecture and ending with a physical architecture. Comparing to the steps 
of fig. 1 we see: The steps are different and also how they are ordered.  

In the above discussions of fig. 1 and fig. 2 we have a linear development on architecture lev-
el from left to right. The architectures are developed in a top-down manner, from abstract to 
detailed. This is never the case in practice. There, we find backtracking steps (going back to 
try something different) and iterations (cycles until the right solution is found). Therefore, the 
above discussion describes an ideal situation. 

Again, there might be further steps, before we can start with the abstract software architecture 
of the embedded system. If the automation and control software is for a new and specialized 
chemical plant, the design of this plant has to be started in advance. It also consists of differ-
ent steps, from abstract to detailed and concrete. 

Alternatively, an embedded system for a specific production line has been built several times. 
However, it has to be extended. Furthermore, there are demands for quality improvements. So 
in this case, some reverse and reengineering steps have to take place before the extension. 
After the extension, the architecture sequence according to fig. 2 can start.  

Two further extensions we do not discuss here. (a) One is that we do not develop one system, 
but a family of systems /Ja 00, PB 05/. Any member of the family will have a different and 
specific architecture, as that of fig. 2. In addition, there is the family architecture, expressing 
the commonalities of the family. There are specific considerations afterwards to derive the 
specific member of the family.  

(b) Embedded systems in the automation and control domain are in close connection to other 
systems for monitoring, for quality control, for integrating the embedded system into the 
company organization, etc. Therefore, the embedded system is connected upward to further 
layers building up the automation pyramid /Na 21b/. The architecture of the embedded system 
is connected to other architectures via corresponding interfaces. 

3 Characterization: Order, Rules, and Consequences 

Technical details should not drive the design 

In industrial practice, we find quite often that (technical) details drive the development of 
systems, especially in the case of embedded systems. The problem is that these details might 
change. In this case, the development and – especially the design – has to be backtracked. 
Changes occur more often than forward development. So, changes of these technical details, 
cause many problems and consequently costs. Therefore, the underlying principle of the order 
in the above sequences is that details do not determine the solution. 

This does not mean that details are unimportant. It only means that details should be intro-
duced in the right place and at the right time. Furthermore, we should mention, that a solution 
is seldom found in a top-down and linear way, as both figures 2 and 3 suggest. There are 
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backtracking, cycles and spirals, as known in software engineering. Both figures describe the 
ideal situation, which rarely exists in practice. 

The aspects of the solution, which play an important role in both examples, are structure, se-
mantics, concurrency, explicit control, distribution, deployment, and efficiency. 

Order and principles 

What are the underlying principles, which determine the order of the architectures in the se-
quences of figures 2 and 3? What is left of what and what is right of what? What are the cor-
responding rules we should apply to determine the order of architectures within the sequenc-
es?  

(A) From more abstract to more concrete 

The logical architecture is the most abstract form in both examples. Therefore, it appears on 
the left side of figures 1 and 2. An abstract architecture can have different concurrency solu-
tions, a concurrency solution may have different solutions for explicit start/ stop, and so on. 
Also, defining concurrency, explicit start/ stop, and emergency handling is left of defining 
distribution in fig. 2. 

(B) From basic knowledge to additions in form of annotations or supplements 

Defining distribution in fig. 1 depends on the logical architecture and there might be different 
ways for defining distribution for the same logical architecture. To explicitly organize start/ 
stop, we need the concurrent architecture. Defining explicit emergency handling needs start/ 
stop definition before, as an emergency case might appear in the initialization. Additions can 
have quite different purposes: It might be that the addition gives more preciseness (e.g. se-
mantics), it might indicate a way to follow (annotation), or it might realize a certain way for a 
solution (thereby introducing the corresponding realization details). 

(C) From less to more probable to change, so from more stable to more changeable 

A transformation to improve efficiency is more probable to happen than defining distribution. 
The latter is more probable than defining concurrency. Most stable is the logical architecture. 
We see: Stability appears left, changes appear right. 

(D) From an artifact to a depending one  

Technical concurrency depends on how the distribution was defined, see fig, 2. Defining con-
currency depends on how the logical architecture was designed. Many further examples exist. 

(E) From early to late decisions 

The best examples of figs. 2 and 3 for late are the efficiency transformations. They are placed 
at the right side, as they should be addressed at the end of the development process: On the 
one hand, because they should be applied late, as any change induces that they probably have 
to be done again. On the other hand, all efficiency transformations take all architectural as-
pects into account which, therefore, have been regarded before.  

Consequences 

Following the above rules by ordering architecture sequences has some implications. We 
mention two of them. 
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They lessen the width of backtracking. Backtracking means to go back to the place where a 
change has to take place and to modify from this place on. As more probable changes are 
right of less probable ones we reduce the width of a backtracking step. Looking on fig. 2: If 
the efficiency transformation was wrong, the probability is high that we take another one. 
This is more probable than defining the distribution/ deployment differently. This, again, is 
more probable than modifying the logical architecture. 

The order of the architectures delivers what is more general (more left) or what is more spe-
cific (more right). Thinking in these categories “general” or “specific” improves the design 
and development process. The general aspects are concentrated at the level of logical architec-
tures. All aspects of the following architectures at the right should not be covered or prede-
termined by the logical architecture. This argument can be applied to all the following archi-
tectures. For example, defining concurrency should not care about start/ stop or emergency 
handling. 

4 The Refined Business Administration Example  

The logical architecture in a sketch 

The logical architecture of the BA example was worked out in a cooperation with Aachen 
Münchener Insurance (now Generali), especially those parts which are described below. The 
example is an interactive system, preparing and completing an insurance contract for the back 
office of the company  

We present the structure of the logical architecture here only as a sketch to keep it simple 
enough, see fig. 3. It consists of an UI part, a dialog control part, the main business functions, 
and the data access to data stored in specific files or in the underlying data base system.  
(i) The UI part is responsible for putting in the data of the insurance customer. Usually, the 
data are checked for correctness or plausibility. The other parts of the system should not know 
anything about the UI layout and other specifics. Only the selected command and its parame-
ters should be visible.  
(ii) The dialog control part of the system is independent of the UI part, but also of how the 
business functions are realized. 
(iii) The main business functions are independent of the way they are invoked (UI) and also 
independent of how the data of the system are internally stored. They see the data in a realiza-
tion independent form via a data abstraction interface. 
(iv) The data are finally stored in specific files and/ or in a data base system, following a data 
base approach and stored in a specific way. 

The logical architecture of fig. 3 was the result of a reverse and a reengineering step /Cr 00/, 
which is discussed later in this paper. The aim was to overcome the following weaknesses of 
the old system: (a) The primitive UI specifics were visible within the business functions, (b) 
control of the dialog and business functions were not clearly separated, (c) the specifics, how 
the data are stored were visible within the functions. Thus, the original µarchitecture¶ was by 
no means an abstract one. The reverse and reengineering steps took place beforehand to get 
the logical architecture of fig. 1 in the form sketched in fig. 3. 

A semantics definition could have been used in the example, as shown in fig. 1. The semantics 
of (some of) the main business functions in a pre and post condition manner could have been 
specified. Furthermore, a trace semantics for the system could have been used to define the 
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execution paths. Finally, algebraic semantics /Gu 76, LZ 74/ could have been used for some 
parts of the data interface. 

           

Fig. 3: A sketch of the business administration system: logical architecture with distribution 
annotations 

In step 3 of fig. 1 the distribution of the application are determined. (i) We specify the possi-
ble distribution lines between the separate parts by annotations, see again fig. 3 and there the 
yellow lines. (ii) Then, we add the corresponding components, either basic or generated, ac-
cording to a distribuition platform, as e.g. CORBA /COR 20/, in fig.3. The resulting distribut-
ed architecture is not shown. Finally, we (iii) deploy the different parts on different comput-
ers. Typically, the UI part is placed on a thin client, the control part and the business functions 
on a function server (mainframe) and the data part on data servers (mainframe). This distribu-
tion is possible for the abstract architecture as we separated the different aspects of the dialog 
system (UI, control, business functions, data part). This would not have been possible for the 
µarchitecture¶ of the original system before the reverse and reengineering steps, due to their 
unnecessary and tight coupling and corresponding dependency of many details. In addition, it 
may be necessary that the functions or the data services are replicated and placed on different 
machines, by reasons of security or efficiency. In this case, we have different function servers 
and different data servers. 

As now different function(s) may be on different machines and try to get access on data ser-
vices on other machine(s), we get into concurrency problems, although the application is not 
concurrent from its nature. We called this technical concurrency (step 4 in fig. 1). We have to 
define a synchronization protocol. This, again, is not shown in fig. 3. 

Fig. 3 contains a sketch of the logical architecture with distribution annotations. The Corba 
components according to deployment on different machines are not shown, see /Kl 00, Na 
21a/. The same is true for the concurrency aspects due to distribution. 

Eventual changes 

The UI part can have different forms: other UI style, a different UI management system, other 
commands of similar form, other client (e.g. thick client and extensively checking data). This 
all should not (or only little) affect the main part of the application. Therefore, the UI part 
should abstract from these details.  

In the same way, the data part should be freed from details: How are the underlying data built 
up in files, which database systems are used, which schema is used for the data, and alike. 
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There should be a data abstraction interface, which hides all these details. The main part of 
the program should only know what is necessary from the application side. So, we use data 
abstraction of different forms. 

As already told, we may have different function and data servers, and also the distribution of 
them on different machines. Distribution and change of distribution is only possible, if there 
is loose coupling between the parts on different machines. This loose coupling is achieved by 
the various forms of abstraction being applied to both sides of a separation line, as sketched 
above. 

Another possibility for a big change is the cooperation of a program for insurance agents and 
the back office solution of above. The agent gets the available and interesting information of 
the back office, enriches this information, and delivers is back to the back office as prelimi-
nary and not completely verified. This avoids that the back office has to input these data 
again. It now concentrates on the verification of the input data and the completion part for the 
contract. 

Adaptability, which was discussed in this subsection, demands for abstraction. Not important 
details should be hidden, as data, layout, style, UI systems used, schema definition details, etc. 
This all is data abstraction if we define “data” in a more general sense. 

Starting with an existing program 

As already mentioned, the starting point of our cooperation with the insurance company was 
not the logical architecture of fig. 3. We now shortly characterize the reverse and reengineer-
ing activities. We started with a huge and old Cobol program on the mainframe, being con-
nected to hundreds of “non-intelligent” terminals, all UI properties and details to be seen in 
the program, main business functions appear within the interwoven program, and the program 
knew all the details of the underlying storage of data. How to reorganize this program without 
to start to program completely new from the scratch. The investigation was carried out within 
a Doctoral Thesis /Cr 00/ 

It started with reverse engineering, i.e. understanding the big program and finding out the 
µarchitecture¶ and its essential parts. The aim was to preserve these parts and to reuse them, 
without using the evident weaknesses of it. 

Then came the important part of reengineering: (a) building a new UI part and make it in a 
way that all details are in the UI system and the interface of it is completely free of details 
(how to invoke a command and to get its data) and make the rest of the program UI independ-
ent. (b) The data part got a new and abstract interface. (c) The Cobol program was freed from 
UI and data access details and separated Business functions from control of the dialog. So, we 
could identify the main business functions. They got all a new interface. 

Reengineering was applied by reorganizing the program and making it better in its internal 
structure. At the same time, we aimed at getting the code of the old program we can reuse. We 
called this approach ÄReverse and Reengineering in the Large“. Big parts of the Cobol pro-
gram are saved but in another form (without UI details, without data details, clear separation 
of functions (activities) and manipulation of the underlying data). 
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All the reorganization steps of this subsection yield the logical architecture of fig. 3. Howev-
er, the internal structure of the business functions and the data access was to a big part saved 
from the Cobol program, we started with. So, they were not completely reengineered. 

5 A Refined Embedded Example 

Again, we take an example, but now from the system class embedded systems. We look on 
the architecture of this example and give a sketch of some of the architecture’s forms of the 
sequence in fig. 2. The example is from the automotive domain and contains some simplifica-
tions.  

This domain is quite specific which makes it interesting for the special argumentation of this 
paper. In /Na 21b/ the case of embedded software for mechanical or chemical production is 
studied. In /NW99, NM08/, tools for production processes are studied, which are more stand-
ard and not regarded here. We come back to the specific characteristics of automotive embed-
ded systems after we have discussed the corresponding sequence of software architectures. 

Software architecture  

The logical software architecture of the embedded system (step 1 of fig. 2) contains compo-
nents and their dependencies. It is abstract, i.e. the architecture contains no specifics which 
are determined later, see again fig. 2. Abstractions correspond to functional abstractions or 
data abstractions, i.e. their realization is below of a clear interface. Later on, we discuss that 
this logical architecture is the result of a transformation process. 

Step 2 according to fig. 2 is to determine the concurrency properties of the system. This is 
specified by saying, which components are processes (run potentially in parallel) and deter-
mine their cooperation and competition by synchronizations. For example, if different pro-
cesses try to get access to some data component expressing some state information, we deter-
mine a synchronization protocol for the accesses to that component (e.g. mutual exclusion of 
the operations). 

In embedded systems in the automotive domain a simpler process and synchronization 
scheme is applied, as these processes are assigned to different control units to be executed 
there, see below. The reaction of a process in a certain time is guaranteed by counting the ex-
ecution times of dependent components and assuring that the sum of these times is less than 
the wanted execution time. Furthermore, priority rules are defined to avoid that an urgent or 
critical process is hindered. 

A simpler scheme is also used for start/ stop (step 3). Whenever the car is unlocked, the com-
ponents of the body part of the software are waked up, when it is locked, the body part of the 
car is switched off. Whenever the engine part is started the corresponding components of mo-
tor control, drive control, etc. are waked up, whenever, the motor is switched off, the corre-
sponding components are switched off. This scheme works quite well if the different compo-
nents belong to different areas (body, motor, driving, etc.), which are separated and work to-
gether via clear interfaces. 

Emergency handing (step 4) is also realized in a simpler way, either by a mechanical solution, 
e.g. for steering the car, or braking the car. Then, the car has to be stopped immediately and 
the driver gets a serious warning. It is more sophisticated, if steering or braking is done by 
wire. 
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Distribution and deployment 

After the modifications described above, the logical architecture is transformed into a distrib-
uted solution (step 5 of fig. 2). After the distribution lines are identified (analogous to those of 
fig. 3), the architecture is deployed on the so-called physical architecture. This physical archi-
tecture consists of control units, connected by buses. The control units are different, on one 
hand because they realize quite different functionalities in size and also corresponding related 
requirements, and on the other, as they are determined by subcontractors of the OEM. Control 
units belonging to one problem area (as motor control) build up a subnet, which might have a 
specific form and protocol. These subnets are connected by gateways. 

The physical architectures can vary, even for the same model of a car. There are different var-
iants according to the number of features of this variant. There may be more or fewer control 
units or such of possibly different computational power, and more elaborated or poorer sub-
nets. So, there are software architectures which reflect a rich functionality and, accordingly 
have a rich physical architectures. Similarly, an architecture with a poorer functionality can 
have a poorer related physical architecture.  

In any case, there is a balance between the software architecture and its related physical archi-
tecture. They are usually developed “in parallel”. The physical architecture has to answer 
physical, efficiency, and security aspects and restrictions. The physical architecture is built up 
according to experiences gained in the past. 

Different parts of the software architecture are usually distributed. The first step is to deter-
mine, which parts are to be placed on different hardware. In this first step, we do not say on 
which hardware the components are deployed. Instead, we determine by an annotation, that a 
subarchitecture or software component is placed differently, but possibly nearby.  

In the next step a subarchitecture or software component is assigned to a certain control unit 
of a certain bus to be placed there, which is called deployment. It may be, due to logical rela-
tionship (like for motor control), due to efficiency (this part has a higher internal traffic, or 
this subarchitecture is too much for one control unit), or due to economic reasons (a control 
unit has open place and available runtime resources) that this assignment is split: one part on 
this control unit, the other on another unit. Therefore, this deployment is complicated and er-
ror-prone if it is made manually. Please recall that this deployment can be different even for 
different variants of a model. 

Deployment is facilitated by the AUTomotive Open System ARchitecture (AUTOSAR) ap-
proach /AU 20/. Here, several programming tasks (as routing through the network, introduc-
ing the program parts for a control unit which listen to the bus to find out, what is essential for 
this unit or, conversely, to put results of a unit computation on the bus again, are done in a 
semi-automatic way, i.e. the code is generated according to some specifications by AUTO-
SAR. That is an enormous progress to the situation before, where these code parts had to be 
written individually.  

This approach provides flexibility in the deployment subprocess. This flexibility is necessary 
to handle the many variants of deployments according to the variants of functionality. It also 
makes backtracking steps easier, which occur after detected errors in a development process. 
Finally, it also eases reuse in the software between car model families. 
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Characteristics of the domain and different starting points 

There are various internal problems connected to automotive systems: The target system 
(hardware architecture /Ta 12/) consists (a) of about 50 or more control units. These control 
units are connected (b) by different networks, for example for body control, motor control, 
drive control, etc. These networks have different protocols and are connected by gateways. 
Due to the big number of variants (much or few features) of a model, (c) the hardware archi-
tecture can vary as well (number of control units). This is also true for the software (number 
and size of software components. A general problem, therefore (d) is the distribution (together 
or distributed) and where to be located (deployment). Thus, (e) it is an enormous problem to 
keep the development of solutions together, from the capability and efficiency point of view. 
Even harder (f) is the reuse problem, namely to save and apply the knowledge of solutions 
from one model change to the successor or from model to another model, as OEMs usually 
start first with more expensive models and later transfer to cheaper ones. Finally, (g) there is 
an actual trend to reduce the number of control units (less and bigger ones) in connection to 
electrification of cars. Another trend is to produce uniform solutions in big automotive com-
panies, which have different brands. In the long run, this might simplify the solutions, in the 
short run it produces further problems as a complex solution has to be transformed to another 
structure. 

How to solve such a complicated problem? It seems reasonable to start with an abstract de-
scription of the solution, which is free of all the specific details of (a) to (g). We call this a 
conceptual architecture. This architecture is a network of functionalities/ services, where the 
connections correspond to data transfer of parameters, to control transfer (subfunction of, or 
one function after the other), and also synchronization (all next functions in parallel or in a 
controlled schedule). So, connections represent dependencies, the network is a dependency 
graph (a dataflow-oriented approach). This network should be abstract, i.e. independent of 
how to transform functionalities and connections into software and where to place it on hard-
ware. 

Now, the logical architecture is developed (step 1 of fig. 2), which transforms the conceptual 
architecture to a software architecture consisting of components and relations. This software 
architecture has at the beginning an abstract form, and gets more and more detailed and con-
crete, see above. 

What are the transformation rules between the conceptual architecture and the (abstract) 
software architecture? A functionality of the conceptual architecture can be mapped on a 
software component. It can also be that a function is mapped on more software components 
together with the relations between these components, so on a software subarchitecture. Final-
ly, different functionalities together with their relations (a subarchitecture of the conceptual 
architecture) can be mapped on one software component. Thus, the transformation is not nec-
essarily one to one. The reason is that the conceptual architecture contains services, whereas 
the software architecture delivers the structure of a program system, which realizes these ser-
vices.  

Modelling on the level of services (conceptual architecture) and on the level of software com-
ponents (logical architecture) should have a similar granularity. The conceptual model should 
not contain functionalities of a fine-grained level. In that case, the model is more a too de-
tailed requirements specification or a realization and not a conceptual model. In this case, the 
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software architecture would contain many software components, which compose the realiza-
tion of conceptual components. 

We could have started with an existing solution, as above in the BA example. Then, reverse 
and reengineering steps would be necessary, to improve the solution and to make it ready for 
modifications and extensions. This was done for an embedded system from the domain com-
munication systems for cell phones in /Ma 05, Mo 09, Re 10/.  

In /Me 12/ there is another starting point by looking on different feature variants and develop-
ing different conceptual architectures for these variants. The start with a variability model 
helps in finding out the commonalities and differences of variants. The focus of /Me 12/ was 
to master the variability problem. A further and bottom-up approach was taken in /Ar 10, Ki 
05, No 07/ for embedded systems in the field Smart Homes. Different eHome systems were 
built, on top of simple functions/ features offering novel functionalities.  

6 Requirements for the Underlying Achitectural Language(s) 

If we look on different software architectures /SAD, Sc 13, SEI 10/, there are obvious re-
quirements for the used and underlying architecture language(s). (a) The language(s) should 
contain elements to express all the different aspects and views, as discussed in sections 2 to 5. 
(b) It should be clear how these different aspects/ views are related to each other. This is not 
the case for UML /BR 05/, which is a collection of separate and rather nonrelated languages. 
The situation is much better for subsets /Ru 11, Ru12/ (c) The best is, if the language elements 
belong to one and uniform architecture language. If we have different languages, e.g. another 
language for annotations, it must be clear and obvious, to which part of an artifact the annota-
tions belongs. 

Within the architectures discussed above we find different parts /Na 90-20, Na 21a/. The big-
gest and basic part belongs to modelling the logical architecture and there to define the static 
structure. For that static structure we have components of different kinds (functional or data 
abstraction) and of different size (modules or subsystems). Components have interfaces ac-
cording to kind and size. Between components we have different structure relations (local to, 
is a), and also different import relations (local, general, and inheritance import). Consistency 
conditions define the context sensitive syntax rules. There are method rules and patterns of 
different kinds giving hints how to use the language. The pattern discussion is broader than 
usual /BM 96, GH 95, SS 00/, as here different architectures (fig. 2), changes within a specific 
form and changes from form to form are involved. The presentation is graphical for surveys 
and textual for details. 

Further notations are necessary, for defining the semantics, for concurrency, for distribution, 
deployment, etc. It can be shown that the notations for architectural styles /SG 96/ can be ex-
pressed by the aforementioned language concepts /Na 21c/. Therefore, these style notations 
can be used as abbreviations without escaping from the architecture language. 

In /Na 21a/ it was shown that the above language and methodology approach is integrative in 
its nature. Many of the different and necessary parts for expressing aspects and views are 
found within one architecture language. The others are expressed by annotations inside of 
artifacts written in the language. It is always clear what these annotations belong to.  
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7 Summary 

The output of a design and realization process for a software system is a complex configura-
tion containing different abstractions, views, enrichments, which all deliver basic information 
and details. We find also different hierarchies within artifacts and between artifacts /Na 21a/. 
In this paper, we concentrated on the architecture part, which, although being a part of the 
overall configuration, has the same characteristics as the overall configuration. 

That architectural configuration contains more than one architectural description. We have 
shown that the descriptions should be organized in different stages and that the order of these 
stages must be planned carefully. The order reflects abstraction, probability of changes, min-
imization of backtracking steps, and alike. 

In this paper, we have discussed two examples, one from the domain business administration 
and one from the domain embedded systems. In this sense, this paper is the application of /Na 
21a/, where we introduced the integrative approach for architecture modeling, as the architec-
ture sequence for reflecting different aspects is one of the integration dimensions which need 
different notations which are also integrated. This means that different aspects of an architec-
ture have to be denoted and that the mutual relations of these parts have to be obvious. We 
call this integration within an architectural language and methodology. 

We also gave some rules in order to find the order in the architecture sequences. The right 
order supports the adaptability of the system and the consistency of the different architectural 
descriptions. 

Further problems, which also have to do with different aspects of architectures were not ad-
dressed in this paper: as (i) families of systems, where we have to master their commonalities 
and differences, (ii) libraries of reusable components and their organization, or (iii) organiz-
ing reuse in building successively systems of a certain application domain or structure. 
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