Check for
Updates

[®] (Rssv241 B. Rumpe, M. Stachon, S. Stiiber, V. Voufo:

O[Ty

= Semantic Difference Analysis with Invariant Tracing for Class Diagrams Extended by OCL.

" In: Workshop on Model Driven Engineering, Verification and Validation, MODELS Companion '24:
p International Conference on Model Driven Engineering Languages and Systems (MoDeVVa),

pp. 1066—1075, Association for Computing Machinery (ACM), Oct. 2024.

Semantic Difference Analysis with Invariant Tracing
for Class Diagrams Extended by OCL

Bernhard Rumpe
Chair of Software Engineering,
RWTH Aachen University
Aachen, Germany
rumpe@se-rwth.de

Sebastian Stiiber
Chair of Software Engineering,
RWTH Aachen University
Aachen, Germany
stueber@se-rwth.de

Abstract

Models are the primary source-artifacts in Model Driven Devel-
opment (MDD) and are thus subject to changes and evolution
throughout the development process. To better understand these
model-changes, semantic differencing operators can be employed.
In this paper, we present an approach for automatically detecting
the semantic differences of Class Diagrams (CDs) that have been
extended with Object Constraint Language (OCL) constraints. Pre-
vious works regarding OCL models focused mostly on validation
and satisfiability of OCL invariants and conditions, not analyzing
semantic differences between subsequent versions of CDs and OCL
models. While implementations of semantic differencing operators
for CDs already exist, they have yet to integrate OCL models in
their analysis. Using a translation of CDs and OCL constraints to
Satisfiability Modulo Theories (SMT), we developed a tool for de-
tecting semantic differences between two compositions of CD and
OCL models. The differences are reported in the form of Object
Diagrams (ODs) that describe valid instances of one model but not
the other. Additionally, invariants are traced across models. The
implementation of this tool is publicly available.

CCS Concepts

« Software and its engineering — Formal software verifica-
tion; Domain specific languages; Object oriented development;
Software development methods.

Keywords

OCL, CD, Analysis, Semantics, Differences, Tracing, UML, Model-
Driven

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687818

Max Stachon
Chair of Software Engineering,
RWTH Aachen University
Aachen, Germany
stachon@se-rwth.de

Valdes Voufo
Chair of Software Engineering,
RWTH Aachen University
Aachen, Germany
valdes.voufo@rwth-aachen.de

ACM Reference Format:

Bernhard Rumpe, Max Stachon, Sebastian Stiiber, and Valdes Voufo. 2024.
Semantic Difference Analysis with Invariant Tracing for Class Diagrams
Extended by OCL. In ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems (MODELS Companion °24), Sep-
tember 22-27, 2024, Linz, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3652620.3687818

1 Introduction

Effective change management is crucial for successful software de-
velopment. In MDD the primary development artifacts are models
and their evolution becomes a major concern of the development
process. During the requirements elicitation phase, models are cre-
ated as abstract representations of the system’s functionalities and
constraints [21]. In the following development phases, the design
of the system progresses, and models are refined and expanded to
include more detailed information about the system’s components
and interactions. During the implementation, code generators are
used to automatically generate code from source models [43, 45].
Over the course of this development process, semantic differenc-
ing operators can be employed to better understand the impact of
changes made to models, thereby assisting developers in change
management [30, 40].

We focus in this paper on CDs and OCL of the Unified Mod-
eling Language (UML) [20], more specifically the UML/P variant
described in [42]. CDs model the structure of object-oriented soft-
ware systems via classes and relations between them. However,
their expressiveness is limited, which is why OCL is used to spec-
ify additional properties and behaviors using invariants, i.e., con-
straints that should always hold during the system’s lifetime, as
well as operation-specific constraints in the form of pre- and post-
conditions.

We ask the following research questions:

(RQ1) Can semantic differences between CDs extended by OCL be
automatically detected.

(RQ2) Can corresponding tooling be used in the context of MDD
to determine or exclude refinement relations between model
versions.

Our main contribution is a semantic differencing operator for
compositions of CDs and OCL models that utilizes a translation to

https://orcid.org/0000-0002-2147-1966
https://orcid.org/0000-0002-6328-3816
https://orcid.org/0000-0002-6636-9375
https://orcid.org/0009-0003-8110-3895
https://doi.org/10.1145/3652620.3687818
https://doi.org/10.1145/3652620.3687818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687818&domain=pdf&date_stamp=2024-10-31

MODELS Companion "24, September 22-27, 2024, Linz, Austria

SMT [4] and the solver Z3 [11]. The semantic difference is reported
via a diff-witness in the form of an OD. These witnesses represent
valid instances of the new model version that are not permitted by
the old version (or the other way around if their positions in the in-
put are switched). The operator is also capable of tracing invariants,
i.e., detecting which invariants of the new model version imply
invariants of the old version. Furthermore, we have extended the
operator to detect the semantic difference of operation constraints
and produce diff-witnesses in the form of pairs of ODs, representing
the data-states before and after execution.

The remainder of this paper is structured as follows: In the next
section, we discuss related work. Then in section 3, we outline pre-
liminary concepts and technologies. Section 4 introduces a running
example that we will refer to in the rest of the paper. Section 5 and
section 6 describe translation of CD and OCL constraints to SMT.
In section 7, we detail our approach for semantic differencing. The
tool is then evaluated regarding its ability to determine refinement
between model versions in section 8. A conclusion and outlook on
future work is given in section 9.

2 Related Work

In the following, we discuss related work. We focus on analysis of
CDs and OCL models, as well as semantic differencing.

According to [27], a precise semantics is needed in order to per-
form automatic verification of CDs and OCL constraints and [39]
provides such a formalization for OCL expressions in the form
of functions that map a variable assignment and a class to an ob-
ject identifier of a corresponding data instance. We chose a more
depictable notion of semantics in the form of object structures
representing valid data states.

The same authors also provide an approach for verifying CDs
annotated with OCL in [38], where snapshots of a system’s data-
state are checked for consistency regarding the data model and
corresponding constraints. Another verification-approach for OCL
models that reduces the problem to SAT-solving is introduced in
[44]. Similarly, [28] presents a translation of UML CDs annotated
with OCL constraints into relational logic, as well as a translation
back from relational instances to object structures. This translation
is then used in conjunction with the SAT-based constraint solver
Kodkod [47] for analysis. We believe that this translation should
also allow for semantic difference analysis. However, for our imple-
mentation of the differencing operator, we decided to use SMT due
to its better support of the String data type.

Our translation of CDs to SMT was in part inspired by [36].
The authors present an approach for verification of data models in
the context of web-applications using the Model-View-Controller
(MVC) pattern. They are able to automatically extract formal data
models from Object Relational Mapping (ORMs), then verify them
regarding corresponding verification queries by using a SMT solver
such as Z3 [11].

In [7] and [8], the Cabot et al. present translations of CDs anno-
tated with OCL models to Constraints Satisfiability Problems (CSPs).
This allows verifying the compliance of the model with respect to
several correctness properties using constraint programming. Sim-
ilarly, Pérez and Porres [37] presents a framework for reasoning
about CDs annotated by OCL constraints based on constraint logic

Bernhard Rumpe, Max Stachon, Sebastian Stiiber, and Valdes Voufo

programming that utilizes the formal specification language FOR-
MULA [22] and the SMT solver Z3[11]. However, a limitation of
all these approach is the explicit boundedness of the search space.
We instead opted for a direct but modularized translation of CDs
and OCL constraints to SMT, which allows us to mix and match
translation strategies and avoid explicitly defined bounds on the
search space if needed.

In a recent publication [48], Hao Wu presents QMaxUSE, a tool
for incrementally verifying the satisfiability of a CD with OCL
constraints that allows for concurrent verification of user queries.
According to Wu, the concurrent incremental verification improves
performance when compared to similar approaches. The transla-
tion of CDs and OCL invariants is based on a previous translation
described in [49] in order to detect inconsistencies in domain / meta-
models and determine a maximum set of consistent features based
on a ranking of model elements. The tool MaxUSE is build on top of
the modeling tool USE [18] which offers a variety of verification op-
tions for CDs with OCL constraints [19]. At the time of publication
the translation for MaxUse did not include some of the features we
currently support, such as constraints on strings, closure operators
and variable declarations using the context keyword.

Previous literature describes a variety of existing semantic differ-
encing operators that focus primarily on a single modeling language
each:

CDDiff is a semantic differencing operator introduced in [33]
that is able detect the semantic differences of two CDs. If a semantic
difference is detected, CDDiff outputs diff-witnesses in the form
of ODs. These witnesses describe valid instances of the first CD
that are not permitted by the second CD. The operator utilizes a
translation to Alloy [23, 25] in order to find these instances using
the Alloy Analyzer. Originally, CDDiff could only operate under a
closed-world assumption on CD semantics, i.e., object structures
were not allowed to contain instances of types, attributes, or as-
sociations that were not explicitly modelled in the diagram. This
limits the applicability of semantic differencing in analyzing the
model evolution in early development phases, as the addition of
new model elements would not be considered a refinement [35]. To
address this issue, CDDiff was later extended to be able to operate
under an open-world assumption [40], i.e., consider CDs as under-
specified and thus permit additional objects, links, and attribute
instances within object structures.

Drave et al. [14] presents a semantic differencing operator for
Feature Models (FMs) that can compute witnesses in the form of
feature configurations. The diff operation for FMs can be performed
under the closed-world assumption as well as the open-world as-
sumption, i.e., either prohibiting or permitting features not modelled
in the FM in valid feature configurations.

Maoz et al. [31] introduces ADDiff, a semantic differencing oper-
ator for Activity Diagrams (ADs) that uses a translation to SMV [32]
to determine diff-witnesses in the form of execution traces. [26]
presents an alternative approach to ADDiff that considers a smaller
subset of ADs and reduces the problem of semantic differencing
to language inclusion checking. The same approach is used for
semantic differencing of State Charts (SCs) in [13] and [24] as well
as Time-Synchronous Port-Automata (TSPA) in [6].

Semantic Difference Analysis with Invariant Tracing for Class Diagrams Extended by OCL

3 Preliminaries

In this section, we outline existing concepts and technologies that
are relevant for this paper.

3.1 Class Diagrams and their Semantics

CDs are widely used to model the structure of object-oriented soft-
ware systems. They define the set of possible object structures that
comprise a potential data state of a system [41]. A CD consists of a
finite set of type declarations, which are either classes, interfaces or
enumerations, as well as a finite set of associations between types.
A class may contain attributes and method signatures, while an in-
terface may only contain the later. Furthermore, a class may extend
other classes and implement interfaces. Interfaces, however, may
only extend other interfaces. Classes can also be declared abstract
such that they cannot be instantiated directly. An enumeration
defines a set of constants. An association references exactly two
classes and may have a role-name as well a cardinality for each
side. A cardinality imposes constraints on the number of allowed
instances, i.e., links, referencing the same object.

We consider the semantics of a CD to be the set of its valid
instances, i.e., the object structures that it permits. The asymmetric
semantic difference of two CDs is then the set of object structures
permitted by the first CD and not the second. Accordingly, we refer
to such object structures as diff-witnesses. If the semantics of a
CD is included in the semantics of another CD, we consider the
former to be a refinement of the latter. If both are refinements of one
another, we consider them to be refactorings. For a more detailed
discussion on the semantics of CDs refer to [9, 15, 29, 35].

Object structures consists of objects and links between objects.
An object may also contain attributes with specific types and values.
We model object structures as ODs.

3.2 Object Constraint Language

OCL is a textual modeling language that is used in conjunction
with other modeling languages for adding logical constraints to
the semantics of an existing model. It can therefore be used to
add additional restrictions on the object structures defined by a
CD, e.g., the range of an integer attribute can be restricted to a
value between 0 and 100. An invariant is a constraint that should
always hold. An operation constraint is usually given in the form
of a precondition and a postcondition. The postcondition must hold
after the execution of an operation if the precondition was fulfilled
beforehand. For a more in-depth discussion on the UML/P variant
of OCL refer to [42, 43].

3.3 Satisfiability Modulo Theorem

SMT-solvers determine whether a given mathematical formula
is satisfiable. While the satisfiability problem is, in general, NP-
hard [10], in practice, SMT-solvers are often able to find a solution
quickly. The syntax of SMT inputs is standardized in SMTLib2 [4].
We opted to use Z3[11], one of the most prominent SMT-solvers
that is utilized in many applications [5, 17, 34, 46]. To solve an
SMT problem, Z3 tries to instantiate variables and functions so
that the Boolean formulas are satisfied. The solver returns SAT
and a model (values of variable and functions) if the formulas are
satisfiable. It returns UNSAT and an UNSAT-CORE if the formulas are

R I L ST SR,

MODELS Companion "24, September 22-27, 2024, Linz, Austria

not satisfiable. The UNSAT-CORE is a subset of assertions, which
are in conjunction not satisfiable. For example, take the following
three assertions from listing 1 over an integer-attribute balance:

A1) balance>10;

A2) even(balance);

A3) balance<4.

There is no possible solution where all three assertions are satis-
fied. Hence, the SMT-solver returns UNSAT and an UNSAT-CORE.
In this example the UNSAT-CORE consists of assertions A1) and
A3), since they directly contradict each other.

(set-option :produce-unsat-cores true)
(declare-const balance Int)

(assert (! (> balance 10) :named A1))
(assert (! (=(mod balance 2) 0) :named A2))
(assert (! (< balance 4) :named A3))
(check-sat)

;unsat

(get-unsat-core)

s (A1 A3)

Listing 1: SMT example with UNSAT-CORE

4 Motivating Example

Customer Account
— 1 ownerOf 1 | double balance
String id String id
1.*

withdraw(double amount)

readAccess

BusinessAcc

Figure 1: Class Diagram of a Bank Management System

We consider a bank management system modelled with a CD
that uses OCL to ensure the integrity and consistency of the data.
The development team uses MDD methods to automatically gener-
ate code and configuration files from the models. In this example,
the CD is used to generate a SQL-data schema and Java classes.
Validator-methods are generated from the OCL model, which check
whether the data conforms to the constraints. This ensures that the
data in the database is always consistent. The development of the
bank management system is ongoing, and requirements might be
added, modified or removed.

The CD is displayed in fig. 1. It consists of the classes Customer,
Account, and BusinessAcc (business account). A BusinessAcc is
a special kind of Account which has at least one Customer with
read access. A Customer must own exactly one Account and an
Account is owned by exactly one Customer.

The OCL constraints in listing 2 contains two invariants that
model the following requirements: 1) the id of a Customer is unique
(cf. lines 1-3 in listing 2) 2) the balance of a Account must always
be positive (cf. lines 4-6 in listing 2). Additionally, the precondition
of withdraw(double amount) function ensures that the withdraw-
amount is less or equal to the current balance (cf. lines 8-9 in list-
ing 2).

G W o

© o

MODELS Companion "24, September 22-27, 2024, Linz, Austria

inv CustomerID_unique:
forall Customer cl1, c2:
cl != c2 implies cl1.id != c2.id;
inv Balance_positive:
forall Account a:
a.balance >= 0;

context Account.withdraw(double amount)
pre: balance >= amount;
// post condition not (yet) specified

Listing 2: Old OCL specification

These models are used to generate a prototype. The generated
code is extended with handwritten functionality, e.g., a concrete
implementation of withdraw in Java. After demonstrating the pro-
totype to the customer, it becomes clear that the constraints must
be changed. For one, the id of an Account must be unique (cf. lines
1-3 in listing 3). Next, the id of a Customer has to match the id
of their Account (cf. lines 4-6 in listing 3). Also, Accounts may
have a negative balance. Finally, the withdraw(double amount)
postcondition is specified (cf. lines 10-12 in listing 3).

inv AccountID_unique:
forall Account al, a2:
al != a2 implies al.id != a2.id;
inv AccountID_Eq_CustomerID:
forall Account a:
a.id == a.customer.id;

// Balance_positive missing
context Account.withdraw(double amount)

pre: balance >= amount;
post: balance == balance@pre - amount;

Listing 3: New OCL specification

The developer can now re-generate the system with the new
constraints. But questions arises on how these OCL changes impact
the previously developed infrastructure: Can previously written
data still be loaded from the database, or are there new inconsis-
tencies? Are there new situations, which the handwritten code
never considered? Which of the new constraints relate to the old
constraints? Was there an old constraint that was forgotten?

The tool presented in this paper helps developers answer such
questions by analysing the two model versions and demonstrating
the impacts of the changes. Supported analysis are:

Refinement. If the new invariants imply the previous invariants,
we refer to these new invariants as refinements of the previous
ones. This means that all input-assumptions in the previously hand-
written code are still fulfilled. If, on the other hand, the previous
invariants are a refinement of the new invariants, all data can be
loaded from the database as it fulfills the new invariants.

In the example from listings 2 and 3, the previous model and
the new models are not in a refinement relation, as the value of an
Account’s balance is no longer required to be positive in the new
model. But when looking at the individual constraint, we can iden-
tify refinements between them. The constraints AccountID_unique
and AccountID_Eq_CustomerID in conjunction constitute a refine-
ment of the previous constraint CustomerID_unique. Therefore,
handwritten code that assumes the uniqueness of the customer-id
is still correct.

[

Bernhard Rumpe, Max Stachon, Sebastian Stiiber, and Valdes Voufo

Tracing. With tracing we are able to identify logical implication
of constraints across different versions of OCL models. Tracing also
shows which constraints are no longer part of the new version.

As described above, the conjunction of AccountID_unique and
AccountID_Eq_CustomerID constitutes a refinement of the previ-
ous constraint CustomerID_unique. Consequently, they are in a
trace relationship and the developer is informed that the new con-
straints imply the previous constraints. The previous constraint
Balance_positive is not implied by the new constraints, hence it
is not in a trace-relationship.

Diff-Witness. When a constraint is not refined by another con-
straint there exists a diff-witness, i.e., an object structure which
satisfies the latter, but not the former. This witness is presented to
the developer in the form of an OD so that he can better understand
the semantic difference between the two constraints. In addition,
the OD can be used to generate additional test cases [43].

For the example above, one diff-witness is an OD containing an
Account-object with negative balance. Hence, the withdraw op-
eration can be executed with a negative balance according to the
new specification of the system. Since this situation never occurred
before, it is also untested and the method might behave unexpect-
edly. The modeler can use the diff-witness to automatically create
a corresponding test-case.

5 From Class Diagram to SMT

There are several possible approaches for translating CDs to SMT.
As such, we make use of the strategy pattern [16] and decompose
the transformation of the CD into smaller strategies. We imple-
mented strategies to transform classes and interfaces, strategies for
associations, and strategies for inheritance relations. In the first
step, the class-strategy translate the classes, interfaces, and their
attributes. In the second step, the association-strategy uses the dec-
laration of the class-strategy to translate associations. Finally, in
the third step, the inheritance-strategy transforms inheritance rela-
tions between classes and interfaces. The strategy pattern allows
to quickly define a new strategy and use it in the transformation.
In the following, we show one example algorithm for each strategy
type.

Example of a Class-Strategy. For each class A, we introduce a new
SMT sort symbol S,. For each attribute attr of class A with the type
T, we introduced a function symbol fz;; with range S; and domain
Sa, where S; is the SMT representation of the type T. Types like
int, double, char, Stringandboolean are predefined in SMT.
Listing 4 shows how the Customer class from fig. 1 is translated
into SMT.

(declare-sort S_Customer)
(declare-fun Customer_id (S_Customer) (String))

Listing 4: Translation of Customer class to SMT

There is one notable difference between a class in a CD and a sort
in SMT: SMT sorts are never empty. Hence this example strategy
always instantiates every class at least once.

Example of an Association-Strategy. For each association assoc
between classes or interfaces A and B, we introduced a new function

Qs W o =

Semantic Difference Analysis with Invariant Tracing for Class Diagrams Extended by OCL

fassoc in SMT. The function takes two values as parameter. One
value has the type S_B and the other the type S_A. A boolean is
returned. As an interpretation, the function returns true iff both
objects are linked by the association. The cardinality of the asso-
ciation (e.g. [1...#*]) is translated as a additional assertion. Note
that the direction of associations is ignored, since OCL can always
navigate in both directions.

For the association readAccess between Customer and Business-
Acc in fig. 1, the SMT translation is shown in listing 5.

(declare-fun f_readAccess
(S_Customer S_BusinessAcc) (Bool))
; cardinality constraint [1..x]:
(assert (forall ((ba S_BusinessAcc))
(exists ((c S_Customer)) (f_readAccess c ba))))

Listing 5: Translation of readAccess relation into SMT

Example of an Inheritance-Strategy. Since SMT has no concept of

S

inheritance, the translation is not as straightforward as the previous s

ones. Instead, we create a virtual object for each level of the inheri-
tance hierarchy and relate each sub-object with its corresponding
super-object. In practise, this means declaring functions for the
navigation between sub-object and super-object, introducing enu-
meration data-types to denote the sub-type of a super-object, and
defining constraints to guarantee a one-to-one correspondence be-
tween them. Unlike a simple flattening of the inheritance hierarchy,
this allows us to consider constraints concerning super-types with-
out duplicating them for each sub-type. E.g., for the inheritance
relation between BusinessAcc and Account (cf. fig. 1), we have

1) A function symbol super_BAAccount, that casts objects of the
type S_BusinessAcc to S_Account (cf. line 1-3 in listing 6). This
function is used to access the properties of the super-class.

2) A new datatype Account_sub that represents an enumeration
of the sub-classes of Account (cf. line 4-6 in listing 6).

3) A function Account_type from S_Account to Account_type,
which returns the concrete type of an account (cf. line 7-9 in list-
ing 6).

4) Assertions over the functions super_BAAccount and Account-
_type to ensure that parent objects are unique and the type is
correct (cf. line 10-13 in listing 6).

1
2
3
the following transformation: 4
5
6

; Cast to super class
(declare-fun super_BusinessAcc
(S_BusinessAcc) (S_Account))
; Possible subtypes of Account
(declare-datatypes ((Account_sub 0))
(((T_BusinessAcc) (T_Account))))
; Concrete type of Account
(declare-fun Account_type
(S_Account) (Account_sub))
; After casting to superclass, type is correct
(assert (forall ((ba S_BusinessAcc))
(= (Account_type (super_BusinessAcc ba))
T_BusinessAcc)))
; [...] more asserts omitted

Listing 6: Translation of inheritance between BusinessAcc
and Account into SMT

MODELS Companion "24, September 22-27, 2024, Linz, Austria

6 From OCL to SMT

Conceptually, there is a large overlap between expressions in OCL
and SMT. OCL let-expressions can be directly translated into SMT
let-expressions, and Z3 even has a built-in transitive-hull operator.
Consequently, we will only detail the translation of two particular
concepts: set comprehension and operation constraints. Nonethe-
less, it should be noted that, as in our translation from CD to SMT
detailed in 5, for the sake of modularity, we again make use of the
strategy pattern [16].

6.1 Set Comprehension

Types like Boolean, Real, Int, and String are already supported
by SMT, but translating the commonly used set-comprehension
expressions from OCL to SMT is a bit more difficult. Consider, e.g.,
the expression in listing 7 which restricts the id of a Customer to
the values {"id_a", "id_b", "id_c"}.

inv Customer_id_value:
forall Customer c: c.id isin
("id_" + s | s in Set{"a","b","c"}}

Listing 7: Set Comprehension in OCL

We can define an equivalent SMT-assertion without a set-datatype.
The expression in listing 8 uses the fact that the set is only an
intermediate value. The expression is of type Boolean which is
well-supported by SMT.

(assert (forall ((c S_Customer))
(exists ((s String))

; c.id isin {"id_" + s | [...1}
(and (= (Customer_id c¢) (str.++ "id_" s))
;S in Set{”a",”b",”c"}
(or (=5 "a") (='s "b") (= s "c¢")))))

Listing 8: Translation of Set Comprehension into SMT

Set-operations such as union, intersection, minus or equality can
be translated into SMT in a similar manner. However, the limitations
of this approach become apparent when we try to translate the
size operator for sets. Our translation can handle simple uses of
size like (1 <= [|S1|) which is equivalent to (exists s: s isin
S1). But for more complicated size-expression an error is thrown.
For example, our translation into SMT fails on the following OCL-
expression: (|S1| <= [S2]). Luckily, some other SMT solver like
CVC4 [3, 12] support a finite-set theory [2] and the associated
operations. We leave full support of the size-operator on sets as
future work.

6.2 Operation Constraint

Operation Constraints specify the allowed pairs of system states
for before and after an operation is executed via pre- and postcon-
ditions. Objects, attributes, and links in the precondition always
refer to the time before execution. By default, values in the post-
condition refer to the time after execution, but OCL does offer a
@pre-operator which can be used to refer to pre-execution values
in the postcondition.

Lines 10-12 in listing 3 define an operation constraint on the
method withdraw in the class Account. The precondition requires

MODELS Companion "24, September 22-27, 2024, Linz, Austria

the balance of the account to be greater or equal to the amount
to withdraw and the postcondition ensures that the balance of
the account is correct after the transaction. The value of balance
in the precondition is different from the value of balance in the
postcondition. In order to consider this change, we modify the
structure of the class diagram before translating it to SMT. Each
class now has an additional _pre version of each attribute and
each association. Pre-attributes and links hold the values of the
object before executing the operation and the remaining attributes
and association have post-execution values. Figure 2 displays the
transformation of the class Account. The occurrence of the attribute
balance in the precondition refers to balance_pre.

Account Account
ownerOf T EE—
1 ownerOf 1 1 1 | double balance
— | double balance double balance_pre
String id 4 ownerof_pre 4 String id
e e String id_pre

Figure 2: Transformation of CD for Operation Constraints

When an attribute does not occur in the operation constraint,
the modeler assumes that the value was not changed. For example,
since the account-id does not occur in lines 10-12 of listing 3, it is
assumed that its value was not changed by the withdraw operation.
But this is not encoded in the OCL-formula and it is possible to
fulfill the postcondition with a modified account-id. It would be
possible to add such a constraint as a further assertion to 73, but
doing so would change the semantics of the operation constraint.
Instead, this could be translated as a soft-constraint (assert-soft)
to Z3. This way Z3 would prefer solutions where the values do not
change, but can also find solutions where the values change.

To correctly handle all cases where objects are created or deleted
by an operation, additional information needs to be encoded into
the CD. Both points are left as future work.

7 Semantic Difference of Two Models

To analyse the differences between two versions of CD and OCL
models, we first use CDDiff, an existing semantic differencing op-
erator for CDs [33], as a preprocessing step to identify structural
differences in the input CDs that cause a semantic difference. As-
sociation cardinalities are extracted and removed from the CDs
before calling the operator in order to account for OCL constraints
that further restrict the number of links between certain objects.
When the two data-models are not in a refinement-relation, CDDiff
returns an OD as a diff-witness and the diff-operation terminates.

Otherwise, the newer version of the CD as well as the extracted
cardinalities of both CDs are translated to SMT. From there, we
can compute the semantic difference and derive several model
properties.

The benefit of reusing CDDiff is that we do not have to translate
and negate the structural constraints defined by a second CD on
the set of permitted object-structures to SMT, a task that is not
as simple as it might first appear and would require a significant
amount of additional effort. However, there is a trade-off. The
extraction of cardinalities does not completely eliminate the possi-
bility of false positives, i.e., semantic differences between the two

Bernhard Rumpe, Max Stachon, Sebastian Stiiber, and Valdes Voufo

CDs that disappear when considering the OCL constraints. These
edge cases only occur when OCL constraints prevent the instantia-
tion of model-elements, rendering them redundant in the CD. We
therefore assume that they are rare in practice.

7.1 Refinement Checking

The first property that can be checked is the refinement property:
We verify whether all object structures that satisfy the new OCL
specifications also satisfy the previous specifications. Let ®; be a
new constraint with i € I and ¥, an old constraint with k € K. The
new OCL constraints are a refinement of the old OCL constraints,
precisely if the old constraints follow from the new constraints.
This is written as:

/\(I)i = A %

iel keK
This is equivalent to

VkeK:(/\d)l-) = ¥
iel

Which in turn is equivalent to:

Vk eK: (/\ ®; A—¥,) is unsatisfiable
iel

Thus, a refinement check can be divided into multiple satisfiabil-
ity checks. Running multiple smaller checks instead of one large
check enables more finegrained control. For example, runs can be
parallelized across different machines. Moreover, smaller problems
are easier to solve and a timeout is less likely. Finally, smaller checks
give us more information on the semantic relation of invariants,
as every check corresponds to exactly one old constraint. Conse-
quently, the output can detail which old constraints have not been
refined by the new constraints.

7.2 Requirement Tracing

When the solver produces UNSAT on a check, a refinement was
detected. There is however the possibility that the new constraints
are contradicting, and thus no valid object structures exist. This
always constitutes a refinement. We check for contradiction in
a separate operation and assume in the following that the new
constraints are satisfiable. Hence, the negated old constraint must
be part of the UNSAT-CORE. Furthermore, the conjunction of all
other assertions in the UNSAT-CORE implies the old constraint.
Consequently, we can form a trace relationship between the other
assertions in UNSAT-CORE and the old constraint.

The trace is returned as an instance of the CD in fig. 3. Each
artefact has a file-path and the line-number inside the file. Con-
crete elements are OCLInv, which corresponds to an OCL invariant,
and Assoc, which corresponds to the cardinality-restrictions of an
assocation.

For the example in section 4 the trace from new constraints to
old constraints is presented in fig. 4. Filepaths and line-numbers
are omitted from the figure. The trace shows that the old invariant
CustomerID_unique is implied by the three constraints on the right
side. The other old invariant Balance_positive has no incoming
trace-link, hence it does not hold in the new version. With the trace

Semantic Difference Analysis with Invariant Tracing for Class Diagrams Extended by OCL

trace ™
CD
«abstract»
Artefact
Path file;
int line;
OCLInv Assoc

String? name; String? name;

Figure 3: CD used for Traces

OLD OCL
Constraints

New OCL
Constraints

«partial»
:OCLInv

name="AccountID_unique”

:OCLInv
name="CustomerlD_unique”

:OCLInv
name="Account|D_Eq_CustomerID”

:OCLInv
name="Balance_positive”

/A

:Assoc
name="ownerOf”

Figure 4: Trace between New and Old Version

OD the developer can quickly see how constraints from different
versions are related.

7.3 Witness Object Diagram

When the SMT-solver returns SAT on a check, a semantic differ-
ence was detected. The SMT-solver then produces an SMT-model
with an assignment that fulfills all constraints. Afterwards, a diff-
witness is constructed by translating this SMT-model to an OD.
This translation happens automatically. Figure 5 shows one pos-
sible diff-witness for the example from section 4. Here, the ids of
Customer and Account are different, thus violating the constraint
AccountID_Eq_CustomerID.

:Customer ownerOf :Account
id=a“ id =“b*
balance=1

Figure 5: Witness OD

For operation constraints a single witness-OD is not sufficient.
Consider for example a modified postcondition. Here the diff-witness
must consist of a pair of ODs. One OD describing the data-state
before the execution of the operation, which fulfills both the old
and the new precondition, and another OD for the data-state after
the execution, which fulfills only one of the postcondition. This pair
of ODs is derived from a (counter-)example produced by Z3 which
contains instances of classes with both pre- and post-versions of
attributes and associations.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

7.4 Tool Implementation

The implementation of the verification tool described in this paper
is referred to as OCLDiff. It is Java-based and uses the correspond-
ing Java-API of Z3. OCLDiff takes as input .cd- and .ocl-files
containing models in a textual syntax based on UML/P. More specif-
ically, we use the same syntax as defined by CD4Analysis! and
OCL/P2. The tool is publicly available at:

https://github.com/MontiCore/ocl

The jar can be executed with the following CLI command:

java -jar MCOCL.jar --diff \
-cd Versionl.cd -ocl vla.ocl vib.ocl \
-ncd Version2.cd -nocl v2.ocl

This command computes the semantic difference between the two
versions and the resulting diff-witness ODs and trace-OD are pretty-
printed to the console.

The tool also provides additional analyses:

e Consistency Check. Given a CD and a set of OCL constraints
it computes a witness Object Diagram that is a legal instance
of the CD and satisfies the OCL Constraint.

e Operation Witness. Given a CD and a method name it pro-
vides two system states before and after applying the opera-
tion of an object.

8 Evaluation

classdiagram User {

class Session {
String name;
3
class User {
String name;
3
class Role {
String name;
3
class Permission {
String name;
3
class UserRole extends Role;
class AdministrativeRole extends Role;
class UserPermission extends Permission;
class AdministrativePermission extends Permission;
// association [1..*] Session -> (roles) Role [1..%*];
association [1] User -> (sessions) Session [1..x];
association [*] User (users) -> (roles) Role [x];
association [*] Role -> Permission [*];
3

Listing 9: CD for role-based access control in CD4Analysis
syntax

In order to evaluate our tool’s ability to determine refinement
between two OCL model versions in a MDD context, we constructed
a case study based on the role-based access control system modeled
by Ahn and Shin [1]. We start with the given CD and corresponding
OCL constraints and consider several changes that could occur
during further development. Our semantic differencing operator
is then employed to determine whether these changes constitute
successful refinement steps. Note that we focus exclusively on

!https://github.com/MontiCore/cd4analysis
Zhttps://github.com/MontiCore/OCL

https://github.com/MontiCore/ocl
https://github.com/MontiCore/cd4analysis
https://github.com/MontiCore/OCL

Qe W o e

Qe W o =

MODELS Companion "24, September 22-27, 2024, Linz, Austria

changes to OCL conditions and not the CD as the capabilities of
CDDiff have already been evaluated in previous works [32, 40].
We first translate the CD into the textual syntax of CD4Analysis.
Because of performance issues, we were forced to exclude one of
the associations. Our current assumption is that association-cycles
in our encoding might cause the SMT-solver some difficulty. By
removing this association performance increases drastically. Luck-
ily, we can adjust corresponding OCL constraints by using chained
field-access calls. The CD used for the evaluation is displayed in
Listing 9 with the association in question commented out.
Similarly, we translate the initial OCL constraints containing
8 invariants into the syntax of OCL/P. Two of these constraints
(Example 7 and Example 8) use the size operator, which we cur-
rently do not support. As such, we refactor them into equivalent
constraints that do not use this operator (cf. Listing 10).

// Example 7: There can be only one chairman.
context Role r inv ExactlyOneChairman:
r.name == "chairman" implies
exists User u in r.users:
(forall User ul in r.users: u == ul);
// Example 8: The session limit is two.
context User u inv SessionLimitation:
!'(exists Session s1, Session s2,Session s3:
u.sessions.containsAll (Set{s1, s2, s3})
&& s1 != s2 && s3 != s2 && s1 != s3);

Listing 10: Refactored OCL constraints: size operator
removed.

Step 1. In the first step, additional requirements are added to the
project: permission and role names must be unique. These are
modeled via the two OCL invariants displayed in Listing 11, which
are then added to the project for the second version of the OCL
model.

context Role r1, Role r2 inv RoleNameUnique:
(r1.name == r2.name) <=> (rl1 == r2);

context Permission p1,
(p1.name == p2.name)

Permission p2 inv PermNameUnique:
<=> (p1 == p2);

Listing 11: Added specifications to make permissions and
role names unique.

When executing OCLDiff to compare this version to its predeces-
sor, no diff-witnesses are found and instead, we are informed that
our changes constitute a refinement. This is expected, as we have
only added further specifications without making any changes to
the initial constraints, thus simply restricting the set of permitted
object-structures.

//some roles have exactly one user
context Role r inv ExactlyOneChairman:
!'(r.name == "chairman") ||
exists User u in r.users:

(forall User ul in r.users: u == ul);

Listing 12: Refactored OCL constraints: size operator
removed.

Step 2. In the next step, our goal is to perform a refactoring of
OCL constraints, in order to utilize our code generation Syntactic
changes are necessary, as the code generator in question does not
support all features of OCL. Additionally, invariants must have a

Bernhard Rumpe, Max Stachon, Sebastian Stiiber, and Valdes Voufo

specific syntax if we want to obtain code structured in the manner
we desire. For example, implications are transformed into equiv-
alent formulas using disjunction and negation, as shown for the
invariant ExactlyOneChairman in Listing 12.

When comparing this version of constraints to the previous
one, OCLDiff finds a diff-witness, indicating that the semantics
was not preserved and our attempt at refactoring was faulty. Upon
reviewing the OCL specification, we can note the following errors:

(1) A typo was made in a role name in the first invariant.

(2) An invariant was forgotten.

(3) Negation was omitted somewhere when removing implica-
tions.

The other invariants were successfully refined / refactored, and a
corresponding tracing was also produced.

Step 3. In a third step, the bugs of the previous versions are fixed,
and a fourth and final version is produced. With the help OCLDiff,
we are then able to verify that this version refines both the first and
second version of constraints.

We conclude that OCLDiff is indeed capable of detecting seman-
tic differences and determining refinement between OCL models
versions of moderate size in a MDD process in a reasonable time. All
experiments were performed on an 11th Gen Intel Core 17-1185G7
CPU, 3.0 GHz, with 32 GB RAM, running Windows 10. Note that the
non-deterministic nature of Z3 might make it difficult to reproduce
our measurements.

9 Conclusion and Future Works

In this paper, we presented a fully automatic tool that can detect
the semantic difference between two compositions of CD and OCL
models. Compared to previous works, where the focus was the
verification of a single model, our method allows developers to
check for refinement across model versions in an MDD context.
When a newer model does not refine the previous version, the
tool produces an OD as diff-witness. The tool utilizes an existing
semantic differencing operator for CDs as well as a translation to
SMT and the solver Z3 to compute these witnesses. Additionally, it
provides a tracing of the specifications from the previous version
of the model to the newer version.

In the future, we will define additional strategies for classes,
associations, and inheritance relations and compare them. Further
testing of the tool is underway, as well. The translation of CDs to
SMT and SMT to ODs is tested by a separate tool that automatically
verifies whether an OD represents a valid instance of a CD. This tool
was also previously used to evaluate CDDiff [40]. For evaluating
the translation of OCL to SMT, valid instances in the form of ODs
can be translated to SMT and checked against the translated OCL
constraints. We also plan to extend the tool such that ODs can be
used as input to describe valid or invalid data patterns, in general.
Moreover, we intend to integrate our tool into a larger toolchain
where the diff-ODs can be used as test-input, and the trace-OD
is used for artefact analysis. Lastly, we want to further evaluate
the tool on examples from industry. One research question would
concern the prevalence of false positives produced by using CDDiff
as a subroutine of our approach. We currently consider these to
be rare edge cases, however, if they occur frequently for industry

Semantic Difference Analysis with Invariant Tracing for Class Diagrams Extended by OCL

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Table 1: Supported OCL features

context Auction a inv
a.name == "Auct1";

sions:

Feature Supported and example Transformation in SMT

Datatypes Supported are int, Double, String, and Date. The re- | int, Double, and String are supported by SMT,
maining types are not yet supported. and Date is translated to int using the Unix time

format.

String Operations: replace(), contains(), startsWith(), | supported by SMT
endsWith(),concat() are supported.

Quantifiers: forall, exists supported by SMT

Conditional ~ Expres- | if then else supported by SMT

sion:

Common Expressions: |+, -, *, /, >, <, <=, %, and, or, xor, etc supported by SMT

Context declaration: context Auction a : true; (forall ((Auction a)) :(true))

Field Access Expres-

(forall ((a Auction))
(= (attr_name a) "Auct1"))

Set Comprehension:
context Auction a inv:

a.name isin Set{"Auctl1", "Auct2"};

(forall ((a Auction))
(or (= "Auct2" (attr_name a))
(= "Auct1" (attr_name a))))

and size() is not supported. e.g:
context Auction a inv:

intersect Set{"Auct3"};

a.name isin Set{"Auctl1", "Auct2"}

Set Operations: union, intersection, difference are supported

(forall ((a Auction))
(and (or (= "Auct1" (attr_name a))
(= "Auct2" (attr_name a)))
(= "Auct3" (attr_name a))))

Table 2: Supported class diagram features

Feature Supported Not supported
Types class, abstract class, interface, enum

Inheritance multiple Inheritance of interfaces, simple inheritance | multiple inheritance of classes

of classes
Attribute datatypes enumeration types, String, boolean, int, double, the remaining types

Date

Association association/composition with roles and cardinalities

Association cardinalities | optional([@..1]), one([1]), atLeastOne([1..0]), mul- | the remaining cardinalities

tiple([*])

models, we might need to address it by making corresponding
adjustments to our approach.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 250902306

References

[1] Gail-Joon Ahn and Michael E Shin. 2001. Role-based authorization constraints
specification using object constraint language. In Proceedings Tenth IEEE In-
ternational Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises. WET ICE 2001. IEEE, 157-162.

[2] Kshitij Bansal, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. 2016. A
new decision procedure for finite sets and cardinality constraints in SMT. In
Automated Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra,

3

[4

]

]

Portugal, June 27-July 2, 2016, Proceedings. Springer, 82-98.

Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In
International Conference on Computer Aided Verification. Springer, 171-177.
Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability modulo
theories (Edinburgh, UK), Vol. 13. 14.

Nikolaj Bjerner and Karthick Jayaraman. 2015. Checking cloud contracts in
Microsoft Azure. In Distributed Computing and Internet Technology: 11th Interna-
tional Conference, ICDCIT 2015, Bhubaneswar, India, February 5-8, 2015. Proceedings
11. Springer, 21-32.

Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2017.
Semantic Differencing for Message-Driven Component & Connector Architec-
tures. In International Conference on Software Architecture (ICSA’17) (Gothenburg).
IEEE, 145-154. http://www.se-rwth.de/publications/Semantic-Differencing-for-
Message-Driven- Component-and-Connector- Architectures.pdf

http://www.se-rwth.de/publications/Semantic-Differencing-for-Message-Driven-Component-and-Connector-Architectures.pdf
http://www.se-rwth.de/publications/Semantic-Differencing-for-Message-Driven-Component-and-Connector-Architectures.pdf

MODELS Companion "24, September 22-27, 2024, Linz, Austria

[7] Jordi Cabot, Robert Claris o, and Daniel Riera. 2008. Verification of UM-

L/OCL Class Diagrams using Constraint Programming. In 2008 IEEE Interna-
tional Conference on Software Testing Verification and Validation Workshop. 73-80.
https://doi.org/10.1109/ICSTW.2008.54

[8] J. Cabot, R. Clarisd, and D. Riera. 2014. On the verification of UML/OCL class

(9]

[10]

[11

[12]

[13]

[14]

[15

[16]

[17]

(18

[19

[20]

[21]

[22]

[23]

[24]

[25]

[27

diagrams using constraint programming. Journal of Systems and Software 93
(2014), 1-23. https://doi.org/10.1016/j.js5.2014.03.023

Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe. 2008. System
Model Semantics of Class Diagrams. Informatik-Bericht 2008-05. TU Braun-
schweig, Germany. http://www.se-rwth.de/staff/rumpe/publications20042008/
System-Model-Semantics-of-Class-Diagrams.pdf

Stephen A Cook. 1971. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing. 151—
158.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Morgan Deters, Andrew Reynolds, Tim King, Clark Barrett, and Cesare Tinelli.
2014. A tour of CVC4: how it works, and how to use it. In 2014 Formal Methods
in Computer-Aided Design (FMCAD). IEEE, 7-7.

Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. 2019. Se-
mantic Differencing of Statecharts for Object-oriented Systems. In Proceedings of
the 7th International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD’19) (Prague), Slimane Hammoudi, Luis Ferreira Pires,
and Bran Seli¢ (Eds.). SciTePress, 274-282. http://www.se-rwth.de/publications/
Semantic-Differencing-of-Statecharts- for- Object-oriented-Systems.pdf

Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. 2019. Se-
mantic Evolution Analysis of Feature Models. In International Systems and
Software Product Line Conference (SPLC’19) (Paris), Thorsten Berger, Philippe
Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Ja-
bier Martinez, Raul Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tér-
nava, Thomas Thiim, and Tewfik Ziadi (Eds.). ACM, 245-255. http://www.se-
rwth.de/publications/Semantic-Evolution- Analysis- of-Feature- Models.pdf

Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wasowski. 2014. Sound
Merging and Differencing for Class Diagrams. In Fundamental Approaches to
Software Engineering, Stefania Gnesi and Arend Rensink (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 63-78.

Erich Gamma, Ralph Johnson, Richard Helm, Ralph E Johnson, and John Vlissides.
1995. Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH.

Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing: SAGE has had a remarkable impact at Microsoft.
Queue 10, 1 (2012), 20-27.

Martin Gogolla, Fabian Biittner, and Mark Richters. 2007. USE: A UML-based
specification environment for validating UML and OCL. Science of Computer
Programming 69, 1 (2007), 27-34. https://doi.org/10.1016/j.scic0.2007.01.013
Special issue on Experimental Software and Toolkits.

Martin Gogolla and Frank Hilken. 2016. Model validation and verification options
in a contemporary UML and OCL analysis tool. In Modellierung 2016. Gesellschaft
fiir Informatik e.V., Bonn, 205-220.

Object Management Group. 2017. OMG Unified Modeling Language (OMG UML).
(2017).

ANN M. Hickey and Alan M. Davis. 2004. A Unified Model of Re-
quirements Elicitation. Journal of Management Information Systems
20, 4 (2004), 65-84. https://doi.org/10.1080/07421222.2004.11045786
arXiv:https://doi.org/10.1080/07421222.2004.11045786

Ethan Jackson and Wolfram Schulte. 2013. FORMULA 2.0: A Language for Formal
Specifications. In Unifying Theories of Programming and Formal Engineering
Methods. Springer Berlin Heidelberg, 156-206. https://www.microsoft.com/en-
us/research/publication/formula-2-0-language-formal-specifications/

Jackson, Daniel. 2006. Software Abstractions: Logic, Language, and Analysis. The
MIT Press.

Oliver Kautz. 2021. Model Analyses Based on Semantic Differencing and Automatic
Model Repair. Shaker Verlag. http://www.se-rwth.de/phdtheses/Diss-Kautz-
Model- Analyses-Based- on-Semantic- Differencing-and- Automatic- Model-
Repair.pdf

Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2017.
CD2Alloy: A Translation of Class Diagrams to Alloy. Technical Report AIB-2017-06.
RWTH Aachen University. http://www.se-rwth.de/publications/CD2Alloy-A-
Translation- of-Class-Diagrams-to- Alloy.pdf

Oliver Kautz and Bernhard Rumpe. 2018. Semantic Differencing of
Activity Diagrams by a Translation into Finite Automata. In Proceed-
ings of MODELS 2018. Workshop ME (Copenhagen). http://www.se-
rwth.de/publications/Semantic- Differencing- of- Activity- Diagrams-by-a-
Translation-into-Finite- Automata.pdf

Stuart Kent, Andy Evans, and Bernhard Rumpe. 1999. UML Semantics FAQ. In
Object-Oriented Technology, ECOOP’99 Workshop Reader (LNCS 1743), A. Moreira
and S. Demeyer (Eds.). Springer Verlag, Berlin.

Bernhard Rumpe, Max Stachon, Sebastian Stiiber, and Valdes Voufo

Mirco Kuhlmann and Martin Gogolla. 2012. From UML and OCL to Relational
Logic and Back. In Model Driven Engineering Languages and Systems, Robert B.
France, Jirgen Kazmeier, Ruth Breu, and Colin Atkinson (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 415-431.

Achim Lindt, Bernhard Rumpe, Max Stachon, and Sebastian Stiiber. 2023. CD-
Merge: Semantically Sound Merging of Class Diagrams for Software Com-
ponent Integration. Journal of Object Technology 22, 2 (July 2023), 2:1-14.
https://doi.org/10.5381/jot.2023.22.2.a1

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2010. A Manifesto
for Semantic Model Differencing. In Proceedings Int. Workshop on Models and
Evolution (ME’10) (LNCS 6627). Springer, 194-203. http://www.se-rwth.de/
publications/A-Manifesto-for-Semantic- Model-Differencing.pdf

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. ADDiff: Semantic
Differencing for Activity Diagrams. In Conference on Foundations of Software
Engineering (ESEC/FSE ’11). ACM, 179-189. http://www.se-rwth.de/publications/
ADDiff- Semantic- Differencing-for- Activity- Diagrams.pdf

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. An Operational
Semantics for Activity Diagrams using SMV. Technical Report AIB-2011-07. RWTH
Aachen University, Aachen, Germany. http://www.se-rwth.de/publications/An-
Operational-Semantics-for- Activity-Diagrams-using-SMV.pdf

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDiff: Semantic
Differencing for Class Diagrams. In ECOOP 2011 - Object-Oriented Programming,
Mira Mezini (Ed.). Springer Berlin Heidelberg, 230-254. https://se-rwth.de/
publications/CDDiff-Semantic- Differencing-for- Class-Diagrams.pdf

Rajdeep Mukherjee, Daniel Kroening, and Tom Melham. 2015. Hardware verifica-
tion using software analyzers. In 2015 IEEE Computer Society Annual Symposium
on VLSI IEEE, 7-12.

Imke Nachmann, Bernhard Rumpe, Max Stachon, and Sebastian Stiiber. 2022.
Open-World Loose Semantics of Class Diagrams as Basis for Semantic Differences.
In Modellierung 2022. Gesellschaft fiir Informatik, 111-127. https://doi.org/10.
18420/modellierung2022-016

Jaideep Nijjar and Tevfik Bultan. 2012. Unbounded data model verification using
SMT solvers. In 2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. 210-219. https://doi.org/10.1145/2351676.
2351706

Beatriz Pérez and Ivan Porres. 2019. Reasoning about UML/OCL class diagrams
using constraint logic programming and formula. Information Systems 81 (2019),
152-177.

Mark Richters and Martin Gogolla. 1998. On Formalizing the UML Object Con-
straint Language OCL. In Conceptual Modeling — ER *98, Tok-Wang Ling, Sudha
Ram, and Mong Li Lee (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
449-464.

Mark Richters and Martin Gogolla. 2000. Validating UML Models and OCL
Constraints. In «<UML »2000 — The Unified Modeling Language, Andy Evans,
Stuart Kent, and Bran Selic (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
265-2717.

Jan Oliver Ringert, Bernhard Rumpe, and Max Stachon. 2023. On Implement-
ing Open World Semantic Differencing for Class Diagrams. Journal of Object
Technology 22, 2 (July 2023), 2:1-14. https://doi.org/10.5381/j0t.2023.22.2.a11
Bernhard Rumpe. 2011. Modellierung mit UML, 2te Auflage. Springer Berlin.
https://mbse.se-rwth.de/

Bernhard Rumpe. 2016. Modeling with UML: Language, Concepts, Methods.
Springer International. https://mbse.se-rwth.de/

Bernhard Rumpe. 2017. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International. https://mbse.se-rwth.de/

Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf Drech-
sler. 2010. Verifying UML/OCL models using Boolean satisfiability. In 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010). 1341-1344.
https://doi.org/10.1109/DATE.2010.5457017

EV Sunitha and Philip Samuel. 2018. Object constraint language for code gen-
eration from activity models. Information and Software Technology 103 (2018),
92-111.

Nikolai Tillmann and Jonathan De Halleux. 2008. Pex—white box test generation
for. net. In Tests and Proofs: Second International Conference, TAP 2008, Prato, Italy,
April 9-11, 2008. Proceedings 2. Springer, 134-153.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model finder. In
Tools and Algorithms for the Construction and Analysis of Systems: 13th Interna-
tional Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24-April 1,
2007. Proceedings 13. Springer, 632-647.

Hao Wu. 2023. QMaxUSE: A new tool for verifying UML class diagrams and OCL
invariants. Science of Computer Programming 228 (2023), 102955.

Hao Wu and Marie Farrell. 2021. A formal approach to finding inconsistencies in
a metamodel. Software and Systems Modeling 20, 4 (2021), 1271-1298.

https://doi.org/10.1109/ICSTW.2008.54
https://doi.org/10.1016/j.jss.2014.03.023
http://www.se-rwth.de/staff/rumpe/publications20042008/System-Model-Semantics-of-Class-Diagrams.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/System-Model-Semantics-of-Class-Diagrams.pdf
http://www.se-rwth.de/publications/Semantic-Differencing-of-Statecharts-for-Object-oriented-Systems.pdf
http://www.se-rwth.de/publications/Semantic-Differencing-of-Statecharts-for-Object-oriented-Systems.pdf
http://www.se-rwth.de/publications/Semantic-Evolution-Analysis-of-Feature-Models.pdf
http://www.se-rwth.de/publications/Semantic-Evolution-Analysis-of-Feature-Models.pdf
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1080/07421222.2004.11045786
https://arxiv.org/abs/https://doi.org/10.1080/07421222.2004.11045786
https://www.microsoft.com/en-us/research/publication/formula-2-0-language-formal-specifications/
https://www.microsoft.com/en-us/research/publication/formula-2-0-language-formal-specifications/
http://www.se-rwth.de/phdtheses/Diss-Kautz-Model-Analyses-Based-on-Semantic-Differencing-and-Automatic-Model-Repair.pdf
http://www.se-rwth.de/phdtheses/Diss-Kautz-Model-Analyses-Based-on-Semantic-Differencing-and-Automatic-Model-Repair.pdf
http://www.se-rwth.de/phdtheses/Diss-Kautz-Model-Analyses-Based-on-Semantic-Differencing-and-Automatic-Model-Repair.pdf
http://www.se-rwth.de/publications/CD2Alloy-A-Translation-of-Class-Diagrams-to-Alloy.pdf
http://www.se-rwth.de/publications/CD2Alloy-A-Translation-of-Class-Diagrams-to-Alloy.pdf
http://www.se-rwth.de/publications/Semantic-Differencing-of-Activity-Diagrams-by-a-Translation-into-Finite-Automata.pdf
http://www.se-rwth.de/publications/Semantic-Differencing-of-Activity-Diagrams-by-a-Translation-into-Finite-Automata.pdf
http://www.se-rwth.de/publications/Semantic-Differencing-of-Activity-Diagrams-by-a-Translation-into-Finite-Automata.pdf
https://doi.org/10.5381/jot.2023.22.2.a1
http://www.se-rwth.de/publications/A-Manifesto-for-Semantic-Model-Differencing.pdf
http://www.se-rwth.de/publications/A-Manifesto-for-Semantic-Model-Differencing.pdf
http://www.se-rwth.de/publications/ADDiff-Semantic-Differencing-for-Activity-Diagrams.pdf
http://www.se-rwth.de/publications/ADDiff-Semantic-Differencing-for-Activity-Diagrams.pdf
http://www.se-rwth.de/publications/An-Operational-Semantics-for-Activity-Diagrams-using-SMV.pdf
http://www.se-rwth.de/publications/An-Operational-Semantics-for-Activity-Diagrams-using-SMV.pdf
https://se-rwth.de/publications/CDDiff-Semantic-Differencing-for-Class-Diagrams.pdf
https://se-rwth.de/publications/CDDiff-Semantic-Differencing-for-Class-Diagrams.pdf
https://doi.org/10.18420/modellierung2022-016
https://doi.org/10.18420/modellierung2022-016
https://doi.org/10.1145/2351676.2351706
https://doi.org/10.1145/2351676.2351706
https://doi.org/10.5381/jot.2023.22.2.a11
https://mbse.se-rwth.de/
https://mbse.se-rwth.de/
https://mbse.se-rwth.de/
https://doi.org/10.1109/DATE.2010.5457017

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Class Diagrams and their Semantics
	3.2 Object Constraint Language
	3.3 Satisfiability Modulo Theorem

	4 Motivating Example
	5 From Class Diagram to SMT
	6 From OCL to SMT
	6.1 Set Comprehension
	6.2 Operation Constraint

	7 Semantic Difference of Two Models
	7.1 Refinement Checking
	7.2 Requirement Tracing
	7.3 Witness Object Diagram
	7.4 Tool Implementation

	8 Evaluation
	9 Conclusion and Future Works
	Acknowledgments
	References

