
Journal of Object Technology | RESEARCH ARTICLE

Semantic Differencing of Use Case Diagrams
Oliver Kautz∗, Bernhard Rumpe†, and Louis Wachtmeister†

∗CBC Cologne Broadcasting Center GmbH, Germany
†RWTH Aachen University, Germany

ABSTRACT Use case diagrams (UCDs) are widely used for describing how different users use the functionalities of a system
to achieve their goals. As today’s software systems offer an ever-increasing number of functionalities, it becomes more and
more difficult for software engineers to decide how the behaviors of different systems, various versions, or system variants
differ from the stakeholders’ points of views. Notwithstanding the importance of UCDs in addressing this challenge, previous
work neglected the development of a definition of an UCD language with a precise semantics that goes beyond a high-level
representation of stick figures with bubbles. Since these representations neither have a well-defined syntax nor a formal
semantics, clearly distinguishing the meanings of two diagrams becomes difficult. To tackle this challenge, this paper defines a
formal syntax and semantics for a UCD variant and presents a semantic differencing operator that we evaluated experimentally
with a set of example diagrams.

KEYWORDS Use Case, Use Case Diagram, Semantic Differencing, Semantics, Analysis, Evolution, Difference, Model, UML

1. Introduction
Use case diagrams (UCDs) describe the functionalities of a
system in terms of how its various users achieve their goals by
using the system (Friedenthal et al. 2014). Because of their sim-
plicity and clarity, UCDs are not only used in the development
of complex software systems, but also for system development
in general.

As the complexity of software systems continues to increase
(France & Rumpe 2007; Pretschner et al. 2007; Hölldobler
et al. 2019), it is a growing challenge for software engineers
to maintain an overview of the functionality of the software
systems under development. This also means that deciding to
what extent two software systems differ from the stakeholders
points of views is becoming increasingly complicated. This is
especially important when comparing two different versions or
two different variants of the same system.

Apart from comparing variants of the same systems, it is
also essential to draw conclusions about the compatibility and

JOT reference format:
Oliver Kautz, Bernhard Rumpe, and Louis Wachtmeister. Semantic
Differencing of Use Case Diagrams. Journal of Object Technology. Vol. 21,
No. 3, 2022. Licensed under Attribution - NonCommercial - No Derivatives
4.0 International (CC BY-NC-ND 4.0)
http://dx.doi.org/10.5381/jot.2022.21.3.a5

suitability of system specifications. Imagine a vendor using
UCDs to specify the functionality of an offered system and an
acquirer using UCDs to specify the properties of a required
system. Both could use a semantic differencing approach to
establish beyond doubt what the differences between the offered
and required systems are and use the result as the basis for their
further negotiations.

Another challenge that arises in the use case context is that
small changes to a high-level description may have large effects
on the overall system behavior. Knowing the semantic (Maoz
et al. 2011c,d, 2012; Maoz & Ringert 2015, 2018; Kautz &
Rumpe 2018a; Kautz 2021) difference between two UCDs sup-
ports software engineers in understanding the differences in the
functionalities of the systems. It enables them to identify the
use case and actor combinations that are possible in the one
version but not in the other version.

Previous works neglected providing a well-defined syntax
and precisely defined semantics that is required for semantic
UCD differencing. For that reason, comparing use case dia-
grams is often still a syntactic comparison of stick figures and
bubbles. Especially, when critical systems are developed with
UCDs as a starting point, a precisely defined semantics for
UCDs is crucial to guarantee a successful development and safe
operation of the system under development. Without a precisely

An AITO publication

[KRW22] O. Kautz, B. Rumpe, L. Wachtmeister:
Semantic Differencing of Use Case Diagrams.
In: Journal of Object Technology, Volume 21, pp. 3:1-14, AITO - Association Internationale pour les Technologies Objets, Juli 2022.
www.se-rwth.de/publications/

http://dx.doi.org/10.5381/jot.2022.21.3.a5

defined semantics, the meaning of UCDs can be misinterpreted
or differently interpreted by different developers, which can
ultimately result in crucial errors in the developed product. Fur-
ther, a precisely defined semantics enables the development of
a semantic differencing operator. Such an operator supports de-
velopers in comparing different (versions of) UCDs and reveals
the differences in terms of the differences in the meanings of
the UCDs (Maoz et al. 2011c, 2012; Kautz & Rumpe 2018a;
Kautz 2021).

To tackle the challenges described above, the contributions
of this paper are:

– A mathematically precise definition of a UCD modeling
language similar to (Harel & Rumpe 2004; Maoz et al.
2011c, 2012; Maoz & Ringert 2018; Kautz & Rumpe
2018a; Kautz 2021) including (1) a reduced abstract syn-
tax, (2) a semantic domain based on scenarios relating
use cases to actors, and (3) a precisely defined semantics
mapping each UCD to the set of scenarios that it describes.

– Algorithms to compute scenarios contained in the seman-
tics of UCDs.

– A semantic differencing operator that takes two UCDs as
input and outputs all scenarios contained in the semantics
of the one UCD that are not contained in the semantics of
the other UCD.

– An experimental evaluation revealing that the performance
of the operator suffices for several examples.

In the following, Section 2 motivates semantic differencing
of UCDs with examples. Section 3 introduces the abstract syn-
tax and formal semantics of UCDs. Then, Section 4 presents the
semantic differencing operator. Afterwards, Section 5 presents
the results of an experimental evaluation of the operator. Sec-
tion 6 highlights related works and Section 7 discusses obser-
vations and mentions possible future work directions. Finally,
Section 8 concludes.

2. Motivating Examples
This section motivates the semantic differencing operator for
UCDs introduced in this paper with four example UCDs.

2.1. Car Charging Station Example
Figure 1 depicts two UCDs modeling possible scenarios in the
context of charging an electrical car at a charging station.

In CarCharging1, there are drivers, cars, charging stations,
and fast charging stations. Drivers can request charging pro-
cesses at charging stations. Drivers can pay for the provided
services at charging stations. A charging station can calculate
the required charging quantity of a car, check whether the charg-
ing station is correctly connected to a car, and charge a car. Fast
charging stations are special charging stations. They provide all
functionalities that are also provided by charging stations and
additionally provide a functionality for the fast charging of cars.

During the development of the system, managers decide
which specific payment methods can be used. Developers also
realize that the request of charging a car always leads to the
calculation of the charging quantity and that calculating the

Request

Charging

Pay

Car

Charging Station
Calculate

charging quantity

Check

Cable

Charge

Charge Fast

Driver

Fast Charging Station

Request

Charging

«abstract»

Pay

App Credit card

«include»

Car

Charging Station
Calculate

charging quantity

«include»

Check

Cable

Charge

Charge Fast

Driver

Fast Charging Station

UCD CarCharging2

UCD CarCharging1

Figure 1 Two UCDs modeling usage scenarios for electric
charging stations.

charging quantity always includes checking the cable connec-
tion. A modeler thus changes the UCD CarCharging1 to its
successor version CarCharging2.

A developer wants to understand the semantic differences be-
tween the two versions. Therefore, she uses our semantic differ-
encing operator. The semantic differencing operator reveals that
there are possible scenarios in the new version CarCharging2
that are not possible in the old version version CarCharging1
and vice versa. Hence, new possible scenarios have been added
and some of the previously possible scenarios have been re-
moved. Among others, the developer gets presented the scenar-
ios depicted in Figure 2.

The scenarios diff1 and diff2 are possible in the UCD
CarCharging1 and not possible in the UCD CarCharging2.
From the first scenario, the developer understands that the
use case Pay cannot be directly executed in the new version
of the UCD anymore. The scenario is not possible in the

2 Kautz et al.

Pay

Charging StationDriver

Calculate

charging quantity

Charging StationDriver

App

Charging StationDriver

Car Charging Station

Calculate

charging quantity

Check

Cable

Scenario diff4

Scenario diff3

Scenario diff2

Scenario diff1

Figure 2 Scenarios contained in the semantic differences
between the UCDs CharCharging1 and CarCharging2.

UCD CarCharging2 because the use case Pay is abstract in
CarCharging2. The second scenario reveals that the charging
quantity can be calculated without performing another use case
in CarCharging1, which is not possible in CarCharging2 any-
more. The scenario is not possible in the UCD CarCharging2
because the execution of the use case Calculate charging
quantity in CarCharging2 necessarily includes the execu-
tion of the use case Check Cable.

The scenarios diff3 and diff4 are possible in the UCD
CarCharging2 and not possible in the UCD CharCharging1.
From diff3, the developer understands that payments can
be executed via the app in the new version, which has not
been possible before. The scenario is not possible in the UCD
CharCharging1 because the use case App does not exist in
CharCharging1. From the last scenario diff4, the developer
understands that the calculation of the charging quantity in-
cludes the checking of the cable in the new version, which is not
the case in the old version. The scenario is not possible in the
UCD CharCharging1 because the execution of the use case
Calculate charging quantity never implies the execution
of the use case Check Cable and vice versa.

2.2. SwimmyFish Game Example

Figure 3 depicts two UCDs modeling possible scenarios in the
context of a game called Swimmy Fish.

In SwimmyFish1, players can play the game, pay to become
premium users, and change their profile pictures. The payment
process always includes checking whether the user is already
a premium user. Profile pictures can only be changed by pre-
mium players. It can be paid by credit card or by bank transfer.
Additional payment methods, which are not further specified

Show Ad

[isPremium]

Change Profile Picture

Player

Pay

Play

«extend»

Register

Score

«extend»

Check

Premium

«include»

Server

Credit

Card
Bank

Show Ad

[isPremium]

Change Profile Picture

Player

«abstract»

Pay

Play

«extend»
[¬isPremium]

Register

Score

«extend»
[gameFinished]

Credit

Card
Bank

Check

Premium

«include»

Server

UCD SwimmyFish2

UCD SwimmyFish1

Figure 3 Two UCDs modeling usage scenarios of a game
called SwimmyFish.

yet, should also be possible. Servers are involved in showing ad-
vertisements and registering the score of a game. When a player
plays the game, she may be presented with advertisements and
the achieved score may be registered to the server.

During the development, additional information about the
requirements for the game become available. Thus, a developer
refines the UCD SwimmyFish1 with additional information.
The resulting UCD is SwimmyFish2. Paying by credit card and
by bank transfer should be the only payment methods. Thus,
the developer marked the use case Pay as abstract. Further,
advertisements should only be presented to non-premium users.
To achieve this, the developer adds a guard to the extend relation
between Play and Show Ad. Similarly, scores should only be
registered if the player finished playing the game. Therefore,
the developer adds a guard to the extend relation between Play
and Register Score.

Another developer, who has not performed the changes, is in-
terested in the differences between the UCD versions. She thus
uses our semantic differencing operator for understanding the
changes in the meanings of the UCDs. The semantic differenc-
ing operator reveals that the UCD SwimmyFish2 is indeed a re-
finement of SwimmyFish1: Every scenario of SwimmyFish2 is
also a scenario of SwimmyFish1. Thus, the semantic difference
from SwimmyFish2 to SwimmyFish1 is empty. On the other
hand, there are scenarios possible in SwimmyFish1 that are not

Semantic Differencing of Use Case Diagrams 3

Player

Pay
Check

Premium

Scenario diff5

Player

Play
Register

Score

Server

gameFinished = false

isPremium = false

Show Ad

Player

Play

Register

Score Server

gameFinished = false

isPremium = true

Scenario diff6

Scenario diff7

Figure 4 Scenarios contained in the semantic differences
between the UCDs SwimmyFish1 and SwimmyFish2.

possible in SwimmyFish2. These scenarios have been removed
during the evolution from SwimmyFish1 to SwimmyFish2.

Inter alia, the semantic differencing operator outputs the
three scenarios depicted in Figure 4, which are possible in
SwimmyFish1 and not in SwimmyFish2. From the scenario
diff5, the developer understands that the use case Pay can-
not be executed anymore. The scenario is not possible in the
UCD SwimmyFish2 because the use case Pay is abstract in
SwimmyFish2. From the scenario diff6, the developer un-
derstands that advertisements should not be shown and scores
should not be registered when playing the game if the game is
not finished and the user is not a premium user. The scenario is
not possible in the UCD SwimmyFish2 because the use cases
Play, Show Ad, and Register Score can only be executed
in the same execution of SwimmyFish2 if isPremium equals
false and gameFinished equals true. From the scenario
diff7, the developer understands that scores should not be
registered when playing the game and the game is not finished
and the user is not a premium user. The scenario is not possi-
ble in the UCD SwimmyFish2 because the use cases Play and
Register Score can only be executed in the same execution
of SwimmyFish2 if gameFinished equals true.

3. Use Case Diagrams
This section introduces an abstract syntax and a semantics for
UCDs. a UCD models the relation between actors and use
cases, depending on the assignment state of variables. The
assignments of variables influence the possible scenarios via
preconditions of use cases and conditions used in the extend
relation of a UCD. For notational simplicity, we assume that all
variables are of type Boolean. A straight-forward generalization
to variables of arbitrary finite types is possible.

3.1. Actors, Use Cases, Variables, Boolean Expressions
In the following, let V be an infinite set of variables, U be an
infinite set of use cases, and A be an infinite set of actors where
U ∩ A = ∅. We denote by B = {t, f } the set of Boolean
values. A variable assignment is a function val : V → B. It
maps each variable to a Boolean value. We denote by V→ the
set of all variable assignments. We denote by Expr the set of
all well-formed (finite) Boolean expressions over the variables
contained in V . The function eval : Expr× V→ → B maps
each expression e ∈ Expr to its truth value eval(e, v) under the
variable assignment v ∈ V→ as usual.

3.2. Use Case Diagram Syntax
The following defines a reduced abstract syntax for UCDs.

Definition 1. A use case diagram is a tuple d =
(U, A, Abs, R, GU , GA, E, G, Con) where

– U ⊆ U is a finite set of use cases,
– A ⊆ A is a finite set of actors,
– Abs ⊆ U ∪ A is a set of abstract use cases and actors,
– R ⊆ U × A are associations between use cases and ac-

tors,
– GU ⊆ U ×U is a transitive, reflexive generalization rela-

tion over the set of use cases U,
– GA ⊆ A× A is a transitive, reflexive generalization rela-

tion over the set of actors A,
– E ⊆ U ×U is an extend relation between use cases,
– G ⊆ U × U is a guarded extend relation between use

cases, and
– Con : G ∪U → Expr maps each guarded extend to its

guard and each use case to its precondition.

The set U contains the set of all use cases modeled in the
UCD. Similarly, the set A contains all modeled actors and the
set Abs contains all abstract use cases and actors. The set R
contains the associations between use cases and actors. The set
GU is the use case generalization relation where (u, v) ∈ GU
represents that the use case u is a specialization of the use case
v, respectively that the use case v is a generalization of the use
case u. Likewise, the set GA is the actor generalization relation
where (a, b) ∈ GA represents that the actor a specializes the
actor b, respectively that the actor b generalizes the actor a. The
set E is the extend relation between use cases where (u, v) ∈ E
represents that the use case u extends the use case v. The
extend relation modeled by E is unguarded. In contrast, the
set G is the guarded extend relation between use cases where
(u, v) ∈ G represents the the use case u extends the use case v.
The function Con maps each guarded extend e ∈ G to its guard
Con(e), which is a Boolean expression. The syntax definition
abstracts from include associations as each include association
(v, u) can easily represented by a guarded extend e = (u, v) ∈
G with Con(e) = t, i.e., the guard is always satisfied. Thus,
whenever v is executed, u must also be executed. The function
Con also maps each use case u ∈ U to its precondition Con(u).

3.3. Reduced Abstract Syntax vs. UML Abstract Syntax
Figure 5 depicts a class diagram defining the abstract syntax of
a UCD language. The diagram is strongly inspired by the UML

4 Kautz et al.

Figure 5 Class diagram defining the abstract syntax of a UCD language.

definition of the abstract syntax of UCDs (“OMG Unified Mod-
eling Language (OMG UML)” 2017). It includes the entities of
the UML abstract syntax definition that correspond to elements
contained in the reduced abstract syntax (Actor, UseCase,
Extend, Include, Constraint). Figure 5 indicates the rela-
tion between the reduced abstract syntax defined in Section 3.2
and the abstract syntax defined by the class diagram. For exam-
ple, the class Actor corresponds to the set of actors A and the as-
sociation associations corresponds to the set of associations
R. The class diagram does not contain any entity of the UML ab-
stract syntax definition that belongs to the common structure of
UML diagrams (e.g.,BehavioredClassifier, Classifier,
DirectedRelationship). The class diagram contains addi-
tional associations for elements that are not explicitly mod-
eled in the UML abstract syntax definition or that do not ex-
ist in the UML abstract syntax definition (e.g.,specializes,
associations, precondition).

In the UML, UCDs can have extension points and system
boundaries. Further, associations between actors and use cases
can have cardinalities on the association ends. The reduced
abstract syntax defined in Section 3.2 does not support these
elements. Section 7 discusses the addition of these syntactic ele-
ments into the syntax defined in this paper and the implications
of the addition on the definition of the semantic mapping.

3.4. Semantic Domain
The semantics of a UCD is defined as a set of scenarios.

Definition 2. A scenario is a tuple (val, Use, Rel) where

– val ∈ V→ is a variable assignment,
– Use ⊆ U is a finite set of use cases, and
– Rel ⊆ Use×A is a finite set of links between use cases

of the scenario and actors.

A scenario (val, Use, Rel) represents that the use cases con-
tained in Use are executed by actors according to the relation
Rel under the circumstances defined by the variable assignment
val. A scenario contains a set of use cases Use but no dedicated
set of actors because use cases can be executed without any

actors, whereas actors cannot exist in scenarios without being
linked with use cases.

3.5. An Intuitive View on the Semantics
The following intuitively explains which scenarios are contained
in the semantics of a UCD. This paper uses a closed-world view
on the semantics of UCDs. Section 7 discusses an alternative
open-world semantics.

In this paper’s semantics, each use case of a UCD can be exe-
cuted individually if its precondition is satisfied. The execution
of an individual use case introduces a scenario. If a use case is
executed in a scenario, then each use case that extends the use
case where the guard of the extend relation and the precondi-
tion of the use case are satisfied must also be executed in the
scenario. This rule applies recursively to all executed use cases
in the scenario. If there is an unguarded extend from a use case
to a use case of the scenario, then the former use case may be
executed in the scenario but is not required to be executed. No
other use cases may be executed in the scenario. This includes
uses cases that are not connected to the scenario’s use cases via
the extend relations as well as use cases that are connected via
the guarded extend relation where the corresponding guards are
not satisfied.

The actors participating in an executed use case are the actors
that are explicitly and implicitly associated to the use case. An
actor is explicitly associated to a use case if the UCD contains
an association between the actor and the use case. An actor is
implicitly associated to a use case u if the UCD contains an asso-
ciation between the actor and another use case that generalizes
the use case u.

In each scenario, each use case u can be replaced by a use
case that specializes the use case u and has a satisfied precon-
dition. With this, the specialization also inherits the properties
corresponding to the extend relation of its generalization. The
actors participating in the specialization are determined as ex-
plained above. Further, all use cases that must be recursively
executed when executing the specialization (because of the ex-
tend relations) must also be executed.

Semantic Differencing of Use Case Diagrams 5

Each actor associated to a use case can always be replaced
by one of its specializations. Thus, each actor can execute all
use cases that can be executed by its generalizations.

3.6. Formalization of the Semantics
For precisely defining the semantics of UCDs, we first introduce
the auxiliary notions of execution, closure, and scenarios of a
use case in a UCD under a variable assignment. In the remainder
of this section, let d = (U, A, Abs, R, GU , GA, E, Con) be an
arbitrary but fixed UCD. Further, we use the following auxiliary
functions:

– For u ∈ U, we define the set of actors that are explic-
itly or implicitly (via generalization) associated to u by
Actd(u) = {a ∈ A | ∃v ∈ U : (u, v) ∈ GU ∧ (v, a) ∈
R}.

– For V ⊆ U, we define the set of (explicit or implicit)
associations between the use cases in V and actors in A by
Rd(V) = {(v, a) ∈ V × A | a ∈ Actd(v)}.

– To avoid notational clutter, we write Act instead of Actd
and R instead of Rd if d is clear from the context.

The execution of a use case u ∈ U under a variable assign-
ment val ∈ V→ includes all use cases that must be (transitively)
executed in addition to u because of extend associations with
guards that are satisfied under val. Executions abstract from the
actors associated to the use cases and from unguarded extends
between use cases.

Definition 3. Let u ∈ U be a use case and let val ∈ V→ be a
variable assignment. The execution of u in d under val is the
smallest set exec(u, val) satisfying the following rules:

1. If eval(Con(u), val) = t then u ∈ exec(u, val).

2. If w ∈ exec(u, val) and (v, w) ∈ G and
eval(Con(v), val) = t and eval(Con((v, w)), val) = t,
then v ∈ exec(u, val).

The first rule states that if the precondition of the use case u
is satisfied under the variable assignment v, then the use case
u is contained in the execution. The second rule states that
whenever a use case w is included in the execution, another
use case v extends the use case w, and the guards of the extend
association (v, w) and the precondition of v are satisfied under
the assignment val, then v is also included in the execution.

The notion of closure closes the set of possible executions of
an use case under the generalization relation of use cases and un-
der the unguarded extend relation between use cases. The basic
intuition behind the closure is (1) that we can replace a general-
ized use case by all of its specializations in all of its executions
and (2) that we may (but are not required to) execute use cases
that are associated with use cases from an execution via the
unguarded extend relation. When replacing the generalization
by the specialization, we execute the specialization. Thus, we
also have to include all the use cases contained in the execution
of the specialization under the variable assignment. Similarly,
when we execute a use case associated via the unguarded extend
relation, then we also have to include all use case contained in

the execution of this use case under the variable assignment.
The closure still abstracts from actors.

Definition 4. Let u ∈ U be a use case and let val ∈ V→ be
a variable assignment. The closure of u in d under val is the
smallest set closure(u, val) satisfying the following rules:

1. If exec(u, val) ̸= ∅, then exec(u, val) ∈
closure(u, val).

2. If C ∈ closure(u, val) and w ∈ C and (v, w) ∈ GU and
eval(Con(v), val) = t, then (C \ {w})∪ exec(v, val) ∈
closure(u, val).

3. If C ∈ closure(u, val) and w ∈ C and (v, w) ∈ E
and eval(Con(v), val) = t, then C ∪ exec(v, val) ∈
closure(u, val).

The first rule states that the execution of the use case under
the assignment is an element of the closure (if it can be executed
because its precondition is satisfied). The second rule states that
if (1) there is an execution C in the closure, (2) there is a use case
w ∈ C in the execution, (3) the use case v is a specialization
of the use case w, (4) and the precondition of the use case v is
satisfied under the assignment val, then the execution obtained
from replacing w by v and adding the use cases contained in
the execution of v under val is also an execution contained in
the closure.

The third rule states that if (1) there is an execution C in the
closure, (2) there is a use case w ∈ C in the execution, (3) the
use case v extends the use case w, (4) and the precondition of
v is satisfied under the assignment val, then the execution ob-
tained by adding the execution of the use case v to the execution
C is also an element of the closure.

The notion of scenario adds the variable assignments and
the actors associated with use cases to the closure of a use case
under a variable assignment. If a use case v is a specialization of
a use case w, then all actors associated with w are also implicitly
associated with v.

Definition 5. Let u ∈ U be a use case and let val ∈ V→ be
a variable assignment. The scenarios of u in d under val are
defined by the smallest set scn(u, val) satisfying:

1. If C ∈ closure(u, val), then (val, C, R(C)) ∈
scn(u, val).

2. If (val, Use, Rel) ∈ scn(u, val) and (v, a) ∈ Rel
and (b, a) ∈ GA, then (val, Use, (Rel \ {(v, a)}) ∪
{(v, b)}) ∈ scn(u, val).

The first rule states that the scenarios obtained from the exe-
cutions contained in the closure by adding the actors associated
to the use cases are contained in the set of scenarios. The second
rule states that actors can be replaced by their specializations.

The semantics of a UCD is defined as the set of all scenarios
of the use cases in the UCD under all possible variable assign-
ments where the scenarios neither contain abstract actors nor
abstract use cases.

Definition 6. The semantics of the UCD d is defined as JdK =
{(val, Use, Rel) ∈ scn(u, val) | val ∈ V→ ∧ u ∈ U∧Use ⊆
U \ Abs ∧ Rel(Use) ⊆ A \ Abs}.

6 Kautz et al.

4. Semantic Differencing of Use Case Dia-
grams

The semantic difference from a UCD d to a UCD d′ is defined as
the set δ(d, d′) = JdK \ Jd′K of all scenarios that are contained
in the semantics of d that are not contained in the semantics of
d′. It effectively reveals the scenarios that are possible in the
one UCD and not possible in the other UCD. The remainder of
this section presents a semantic differencing operator for UCDs.
The semantic differencing operator is an automatic procedure
for computing at least one element contained in the semantic
difference if at least one exists. Thus, the operator can also be
used for UCD refinement checking. a UCD d is a refinement
of a UCD d′ iff δ(d, d′) = ∅, i.e., the semantic difference is
empty. Then, every scenario of d is also a scenario of d′.

The semantic differencing operator is based on two obser-
vations. First, it suffices to consider a finite set of variable val-
uations for determining whether the semantic difference from
a UCD to another UCD is empty. The second observation is
that it is possible to automatically check whether a scenario is
contained in the semantics of a UCD.

Formally, the first observation can be precisely stated by the
following proposition:

Proposition 1. Let d1 and d2 be two UCDs where Vi is the set
of all variables used in the Boolean expressions of the precondi-
tions and guards of the UCD di. Then, δ(d1, d2) ̸= ∅ iff there
exists a scenario s = (val, Use, Rel) ∈ Jd1K with s /∈ Jd2K and
val(v) = f for all v /∈ V1 ∪V2.

Proof. Let d1, d2, V1, V2 be given as above.
"⇒": Assume there exists a scenario s = (val, Use, Rel) ∈

δ(d1, d2). We define the scenario s′ = (val′, Use, Rel) where
val′(v) = val(v) if v ∈ V1 ∪V2 and val′(v) = f otherwise.

It holds that s′ ∈ Jd1K because s ∈ Jd1K, val′ maps the
variables occurring in d1 to the same values as val, and the use
cases, actors as well as links are the same in s and s′.

Suppose towards a contradiction that s′ ∈ Jd2K. Then, it also
hold that s ∈ Jd2K because s′ ∈ Jd2K, val maps the variables
occurring in d2 to the same values as val′, and the use cases,
actors as well as links are the same in s and s′. This contradicts
the assumption that s ∈ δ(d1, d2).

Thus, it holds that s′ ∈ Jd1K and s′ /∈ Jd2K and val(v) = f
for all v /∈ V1 ∪V2, which we needed to show.

"⇐": Directly follows from the assumption.

By Proposition 1, it suffices to consider the finitely many
variable valuations that map all but not necessarily the variables
contained in the UCDs to false. The scenarios contained in the
semantics of a UCD d must not contain use cases and actors not
present in d and the sets of use cases and actors of each UCD are
finite. Thus, it is possible to enumerate all scenarios contained in
the semantics of d that contain one of the finitely many variable
assignments that are relevant for semantic differencing. For
each of these scenarios, it can be checked whether the scenario
is also an element of the semantics of another UCD d′. If this
is the case for all scenarios, then Proposition 1 guarantees that
d is a refinement of d′. Otherwise, this procedure yields the
computed scenarios that are not contained in the semantics of

d′ as diff witnesses, which reveal the semantic differences from
d to d′.

4.1. Computing Elements Contained in the Semantics

Algorithm 1 Computing the subset of the semantics of an
UCD d = (U, A, Abs, R, GU , GA, E, G, Con) where exactly
the variables in V may not be assigned to f .

1: procedure SEM(UCD d, finite set V ⊆ V)
2: define res← ∅ as empty set of scenarios
3: for all val ∈ V→ such that ∀x ∈ V \V : v(x) = f do
4: for all u ∈ U do
5: for all (v, Use, Rel) ∈ scn(d, u, val) do
6: if Use ⊆ U \ Abs then
7: if Rel(Use) ⊆ A \ Abs then
8: res← res ∪ {(v, Use, Rel)}
9: return res

Algorithm 1 can be used to compute the relevant elements
contained in the semantics. It takes a UCD d and a finite set
of variables V as inputs. The algorithm computes all scenarios
contained in the semantics of the UCD d where the variables
not contained in the set V must be assigned to f by the variable
assignments of the scenarios. First, it initializes the set res as
an empty set of scenarios (l. 2). Afterwards, it iterates over all
variable assignments val where the variables not contained in
V are assigned to f (l. 3) and over all use cases contained in
the UCD (l. 4). In the loops, it adds all scenarios of the case u
in the UCD d under the assignment val that do neither contain
abstract use cases nor abstract actors to the set res (ll. 5-8).
Finally, the algorithm returns the computed set res (l. 9). Thus,
the algorithm returns all scenarios contained in the semantics
of the UCD d according to Definition 6 where the variables not
contained in the set V are assigned to f . The procedure scn
used in the algorithm is defined in Algorithm 2.

The procedure scn takes a use case u, a UCD d, and an
assignment val as input. It computes the scenarios of u in
d under val. To this effect, the procedure first initializes the
variable scn as the empty set (l. 2). Then, it iterates over all
sets of uses cases contained in the closure of the use case u
in the UCD d under the assignment val (ll. 3). For each of
these sets, the algorithm constructs the scenario obtained from
attaching the actors directly associated with the use cases to
the use cases and adds it to the set scn (l. 4). These are the
scenarios contained in scn(u, val) according to the first rule in
Definition 5. Thereafter, the procedure continues by computing
the scenarios obtained by iteratively replacing the actors in the
scenarios according to the generalization relation. These are
the scenarios contained in scn(u, val) according to the second
rule in Definition 5. The procedure initializes an empty stack of
scenarios toProcess that contains the scenarios where the actors
still need to be replaced by their specializations (l. 5). Thus, the
algorithm directly pushes all scenarios currently contained in
the set scn to the stack (l. 6). Next, it initializes the empty set
processed of scenarios. The set contains the scenarios where
the actors have already been replaced. The procedure continues

Semantic Differencing of Use Case Diagrams 7

by iteratively processing the scenarios contained in toProcess
(ll. 8-17). In the loop, the algorithm pops the first scenario
from the stack and adds it to the processed scenarios (ll. 9-10).
Then, it iterates over the links (v, a) of the scenario (l. 11) and
over the elements (b, a) contained in the actor generalization
relation of the UCD (l. 12) where the more general actor in
the generalization is also the actor in the link. It replaces the
generalization by its specialization (ll. 13-14). Afterwards, the
procedure adds the resulting scenario to the set of scenarios
scn (l. 16) and to the stack toProcess (l. 17) if it has not been
processed before (l. 15). Finally, the procedure returns the set
of computed scenarios scn (l. 18).

Algorithm 2 Computing scenarios of an use case u ∈ U in
a UCD d = (U, A, Abs, R, GU , GA, E, G, Con) under the
variable assignment val ∈ V→.

1: procedure SCN(UCD d, u ∈ U, val ∈ V→)
2: define scn← ∅ as empty set of scenarios
3: for all C ∈ closure(d, u, val) do
4: scn← scn ∪ {(val, C, R(C))}
5: define toProcess as empty stack of scenarios
6: toProcess.pushAll(scn)
7: define processed← ∅ as empty set of scenarios
8: while toProcess not empty do
9: (val, Use, Rel)← toProcess.pop()

10: processed← processed ∪ {(val, Use, Rel)}
11: for all (v, a) ∈ Rel do
12: for all (b, a) ∈ GA do
13: newRel ← (Rel \ {(v, a)}) ∪ {(v, b)}
14: new← (val, Use, newRel)
15: if new /∈ processed then
16: scn← scn ∪ {new}
17: toProcess.push(new)

18: return scn

Algorithm 3 depicts the procedure closure, which takes an
use case u, a UCD d, and an assignment val as input. It com-
putes the closure of u in d under val. It first initializes the
variable cls as an empty set of sets of use cases (l. 2). This
variable stores the closure. Afterwards, the procedure adds the
execution of the use case u in d under val to the set cls if the
execution is not empty (l. 3-4). This corresponds to the first rule
in Definition 4.

Then, the procedure continues by computing the sets of use
cases obtained by iteratively (1) replacing the use cases in the
already computed elements of the closure according to the use
case generalization relation and (2) by adding executions re-
sulting from adding use cases that may be added to executions
because of the unguarded extend relation. These are the scenar-
ios contained in closure(u, val) according to the second and
third rules in Definition 4.

To this effect, the procedure initializes an empty stack
toProcess (l. 5) and pushes the execution contained in the set
cls (l. 6). The stack contains the sets of use cases that still need
to be processed for computing the complete closure. Then, it
initializes the set processed as an empty set of sets of use cases

Algorithm 3 Computing the closure of an use case u ∈ U
in a UCD d = (U, A, Abs, R, GU , GA, E, G, Con) under the
variable assignment val ∈ V→.

1: procedure CLOSURE(UCD d, u ∈ U, val ∈ V→)
2: define cls← ∅ as empty set of sets of use cases
3: if exec(u, val) ̸= ∅ then
4: cls← cls ∪ {exec(u, val)}
5: define toProcess as empty stack
6: toProcess.push(cls)
7: define processed← ∅ as empty set
8: while toProcess not empty do
9: C ← toProcess.pop()

10: processed← processed ∪ {C}
11: for all w ∈ C do
12: for all (v, w) ∈ GU do
13: if eval(Con(v), val) = t then
14: new← (C \ {w}) ∪ exec(d, v, val)
15: if new /∈ processed then
16: cls← cls ∪ {new}
17: toProcess.push(new)

18: for all (v, w) ∈ E do
19: if eval(Con(v), val) = t then
20: new← C ∪ exec(d, v, val)
21: if new /∈ processed then
22: cls← cls ∪ {new}
23: toProcess.push(new)

24: return cls

(l. 7). This set contains the sets of use cases that have already
been processed for computing the complete closure. The proce-
dure continues by iteratively processing the scenarios contained
in toProcess (ll. 8-24). In the loop, the procedure pops the first
set of use cases contained on the stack and adds it to the set
stored in the variable processed (ll. 9-10). Then, it iterates over
all use cases w contained in the currently processed set (l. 11).
Then, the outer loop contains two inner loops, which realize the
second and the third rules of Definition 4.

First, the procedure iterates over all elements (v, w) con-
tained in the use case generalization relation where the more
general use case is w (l. 12). If the precondition of the use
case v is satisfied (l. 13), the use case w is replaced by v in the
currently processed set and stored in the variable new (l. 14). If
the set stored in new has not already been processed (l. 15), the
set is added to the computed closure (l. 16) and to the stack of
sets of use cases to be processed (l. 17).

In the second inner loop, the procedure iterates over all el-
ements (v, w) of the unguarded extend relation where the ex-
tended use case is equal to w. If the precondition of v is satisfied
(l. 19), then the algorithm constructs the execution new obtained
from adding the execution of v to the currently processed execu-
tion C (l. 20). If this execution has not already been processed
(l. 21), the algorithm adds it to the closure (l. 22) and pushes it
on the stack (l. 23). Finally, the procedure returns the computed
closure (l. 24).

Algorithm 4 presents the procedure exec. It takes a use case

8 Kautz et al.

Algorithm 4 Computing the execution of an use case u ∈ U
in a UCD d = (U, A, Abs, R, GU , GA, E, G, Con) under the
variable assignment val ∈ V→.

1: procedure EXEC(UCD d, u ∈ U, val ∈ V→)
2: define exec← ∅ as empty set of use cases
3: if eval(Con(u), val) = t then
4: exec← exec ∪ {u}
5: define toProcess as empty stack
6: toProcess.pushAll(exec)
7: define processed← ∅ as empty set
8: while toProcess not empty do
9: cur ← toProcess.pop()

10: processed← processed ∪ {cur}
11: for all (v, w) ∈ G with w = cur do
12: if eval(Con((v, w)), val) = t then
13: if eval(Con(v), val) = t then
14: if v /∈ processed then
15: exec← exec ∪ {v}
16: toProcess.push(v)
17: return exec

u, a UCD d, and an assignment v as input and computes the
execution of u in d under val. First, it initializes the set exec as
an empty set of use cases (l. 2). This set contains the execution
of u. If the precondition of the use case u is satisfied (l. 3), it
is added to the set exec (l. 4). This corresponds to the first rule
in Definition 3. The procedure continues with adding the use
cases contained in the execution according to the second rule of
Definition 3. It initializes the stack toProcess (l. 5) and pushes
the elements contained in exec on the stack (l. 6). Thus, the
stack is initially either empty or contains the use case u. The
stack contains the use cases that still need to be processed for
computing the execution. Then, the procedure initializes the
variable processed as an empty set (l. 7). The variable stores
the set of use cases that have already been processed. In the
following loop (ll. 8-16), the procedure iteratively computes
the closure by processing the elements contained on the stack
of use cases that still need to be processed. To this effect,
it pops the first element cur from the stack (l. 9) and adds
it to the set of processed use cases (l. 10). Afterwards, the
procedure iterates over all elements (v, w) of the UCDs guarded
extend relation where the extended use case w is equal to the
currently processed use case cur (l. 11). If the condition of
(v, w) is satisfied (l. 12), the precondition of the extending use
case v is satisfied (l. 13), and the use case v has not already
been processed (l. 14), the use case is added to the computed
execution exec (l. 15) and the stack of use cases that still need to
be processed (l. 16). Finally, the algorithm returns the computed
execution stored in the variable exec (l. 17).

4.2. Semantic Differencing Operator
For checking whether the semantic difference from a UCD
d1 to a UCD d2 is not empty, it suffices to compute the set
sem(d1, V) \ sem(d2, V), where V is the set of variables used
in at least one of the UCDs d1 or d2, and to check whether it is

empty. If it is not empty, each element contained in the set is a
diff witness contained in the semantic difference from d1 to d2.
If the set is empty, then d1 is guaranteed to be a refinement of
d2 (cf. Proposition 1). Algorithm 1 depicts a procedure that can
be used for the computation.

4.3. Semantic Differencing Operator Complexity
The semantic differencing operator described in Section 4.2
has exponential time and space complexities in the numbers
of use cases and variables used in the UCDs. The exponen-
tial complexity is a consequence of the fact that there may be
exponentially many scenarios (in the number of use cases and
variables) contained in the set sem(d, V) for a UCD d and a set
of variables V. Thus, semantic differencing with the operator is
practically infeasible for very large and complex UCDs.

The exponential time complexity is not surprising as the syn-
tax of UCDs (cf. Definition 1) allows arbitrary propositional
formulas to be used as preconditions of use cases. Thus, check-
ing whether a propositional logic formula is satisfiable can be
easily reduced to checking whether the semantics of a UCD
is empty: The UCD only contains a single use case. The pre-
condition of the use case is the formula that should be checked
for satisfiability. Then, the semantics of the UCD is not empty
iff the formula is satisfiable. As the satisfiability problem for
propositional logic is NP-complete, the problem of checking
whether the semantics of an UCD is empty is NP-hard. Further,
semantic differencing of UCDs is at least as hard as checking
whether the semantics of a UCD is empty because checking
whether the semantics of a UCD d is empty can be reduced
to checking whether δ(d, e) = ∅ where e is the empty UCD
not containing any use cases or actors. The semantics of e is
trivially empty.

However, the application of the semantic differencing oper-
ator may be feasible for many relatively small UCDs used in
practice as illustrated by the experimental evaluation presented
in the following Section 5.

5. Experimental Evaluation
This section presents the results of experimental evaluations of
the computation times of a prototype implementation.

We implemented a textual UCD modeling language using the
language workbench MontiCore (Hölldobler et al. 2021). For
this language, we implemented the semantic differencing opera-
tor presented in Section 4. The implementation is purely written
in Java and together with test cases covering the algorithms
presented in this paper publicly available in a GitHub repository
of the MontiCore group (https://github.com/MontiCore/ucd).

A MontiCore grammar (MCG) implements the reduced ab-
stract syntax presented in Section 3.2. A simplified excerpt
of the grammar is depicted in Figure 6. Detailed information
can be found in the documentation on GitHub. The relation
between the reduced abstract syntax and the MCG is straight-
forward: Use cases diagrams are defined by using the nonter-
minal UseCaseDiagram, use cases are defined by using the
nonterminal UCDUseCase, and actors are defined by using the
nonterminal UCDActor. The implementation of the semantic

Semantic Differencing of Use Case Diagrams 9

https://github.com/MontiCore/ucd

UseCaseDiagram =
"usecasediagram" Name "{"

(UCDUseCase | UCDActor)*
"}";

UCDUseCase =
["abstract"]? Name ("[" Expression "]")?
("specializes" sup:(Name || ",")+)?
("extend" (UCDExtend || ",")+)?
("include" incl:(Name || ",")+)?
";";

UCDExtend =
Name ("[" Expression "]")?;

UCDActor =
["abstract"]? "@" Name
("specializes" sup:(Name || ",")+)?
("--" uc:(Name || ",")+)?
";";

MCG

Figure 6 Simplified MontiCore grammar for UCDs.

differencing operator directly operates on the abstract syntax
tree instances instantiated by the MontiCore parser generated
from the MCG for the UCD language.

The implementation is a straight-forward translation of the al-
gorithms presented in Section 4.1 into Java. To build confidence
on the completeness and correctness of our implementation, we
also added several test cases to the GitHub repository covering
all relevant cases. Only minor error cases are not covered from
these test cases.

The result of the Java method implementing the se-
mantic differencing operator is of type Set<Scenario>
where Scenario is a class with the attributes val of type
Set<String>, ucs of type Set<String>, and actor2uc of
type Multimap<String,String>. For an instance of type
Scenario, the attribute val exactly contains the names of all
variables that are assigned to true in the scenario. All other
variables are assigned to false. The set ucs contains all use
cases participating in the scenario. The map actor2uc defines
the actors participating in the scenario (the key set of the map)
and the relation between the actors and use cases. It maps
each actor to all the use cases to which it is associated. Users
of the UCD language can directly operate on the result com-
puted by the Java method implementing the semantic differenc-
ing operator. Alternatively, users of the semantic differencing
operator can use the command line interface (downloadable
at http://monticore.de/download/UCDCLI.jar and documented
at https://github.com/MontiCore/ucd) for computing diff wit-
nesses. When using the command line interface, the diff wit-
nesses are presented in a textual notation obtained from pretty
printing the values of the attributes of the scenarios.

We ran experiments with twelve models from Section 2 and
inspired by external sources (Friedenthal et al. 2014; Jäckel et al.
2020, 2021). Unfortunately, to the best of our knowledge, there
exists no publicly available and easily automatically accessible
database containing many UCDs suitable for automatic testing
of use case diagrams. Even though, GenMyModel (https://
www.genmymodel.com/) provides a large overview of user

created diagrams, the API is currently not in the state to make
automatic testing and comparison of models easily possible. It
would be an interesting future work to test our approach with
such a library in a larger scale or based on use case diagrams
used in industry projects.

Table 1 summarizes the sizes of the UCDs used in the ex-
periments in terms of the sizes of the individual components
according to Definition 1. The names of the UCDs are abbre-
viated as follows: CarCharging1 (CC1), CarCharging2 (CC2),
SwimmyFish1 (SF1), SwimmyFish2 (SF2), FeatureBroadcast-
Position (FBP), FeatureNavigation (FN), OperateVehicle (OV),
OperatePremiumVehicle (OPV), SecurityEnterprise (SE), and
SecurityEnterpriseCorrection (SEC). The UCD VTOL2, for ex-
ample, comprises 44 use cases, 14 actors, 37 associations, and
25 elements in the extend relations in total.

We executed the semantic differencing operator for each pair
of example models. This yielded 144 experiments in total. The
experiments were all executed on an ordinary laptop computer
equipped with an Intel Core i7-8650U CPU@1.90GHz proces-
sor, 16GB RAM, and a Samsung PM981 512GB SSD hard
drive using Windows 10 and Java 1.8.0_192. All experiments
were executed in the same Java virtual machine run. Table 2
summarizes the computation times of the semantic differencing
operator implementation. The computation times range from
under 1 millisecond (corresponding to the 0 entries in the table)
to 107 milliseconds.

As the computation times of all experiments were relatively
small (smaller than 107 milliseconds), we conclude that the
performance of the semantic differencing operator suffices for
the example models. Although we cannot generalize the re-
sults to arbitrary UCDs (cf. Section 4.3), we believe that the
performance of the operator is sufficient for many UCDs used
in practice (especially for UCDs with sizes that are comparable
to the sizes of the UCDs used in the experiments).

6. Related Work
This section presents related work concerning use case modeling
and semantic differencing.

Use cases were introduced in (Jacobson et al. 1992) as a
method to describe a system’s functionality based on simple
models. In general, UCDs can be differentiated from use case
specifications. While UCDs present an overview about a sys-
tem’s use cases and their interactions with actors, use case spec-
ifications focus on the internal behavior of use cases. While the
graphical syntax of UCDs is standardized in the Unified Model-
ing Language (UML) specification (“OMG Unified Modeling
Language (OMG UML)” 2017) and in the Systems Modeling
Language (SysML) specification (“OMG Systems Modeling
Language” 2019), there exist various additional ways to for-
mulate use case specifications such as tables as mentioned in
(Fowler 2004; Cockburn 2001) or other UML/SysML diagrams
(Friedenthal et al. 2014). Not all approaches clearly differenti-
ate between UCDs, as a means to express use cases and their
relation, and use case specifications, which specify the system
behavior under consideration of a use case.

In general, there are two approaches for syntactically repre-

10 Kautz et al.

http://monticore.de/download/UCDCLI.jar
https://github.com/MontiCore/ucd
https://www.genmymodel.com/
https://www.genmymodel.com/

UCD |U| |A| |Abs| |R| |GU | |GA| |E| |G|

CC1 6 4 0 12 6 5 0 0

CC2 8 4 1 16 10 5 0 2

SF1 8 2 0 7 10 2 2 1

SF2 8 2 1 7 10 2 0 3

FBP 12 9 0 17 12 9 0 2

FN 9 5 0 7 9 5 1 4

OV 8 3 0 6 10 5 0 3

OPV 12 4 0 10 16 6 0 5

SE 6 4 0 6 8 4 0 1

SEC 6 5 0 7 8 5 0 1

VTOL1 43 13 0 35 43 13 2 20

VTOL2 44 14 0 37 44 15 3 22

Table 1 Sizes of the UCDs used in the experiments.

senting UCDs. First, the graphical UCD syntax from (“OMG
Unified Modeling Language (OMG UML)” 2017) that we based
our Definition 1 on. Second, tabular specification techniques
such as the method proposed in (Cockburn 2001; Fowler 2004)
that usually focus on use case specifications. As we focus on
the semantics of UCDs and the OMG specification is the de
facto standard in this area, our UCD syntax is mainly inspired
by (“OMG Unified Modeling Language (OMG UML)” 2017)
and complemented with a textual syntax used in our implemen-
tation for the evaluation.

UCDs are outside of the scope of the OMG’s fUML (Ob-
ject Management Group 2005), which partly specifies the se-
mantics of the UML. An approach for formalizing the behavior
of use cases is presented in (Shen & Liu 2003). However, the
semantics in (Shen & Liu 2003) primarily focuses on the pre-
sentation of a use cases pre- and post-conditions and not on
complete UCDs. More recently, an approach to define the se-
mantics of UCDs based on the common Algebraic Specification
Language (CASL) is presented in (Mondal et al. 2014). In con-
trast to our approach, the authors use CASL to specify their
use case diagrams formally and do not differentiate between in-
clude and extend relationships. In (Whittle 2006), an approach
to precisely specify use cases is presented. In contrast to our
approach, which focuses on the specification of the UCD, this
approach primarily focuses on use case specifications and uses
a combination of sequence and activity diagrams to model use
cases. While the approach defines a precise formal semantics,
the syntax and semantics of the diagrams are more related to
UML activity and sequence diagrams than to the UML UCDs.
This is the case because the UCDs are modeled with use case
charts based on activity diagrams and scenario diagrams based
on sequence diagrams. Therefore, this semantics definition is

more related to the semantics of sequence diagrams presented
in (Harel & Maoz 2008; Eichner et al. 2005) and activity di-
agrams (Maoz et al. 2011a; Kautz & Rumpe 2018b; Kautz
2021) than to the use case diagram semantics presented in our
work. Nevertheless, it could be an interesting future work to
specify the behavior of a use case using a similar semantics in
combination with our UCD semantics. Similarly, an approach to
formally define the semantics of a use case specification without
focusing on the diagram is presented in (Oliveira et al. 2014).

Moreover, (Sengupta & Bhattacharya 2006) describes a
method to translate UCDs into a Z notation scheme to per-
form type checking techniques on the UCDs and finally present
the results in an entity relationship diagram. In contrast to our
approach, the presented method relies on a Z notation scheme
and a type checking framework, while our approach is mostly
tool independent. Additionally, (Sousa et al. 2017) presents an
interesting approach to transform UCDs into Event-B. While
this approach has its strengths in defining systems as contexts,
in contrast to our approach, the authors decided to not consider
generalization and extension points in the use case diagram
variant they consider.

Other approaches for semantic differencing using the same
definition of semantic difference have been developed for
class diagrams (Maoz et al. 2011b; Kautz et al. 2017), state-
charts (Drave, Eikermann, et al. 2019), feature diagrams (Acher
et al. 2012; Drave, Kautz, et al. 2019; Kautz 2021), activity dia-
grams (Maoz et al. 2011a; Kautz & Rumpe 2018b; Kautz 2021),
sequence diagrams (Kautz 2021), interactive automata (Butting
et al. 2017, 2019; Kautz 2021), combinatorial models of test de-
signs (Tzoref-Brill & Maoz 2017), and Alloy modules (Ringert
& Wali 2020). A framework for semantic differencing oper-
ators that are based on behavioral semantics specifications is

Semantic Differencing of Use Case Diagrams 11

CC1 CC2 SF1 SF2 FBP FN OV OPV SE SEC VTOL1 VTOL2

CC1 2 4 6 8 1 1 3 7 2 1 3 5

CC2 1 0 1 3 0 1 1 7 1 0 2 1

SF1 1 1 1 4 2 0 2 11 6 2 4 3

SF2 2 1 1 1 1 1 1 8 2 2 4 4

FBP 0 1 0 1 0 0 1 3 1 1 2 2

FN 0 1 1 1 0 1 0 3 0 1 1 1

OV 0 0 1 1 1 0 0 3 1 4 3 4

OPV 3 3 7 13 4 5 3 6 5 4 13 18

SE 0 1 1 1 2 0 1 5 0 1 2 3

SEC 0 1 0 2 1 0 1 5 0 1 2 3

VTOL1 2 0 3 7 3 6 10 14 3 5 3 4

VTOL2 2 7 4 9 3 107 3 104 3 5 6 6

Table 2 Computation times of the semantic differencing experiments in milliseconds.

presented in (Langer et al. 2014). The framework is instan-
tiated with activity diagrams, class diagrams, and petri nets.
Non-enumerative semantic differencing operators (Langer et al.
2014) representing semantic differences by another model have
been developed for automata (Fahrenberg et al. 2011), class dia-
grams (Fahrenberg et al. 2014), and feature diagrams (Fahren-
berg et al. 2011). Advanced techniques relating semantic to
syntactic differences are presented in (Maoz & Ringert 2015,
2018; Kautz & Rumpe 2018a; Kautz 2021). The techniques
can also be instantiated with this paper’s UCD language and
differencing operator.

7. Discussion and Possible Extensions
This paper defines a closed-world semantics for UCDs. In the
closed-world, a scenario contained in the semantics of a UCD
only contains use cases that can or must be executed when a
designated use case of the diagram is executed. This relationship
between the use cases is modeled in the UCD by the extend and
include relations. Use cases not modeled in a UCD cannot be
part of any scenario contained in the semantics of the UCD.

Alternatively, it is possible to define an open-world semantics
for UCDs similar to the open-world semantics for feature mod-
els defined in (Drave, Kautz, et al. 2019). With the open-world
semantics, different unrelated use cases could be executed in the
same scenario. This corresponds to merging multiple scenarios
contained in the closed-world semantics as defined in this paper.
Similarly, the open-world semantics could allow the occurrence
of use cases not modeled in a UCD to be contained in the scenar-
ios of the UCD. The assumption of the closed-world semantics
is that exactly what has been explicitly modeled is possible. In
contrast, the assumption of an open-world semantics would be
that anything not explicitly constrained is possible.

The closed-world semantics has the advantage that only use
cases of the diagram can be part of the scenarios. Thus, small
changes in the model can already cause semantic differences.
In late development stages, in which the development of the
UCDs is nearly finished, this leads to the expected behavior of
the semantic differencing operator. In contrast, models often
change in early development stages. In these stages, the addition
of model elements, such as use cases, is usually considered to be
a refinement of the model. Then, an open-world semantics and a
corresponding semantic differencing operator could be adequate.
The development of an open-world semantics or even multiple
variants and corresponding semantic differencing operators is
interesting future work.

As mentioned in the introduction, our algorithm for semantic
differencing of UCDs can be used in the acquisition phase of
system development. For example, it is possible to investigate
the use-case level differences between a required system and
the (sub-)systems available by different vendors on the market.
Using our current proposal, the system developers are enabled
to formally check whether the UCDs specified by the acquirer
are compatible to those defined by the vendor company. This is
possible by checking whether the UCD of the required system
is a refinement of the UCDs provided by the vendor company.
Since the algorithm ultimately results in diff witnesses, these
witnesses can be used to analyze and discuss the found mis-
matches and incompatibilities in future negotiations. Similarly,
checking whether a new version of a UCD could safely replace
the previous version without the clients experiencing problems
can be reduced to refinement checking. Both scenarios seem to
be promising for future evaluations.

Further, the syntax and semantics presented in this paper
could be extended in future works with advanced concepts, such

12 Kautz et al.

as guarantees and triggers (Fowler 2004) or use case templates
(Cockburn 2001; Fowler 2004) to additionally enable the defini-
tion of use case specifications. When additionally considering
use case specifications, two UCDs that are syntactically equal
in this paper’s view can be different from a semantical point of
view if the specifications of the use cases differ.

Other possible extension are the additions of system bound-
aries and extension points (“OMG Unified Modeling Language
(OMG UML)” 2017). With system boundaries, the syntax and
semantics of UCDs must be extended to be able to distinguish
the systems in which use cases are executed. When adding
extension points, the semantics has to distinguish whether a use
case has been executed in the context of an extension point or
not. In case a use case has been executed in the context of an
extension point, the semantics also has to consider the name of
the extension point. The semantics must distinguish whether a
use case has been executed in the context of an extension point
e or an extension point e′ with e ̸= e′.

The UML UCD definition also supports cardinalities on as-
sociation ends. For adding cardinalities to this paper’s approach,
the semantic domain must be extended such that scenarios can
contain multiple instances of actors and use cases. Then, the se-
mantics of a UCD should only contain scenarios where the links
between the instances of actors and use cases are compatible to
the cardinalities defined in the UCD.

8. Conclusion
This paper presented an approach to automatic semantic differ-
encing of UCDs. To this end, we defined an abstract syntax,
a formal semantics, and a semantic differencing operator for
a UCD variant. Our experimental evaluation has shown that
although the semantic differencing operator has exponential
time and space complexity, the performance of the semantic
differencing operator may be feasible for many UCDs used in
practice. Thus, it eases semantic UCD evolution analysis by
automation. In a more general context, the contributions of this
paper can be integrated into system modeling tools to enhance
the process of modeling top-level requirements.

Acknowledgments
This research has partly received funding from the German
Federal Ministry for Education and Research under grant no.
01IS20092. The responsibility for the content of this publication
is with the authors.

References
Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P., &

Merle, P. (2012). Feature Model Differences. In Advanced
information systems engineering (pp. 629–645). Springer
Berlin Heidelberg.

Butting, A., Kautz, O., Rumpe, B., & Wortmann, A. (2017).
Semantic Differencing for Message-Driven Component &
Connector Architectures. In Ieee international conference on
software architecture (icsa) (p. 145-154). IEEE.

Butting, A., Kautz, O., Rumpe, B., & Wortmann, A.
(2019). Continuously analyzing finite, message-driven, time-

synchronous component & connector systems during archi-
tecture evolution. Journal of Systems and Software, 149,
437–461.

Cockburn, A. (2001). Writing Effective Use Cases. Addison-
Wesley Longman Publishing Co., Inc.

Drave, I., Eikermann, R., Kautz, O., & Rumpe, B. (2019).
Semantic Differencing of Statecharts for Object-Oriented
Systems. In Proceedings of the 7th international confer-
ence on model-driven engineering and software development
(p. 272-280). SciTePress.

Drave, I., Kautz, O., Michael, J., & Rumpe, B. (2019). Semantic
Evolution Analysis of Feature Models. In Proceedings of
the 23rd international systems and software product line
conference (pp. 245–255). ACM.

Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., & Stehno,
C. (2005). Compositional semantics for UML 2.0 sequence
diagrams using Petri Nets. In International sdl forum (pp.
133–148).

Fahrenberg, U., Acher, M., Legay, A., & Wasowski, A. (2014).
Sound Merging and Differencing for Class Diagrams. In
Fundamental approaches to software engineering (pp. 63–
78). Springer Berlin Heidelberg.

Fahrenberg, U., Legay, A., & Wasowski, A. (2011). Vision
Paper: Make a Difference! (Semantically). In Model driven
engineering languages and systems (pp. 490–500). Springer
Berlin Heidelberg.

Fowler, M. (2004). UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional.

France, R., & Rumpe, B. (2007). Model-Driven Development
of Complex Software: A Research Roadmap. In Future of
software engineering (fose ’07) (p. 37-54). IEEE.

Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practi-
cal Guide to SysML, Third Edition: The Systems Modeling
Language (3rd ed.). Morgan Kaufmann Publishers Inc.

Harel, D., & Maoz, S. (2008). Assert and negate revisited:
Modal semantics for UML sequence diagrams. Software &
Systems Modeling, 7(2), 237–252.

Harel, D., & Rumpe, B. (2004). Meaningful Modeling: What’s
the Semantics of "Semantics"? Computer, 37(10), 64-72.

Hölldobler, K., Kautz, O., & Rumpe, B. (2021). MontiCore
Language Workbench and Library Handbook: Edition 2021.
Shaker Verlag.

Hölldobler, K., Michael, J., Ringert, J. O., Rumpe, B., & Wort-
mann, A. (2019). Innovations in Model-based Software and
Systems Engineering. The Journal of Object Technology,
18(1), 1-60.

Jacobson, I., Christerson, M., Jonsson, P., & Övergaard, G.
(1992). Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley.

Jäckel, N., Granrath, C., Schaller, R., Grotenrath, M., Fischer,
M., Orth, P., & Andert, J. (2020). Integration of VTOL
air-taxis into an existing infrastructure with the use of the
Model-Based System Engineering (MBSE) concept CUBE.
In 76th annual forum and technology display 2020 the future
of vertical flight.

Jäckel, N., Granrath, C., Wachtmeister, L., Karaduman, A.,
Rumpe, B., & Andert, J. (2021). Feature-Driven Specification

Semantic Differencing of Use Case Diagrams 13

of VTOL Air-Taxis with the Use of the Model- Based System
Engineering (MBSE) Methodology CUBE. In 77th annual
forum and technology display 2021 the future of vertical
flight.

Kautz, O. (2021). Model Analyses Based on Semantic Differ-
encing and Automatic Model Repair. Shaker Verlag.

Kautz, O., Maoz, S., Ringert, J. O., & Rumpe, B. (2017, July).
CD2Alloy: A Translation of Class Diagrams to Alloy (Tech-
nical Report No. AIB-2017-06). RWTH Aachen University.

Kautz, O., & Rumpe, B. (2018a, October). On Computing
Instructions to Repair Failed Model Refinements. In Proceed-
ings of the 21th acm/ieee international conference on model
driven engineering languages and systems (pp. 289–299).
ACM.

Kautz, O., & Rumpe, B. (2018b, October). Semantic Differ-
encing of Activity Diagrams by a Translation into Finite Au-
tomata. In Proceedings of models 2018 workshops. CEUR.

Langer, P., Mayerhofer, T., & Kappel, G. (2014). Semantic
Model Differencing Utilizing Behavioral Semantics Specifi-
cations. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, &
E. Insfran (Eds.), Model-driven engineering languages and
systems (pp. 116–132). Springer International Publishing.

Maoz, S., & Ringert, J. O. (2015). A Framework for Relating
Syntactic and Semantic Model Differences. In Acm/ieee
18th international conference on model driven engineering
languages and systems (models) (pp. 24–33). IEEE.

Maoz, S., & Ringert, J. O. (2018). A framework for relating syn-
tactic and semantic model differences. Software & Systems
Modeling, 17(3), 753–777.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011a). ADDiff:
Semantic Differencing for Activity Diagrams. In Proceedings
of the 19th acm sigsoft symposium and the 13th european
conference on foundations of software engineering (pp. 179–
189). ACM.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011b). CDDiff:
Semantic Differencing for Class Diagrams. In Ecoop 2011 –
object-oriented programming (p. 230-254). Springer Berlin
Heidelberg.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011c). A Manifesto
for Semantic Model Differencing. In Models in software
engineering (pp. 194–203). Springer Berlin Heidelberg.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011d). Summarizing
Semantic Model Differences. In International workshop on
models and evolution at acm/ieee 14th international confer-
ence on model driven engineering languages and systems.

Maoz, S., Ringert, J. O., & Rumpe, B. (2012). An Interim
Summary on Semantic Model Differencing. Softwaretechnik-
Trends, 32(4), 44–46.

Mondal, B., Das, B., & Banerjee, P. (2014). Formal Specifica-
tion of UML Use Case Diagram–A CASL based Approach.
International Journal of Computer Science and Information
Technologies, 5(3), 2713–2717.

Object Management Group. (2005, April). Semantics for a
foundational subset for executable UML models, Request for
Proposal.

Oliveira, M., Ribeiro, L., Cota, É., Duarte, L., Nunes, I., & Reis,
F. (2014). Use case analysis based on formal methods: An

empirical study. In Wadt.
OMG Systems Modeling Language (Version 1.6 ed.) [Computer

software manual]. (2019, March).
OMG Unified Modeling Language (OMG UML) (Version 2.5.1

ed.) [Computer software manual]. (2017, December).
Pretschner, A., Broy, M., Kruger, I. H., & Stauner, T. (2007).

Software engineering for automotive systems: A roadmap.
In Fose ’07: 2007 future of software engineering (pp. 55–71).
IEEE Computer Society.

Ringert, J. O., & Wali, S. W. (2020). Semantic comparisons
of alloy models. In Proceedings of the 23rd acm/ieee inter-
national conference on model driven engineering languages
and systems (p. 165–174). ACM.

Sengupta, S., & Bhattacharya, S. (2006). Formalization of
UML use case diagram-a Z notation based approach. In 2006
international conference on computing informatics (p. 1-6).

Shen, W., & Liu, S. (2003). Formalization, testing and execution
of a use case diagram. In International conference on formal
engineering methods (pp. 68–85). Springer.

Sousa, T., Kelvin, L., Neto, C., & Carvalho, C. (2017, 04).
A Formal Semantics for Use Case Diagram Via Event-B.
Journal of Software, 12, 189-200.

Tzoref-Brill, R., & Maoz, S. (2017). Syntactic and Semantic
Differencing for Combinatorial Models of Test Designs. In
2017 ieee/acm 39th international conference on software
engineering (icse) (pp. 621–631). IEEE.

Whittle, J. (2006). Specifying precise use cases with use case
charts. In Satellite events at the models 2005 conference (pp.
290–301). Springer Berlin Heidelberg.

About the authors
Oliver Kautz successfully finished his doctoral studies at RWTH
Aachen University in 2021. He is currently working as a prod-
uct owner at CBC Cologne Broadcasting Center GmbH, mainly
working on software applications for planning the contents of
TV channels and streaming platforms. His research interests
include software engineering, software language engineering,
model-driven development, and semantics of modeling lan-
guages. You can contact him at oliver.kautz@rtl.de.

Bernhard Rumpe is full Professor at RWTH Aachen University,
where he leads the Software Engineering Research Group. His
research interests include modelling, model languages, soft-
ware model language engineering, code synthesis from models
and model-based analysis. You can contact him at rumpe@se-
rwth.de or visit https://www.se-rwth.de/.

Louis Wachtmeister is a research assistant and Ph.D. candidate
at the Department of Software Engineering at RWTH Aachen
University. His research interests cover software and systems
engineering, software architectures, and model-driven develop-
ment. You can contact him at wachtmeister@se-rwth.de or visit
https://www.se-rwth.de/.

14 Kautz et al.

mailto:oliver.kautz@rtl.de?subject=Your paper "Semantic Differencing of Use Case Diagrams"
mailto:rumpe@se-rwth.de?subject=Your paper "Semantic Differencing of Use Case Diagrams"
mailto:rumpe@se-rwth.de?subject=Your paper "Semantic Differencing of Use Case Diagrams"
https://www.se-rwth.de/
mailto:wachtmeister@se-rwth.de?subject=Your paper "Semantic Differencing of Use Case Diagrams"
https://www.se-rwth.de/

