
Semantic Validation for Slingshot Simulator Using MontiArc

Bahareh Taghavi1, Robert Heinrich1, Adrian Marin2, Bernhard Rumpe2,
Sebastian Stüber2, and Sebastian Weber3

1 Karlsruhe Institute of Technology, Germany
2 Software Engineering, RWTH Aachen University, Germany, https://se-rwth.de

3 FZI Research Center for Information Technology, Germany

Abstract

As software systems become increasingly complex, the
demand for effective analysis has grown substantially.
To meet this demand, various analysis techniques and
components need to be integrated that cover the do-
main comprehensively. However, it is crucial to ensure
that these components work together in a coherent
and semantically meaningful manner. The purpose
of this paper is to investigate validating the seman-
tic correctness of the Slingshot simulator, which illus-
trates the composition of three distinct components
of analysis. Semantic correctness in system analysis
ensures that interactions and data exchanges between
components accurately reflect the intended behavior
and properties of the system. We use the MontiArc
framework to enhance component models with con-
straints. It demonstrates the behavior of components
using automata and verifies that these constraints are
valid within automata transitions, ensuring that the
automata do not produce invalid results.

1 Introduction

As software systems have grown larger and more com-
plex, the need for tools and techniques to analyze their
properties has increased significantly. By leveraging
modular analysis components, developers can reuse
and combine different techniques and components to
address unique challenges posed by complex software
architectures, as discussed in [7] for the composition
of metamodels. Furthermore, composing these com-
ponents into a cohesive framework facilitates compre-
hensive evaluation, ensuring different aspects of a sys-
tem are considered thoroughly. However, composing
modular analysis components can present challenges.
These include ensuring compatibility between differ-
ent components and maintaining semantic integrity.

Slingshot [8] exemplifies this kind of composition by
integrating three different analysis components based
on the Palladio Component Model [6]. While it pro-
vides the syntactic interfaces necessary for proper
communication between components, it does not val-
idate the semantic correctness of their composition.
Given that Slingshot is an extensible framework, any
changes to one of these components or the addition of

new components must also be semantically validated
to ensure the correct behavior of the overall system.

MontiArc [10] is a textual modeling language de-
signed to describe component and connector systems.
It can verify and validate semantic constraints spec-
ified at the ports of components that are connected
through connectors. A previous study [9] proposed
adding constraint checking to MontiArc by using
Slingshot as a running example. MontiArc also sup-
ports modeling internal behavior of components using
the MontiArcAutomaton modeling language. With
this capability, we can model each component’s be-
havior by automata and ensure that modified compo-
nents work correctly within the current composition.

Contribution In this paper, we explore modeling
the simplified behavior of each component of Sling-
shot while specifying constraints at the ports of the
components so we can validate the semantics of their
composition. We can use it to verify that these con-
straints are valid in the automata and ensure that the
automata do not produce invalid outputs as a result.

2 Slingshot Simulator: An Extensible
Event-Driven Simulator

Palladio [6] is an approach to model, simulate, and
analyze software architectures, keeping a focus on
performance, maintainability, reliability, and other
quality properties. Slingshot [8] is the latest sim-
ulator for Palladio based on the event-driven archi-
tecture. Slingshot consists of three analysis com-
ponents: UsageSimulation, SystemSimulation, and
ResourceSimulation. As shown in Figure 1, each
component has incoming and outgoing ports, with
specific constraints applied to them. The simula-
tion begins with UsageSimulation, which uses us-
age scenarios to model individual use cases of the
system. Each UsageScenario includes a workload
that describes usage intensity. Then, the Usage-

Simulation simulates user requests as calls to the
system. The SystemSimulation simulates the sys-
tem behavior and then sends the demand for re-
sources to ResourceSimulation to simulate the re-
source environment. The communication continues

[THM+25] B. Taghavi, R. Heinrich, A. Marin, B. Rumpe, S. Stüber, S. Weber: 
Semantic Validation for Slingshot Simulator Using MontiArc. 
In: Softwaretechnik-Trends Band 45, Heft 1, Gesellschaft für Informatik e.V., Feb. 2025. 

https://se-rwth.de


Usage
Simulation

Resource
Simulation

double utilization >= 0
double

responseTime
 > 0

UsageScenario 
[int numberOfUsers > 0]

System
Simulation

double
operationResponseTime> 0

UserRequest

Interpretation

double 
resourceDemand

 > 0

Interpretation

Figure 1: Slingshot MontiArc Model.

back and forth between the components until perfor-
mance metrics such as responseTime and hardware
utilization can be simulated.

These components interact through well-defined in-
terfaces; however, they do not inherently support the
validation of their composition. In order to ensure
all components function as intended within the larger
system, a rigorous validation approach is required.

3 Methodology

MontiArc [10] is a modeling language and frame-
work for developing component and connector archi-
tectures. It provides a structured way to design,
analyze, and implement complex systems by defin-
ing components and their interactions. Components
exchange information through unidirectional connec-
tors that link directed ports of compatible data types.
The definition of inter-component communication and
MontiArc models simulation are based on Focus [1].

MontiArc was also extended to provide component
I/O behavior using automata. The automata are de-
fined by a finite number of states, with at least one
state designated as the initial state. Each transition
is characterized by a source and a target state.

The constraint checking from [9] is a black-box test-
ing method that verifies system functionality without
requiring knowledge of the internal implementation.
In order to understand the internal behavior of com-
ponents, a black-box view is not sufficient, since it
only tests the interface behavior of components. By
incorporating automata into each component, we gain
a white-box perspective, enabling us to model and ob-
serve the component’s internal behavior.

To enable verification capabilities using Monti-
Arc, we first create a simplified model of Sling-
shot’s components and their interfaces in the Com-
ponent&Connector paradigm, modeling the commu-
nication between components as connections between
ports, as shown in Figure 1. We add constraints to
these ports that specify how the inputs and outputs of
the components must be structured. Figure 1 shows
parts of these constraints, such as the restriction of
the number of users to a positive number in the usage
scenario, which serves as the input for the Usage-

Simulation component. The outputs of the simula-
tion are also constrained. For instance, utilization
(an output result of ResourceSimulation) cannot be

less than zero. According to Palladio’s definition of
utilization [6], it represents the percentage of time
that the active resource was in a processing state dur-
ing a fixed time period.

We illustrate the behavior of each component us-
ing state charts. As an example, Figure 2, shows a
simplified ResourceSimulation component with only
ActiveResources (e.g., CPU) depicted. The Initial

state is triggered by a resource demand request, in-
dicating the need to obtain a resource. If an active
resource is idle, the JobInitiated transition moves
the system from the Idle state to the job Processing

state. Depending on the resource management poli-
cies, additional jobs can be initiated on the resource.
We define a counter in the internal state that in-
crements each time a job is initiated, indicating the
number of jobs running on this resource. The counter
then decreases whenever a job is finished, updating
the number of running jobs. The utilization result
is derived from this counter value.

Since component behavior is modeled with au-
tomata, inaccuracies or oversimplifications in the
models can lead to incorrect validation results, as de-
fective automata may not accurately reflect the real
behavior of the components.

Initial

Idle

Processing

 JobInitiated /
ActiveResourceStateUpdated

counter++

 JobInitiated /
ActiveResourceStateUpdated

 counter++

ResourceDemandRequested/ 
JobInitiated

[counter == 1]
JobFinished

/ ActiveResourceFinished 
counter - -

ResourceSimulation

[counter > 1]
JobFinished

/ ActiveResourceFinished 
counter - -

Figure 2: ResourceSimulation behavior.
Fulfills constraint from Figure 1: counter ≥ 0 =⇒
utilization ≥ 0.



Translation to SMT Problem We translate the
constraints into an SMT (Satisfiability Modulo Theo-
ries) problem and solve this problem using the SMT-
Solver Z3 [2]. Z3 has been successfully applied in
various projects from both industry and academia [4,
5]. The solver then attempts to instantiate the vari-
ables of the SMT problem encoded into Boolean for-
mulas and delivers either a Satisfiable judgement and
a model or an Unsatisfiable judgement. The input
of the SMT-Solver is standardized with SMT-Lib [3],
which leverages a human-readable form of displaying
SMT problems.

We aim to translate the constraints on the in-
puts and outputs of the components and prove that
the automaton fulfills these constraints. We iter-
ate over each transition of the automata to find a
counterexample. This counterexample must fulfill the
input-constraints and transition-definition, but not
the output-constraints:

∀s, s next ∈ State, i ∈ Input, o ∈ Output :

constraintinput(i) ∧ transition(s, i, s next, o)

→ constraintoutput(o)

Each transition of the automaton displayed in Fig-
ure 2 processes an input event and produces an output
event. The counter variable is never negative. When
receiving a Job event, each action fulfills the output
constraint, as the utilization is computed as a frac-
tion of the counter [6]. This can only be guaranteed
by the input assumption that the ResourceDemand is
greater than 0 implying that the counter is by default
initialized with 0. In the case the ResourceDemand

is not greater than 0, we cannot conclude that the
counter was initialized with 0, making a counter-
example for the implication easy to find through both
transitions incrementing the counter.

4 Conclusion

In this paper, we analyze the semantic validation of an
event-based simulator called Slingshot. MontiArc is
used to model the Slingshot components by specifying
their ports and connections. This approach allows us
to validate component compatibility by checking con-
straints over the ports. Additionally, we model the
behavior of the components using automata, which
provides a concrete understanding of the system’s in-
ternal behavior. This method also enables us to verify
that the outputs are meaningful and correct within
the context of the automata. In future work, we will
focus on automating SMT-translation and developing
a tool to facilitate this process. We plan to evaluate
the tool with a large use case. In addition, we intend
to apply conformance checking [11] to ensure semantic
consistency within compositions, particularly in sce-
narios where component replacements occur.

Acknowledgements

This work was funded by the DFG (German Re-
search Foundation) – project number 499241390 (Fe-
CoMASS), KASTEL Security Research Labs and
”Kerninformatik am KIT (KiKIT)” funded by the
Helmholtz Association (HGF).

References

[1] M. Broy and K. Stølen. Specification and De-
velopment of Interactive Systems. Focus on
Streams, Interfaces and Refinement. Springer
Verlag Heidelberg, 2001.

[2] L. De Moura and N. Bjørner. “Z3: An efficient
SMT solver”. In: International conference on
Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2008, pp. 337–
340.

[3] C. Barrett, A. Stump, C. Tinelli, et al. “The
smt-lib standard: Version 2.0”. In: Proc. 8th
Int. workshop on satisfiability modulo theories.
Vol. 13. 2010, p. 14.

[4] N. Bjørner and K. Jayaraman. “Checking cloud
contracts in Microsoft Azure”. In: Distributed
Computing and Internet Technology: 11th In-
ternational Conference, ICDCIT 2015. Proceed-
ings 11. Springer. 2015, pp. 21–32.

[5] R. Mukherjee, D. Kroening, and T. Melham.
“Hardware verification using software analyz-
ers”. In: 2015 IEEE Computer Society Annual
Symposium on VLSI. IEEE. 2015, pp. 7–12.

[6] R. H. Reussner et al. Modeling and simulating
software architectures: The Palladio approach.
MIT Press, 2016.

[7] R. Heinrich, M. Strittmatter, and R. Reuss-
ner. “A layered reference architecture for meta-
models to tailor quality modeling and analysis”.
In: IEEE Transactions on Software Engineering
47.4 (2019), pp. 775–800.

[8] J. Katić, F. Klinaku, and S. Becker. “The Sling-
shot Simulator: An Extensible Event-Driven
PCM Simulator (Poster)”. In: (2021).

[9] S. Weber et al. “Semantics Enhancing Model
Transformation for Automated Constraint Val-
idation of Palladio Software Architecture to
MontiArc Models”. In: IEEE European Confer-
ence on Software Architecture (ECSA). 2024.

[10] A. Haber. MontiArc - Architectural Modeling
and Simulation of Interactive Distributed Sys-
tems. Aachener Informatik-Berichte, Software
Engineering, Band 24. Shaker Verlag, 2016.

[11] M. Konersmann et al. “Towards a Semantically
Useful Definition of Conformance with a Refer-
ence Model”. In: Journal of Object Technology
(JOT) 23.3 (July 2024), pp. 1–14.


	Introduction
	Slingshot Simulator: An Extensible Event-Driven Simulator
	Methodology
	Conclusion



