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Abstract
In Software Language Engineering, the composition of het-
erogeneous languages has become an increasingly relevant
research area in recent years. Despite considerable advances
in different composition techniques, they mainly focus on
composing concrete and abstract syntax, while a thorough
yet general concept for synchronizing code generators and
their produced artifacts is still missing. Current solutions
are either highly generic, typically increasing the complex-
ity beyond their actual value, or strictly limited to specific
applications. In this paper, we present a concept for light-
weight generator composition, using the symbol tables of
heterogeneous modeling languages to exchange generator-
specific accessor and mutator information. The information
is attached to the symbols of model elements via templates
allowing code generators to communicate access routines at
the code level without a further contract. Providing suitable
synchronization techniques for code generation is essential
to enable language composition in all aspects.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: Software Language Composition, Code Genera-
tion, Generator Composition, CRUD
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1 Introduction
Model-driven engineering (MDE) [26] is a prominent re-
search and application area in which models of various do-
mains, such as automotive [2], robotics [30], and software de-
velopment [29], represent the central development artifacts
[12] in developing modern (often software-intensive) sys-
tems. Thesemodels conform tomodeling languages, prescrib-
ing concrete and abstract syntax, additional well-formedness
rules, and semantics [8] providing meaning [15]. The dis-
cipline of software language engineering (SLE) [19] inves-
tigates the efficient design, maintenance, and evolution of
such languages (for both modeling and programming).
As software languages evolve and mature [11], and their

constant support and development are time-consuming, reuse
becomes increasingly critical in SLE [4]. This means not only
reusability on a conceptual level but the actual reuse of the
implementation, i.e., the language definition and its gener-
ated and hand-coded tooling. In this regard, the composition
of software languages has been extensively investigated in
the last decade [17], establishing libraries of reusable lan-
guage components [5] and patterns for compositional lan-
guage design [9].

While composition in a language’s front end, i.e., its syntax
and tooling, is already pretty sophisticated, composing the
back end, usually code generators, is often neglected. Code
generation is essential to modeling languages as it trans-
lates abstract models into executable program artifacts, thus
bridging the gap between the problem and solution domain
[22]. Access information must be distributed through the
generation process so that generated artifacts can address
each other correctly. Figure 1 sketches this challenge and
serves as a running example. The left-hand side presents
two models of different languages, a class diagram (top) with
a class Person featuring a name and an age attribute and
an automaton snippet (bottom), granting access once the
age is at least 18. Thus, the expression at the automaton’s
transition refers to an attribute definition inside the class di-
agram. For simplicity reasons, we neglect the type-instance
relation at the model level in this example. As the models
refer to each other, it is apparent that their generated target
artifacts do as well. Therefore, the code generator for the
automaton language must adhere to the access information
the class diagram generator provides. In scenario (a) (middle),
the class is transformed in an intuitive fashion to a Java class
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CD

Person

String name

int age

public class Person {

String name;

int age;

public int getAge() {

return age;

}

// ...

}

Aut
// ...

if (p.getAge() >= 18) {

setState(granted);

}

// ..

Java
«gen»

Java
«gen»

public class Register {

static Map<Person,Integer> reg;

public static int search(Person p){

return reg.get(p);

}

// ...

}

Java
«gen»

// ...

if (Register.search(p) >= 18) {

setState(granted);

}

// ..

[ p.age >= 18 ] /

denied

granted

(b)(a)

Java
«gen»

Figure 1. Model excerpts of a class diagram and an automaton (left) with an inter-model cross reference and two alternative
generated code snippets (middle and right). In each scenario, these generated artifacts must match the respective access.

with attributes accessible via corresponding getters. Thus,
the generated code for the automaton can utilize this getter.
However, scenario (b) (right) depicts a rather different trans-
lation of the class diagram, resulting in a Register with a
static access map requiring the corresponding person as key
to retrieve the age. Therefore, assuming a provided getAge
method, as in the first case, is not applicable anymore, the tar-
get code of the automaton must adapt. While scenario (b) is
a contrived situation highlighting the underlying challenge,
it is well within the realm of possibility. In reality, multiple
cases of divergent access situations exist, such as employ-
ing builders or factories for object instantiation instead of
native constructors or translating an automaton concerning
different design patterns (e.g., the state pattern) [13].

Currently, there are no well-established solutions for com-
posing generators or their generated target artifacts. This
results in a gap when integrating models of distinct modeling
languages, as their outputs must be synchronized, demand-
ing additional manual effort. Some approaches exist but are
either tied to integrating explicit generators of particular
application domains [24], require strict compliance with gen-
eration rules, or are overly generic [23], raising the complex-
ity beyond their practical usability. A general, lightweight
solution is still missing.
In this paper, we envision a novel approach to synchro-

nizing generated outputs via accessor template-enriched
symbol tables. This approach harnesses the capabilities of
already established composition techniques for languages’
front ends and extends these to synchronize their generators
as well. Our proposed solution is based on the symbol man-
agement infrastructure of a language enabling inter-model
cross-referencing. Augmenting symbol tables with target

access templates enables the adaptive generation of accessor
code. An application programming interface (API) for syn-
chronizing generated artifacts should be as lightweight as
possible and ideally require down to no additional knowl-
edge of another generator’s intricacies. Therefore, we pro-
pose CRUD-like accessors for this API, as these operations
are commonly known, language agnostic, and the notation is
easily understandable. Our work focuses on template-based
code generators that produce artifacts of a common yet ar-
bitrary object-oriented, general-purpose programming lan-
guage. Furthermore, we concentrate on harmonizing the
target code for models of aggregated languages, as this com-
position technique preserves models as separated artifacts
and, thus, only establishes a loose coupling [6]. Our main
contributions are:

• An approach for enriching the symbol table with ac-
cessor templates enabling target code synchronization

• A conceptual API based on CRUD-like operations as a
lightweight generator synchronization contract

The remainder of the paper is structured as follows: sec-
tion 2 discusses the current state of the art comprising related
approaches and preliminarywork. section 3 presents our con-
cept of integrating templates in symbol tables to synchronize
generated artifacts. Finally, section 4 discusses our solution,
states open challenges, and section 5 concludes.

2 State of the Art and Related Work
While language composition, in general, is a broad field of
research in many language workbenches [10], there are cur-
rently only a few approaches to the integration of their gen-
erators. These attempts are often either tailored solutions
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for specific applications, too shallow to deliver a general
concept, or too generic to be effortlessly applied in practice.
Most preliminary work in this field is often domain- or

even application-specific. For example, there are approaches
in robotics [24, 25] coupling generators specifically for com-
ponent and connector systems via a separate generator con-
figuration and an orchestrator. Other investigations follow a
round-trip engineering approach defining framework-specific
modeling languages [1]. However, these approaches are tightly
coupled to the underlying application frameworks and do
not aim for generalizable generator composition.
An interesting approach is based on reverse engineering

existing target artifacts to extract corresponding accessor
information [3, 14]. While this attempt can generally enable
to generate syntactically well-formed and consistent code, it
lacks the link to the original model elements. Therefore, it
does not solve the issue of deriving target accessor informa-
tion based on inter-model relationships.

A few framework solutions aim for the complete integra-
tion of languages and thus also incorporate their generators.
CompoSE [20] provides for the integration of languages and
generates glue code for the individual language components’
target artifacts. Similarly, the SCOLAR framework also pro-
vides the ability to compose language components in the
large [7, 23]. However, these works mainly concentrate on
language embedding, i.e., a stronger coupling of the models.
While such integrated framework solutions still address the
problem of generator composition, they generally have the
disadvantage that languages must be integrated into their
respective ecosystem. Additionally, the defined communi-
cation interfaces are usually very generic and, therefore,
uncomfortable to employ for arbitrary modeling languages.
Similarly, the Genesys project [18] provides for genera-

tor development conforming to predefined frameworks. It
supports services for communication accessor information.
However, the results are bound to the jABC ecosystem [27],
and a more seamless composition of generators is considered
future work.

Finally, a few lightweight approaches exist that provide for
an exchange of information via the symbol tables of the mod-
els [21, 22]. The advantage of these attempts is that mainly
already existing composition techniques are employed with-
out creating over-complicated new infrastructures. So far,
however, these approaches have only been weakly studied
for predefined modeling and programming language combi-
nations. A general solution that seamlessly composes gen-
erated artifacts of heterogeneous modeling languages still
needs to be established.

3 Distributing Access Information
Exchange via Symbol Tables

Our approach builds upon the concepts of [22], who pro-
pose enriching the symbol table with accessor and mutator

code snippets of the model elements’ corresponding tar-
get artifacts. While the basic idea is promising, their pro-
posal only considers a fixed source (i.e., modeling) and target
(i.e., general-purpose programming) language. Thus, the de-
scribed symbol table extension and mapping are bound to
these technological spaces. While further adaptions are pos-
sible, they require one mapping for each language combina-
tion, ultimately convoluting the symbol table infrastructure
when incorporating more and more languages. Thus, our ap-
proach envisions a more generalized extension of the symbol
table, which is as language-agnostic as possible and allows
for arbitrary accessor and mutator mappings concerning
different symbol kinds.

3.1 An Extended Symbol Table Infrastructure for
Managing Target Access

For efficient cross-referencing,modern languageworkbenches
support the concept of symbol tables, either directly (such
as MontiCore [16]) or implicitly (such as MPS [28]). In a
symbol table, symbols of language-specific kinds are ordered
hierarchically inside scopes managing their visibility and
accessibility. This principle is used, for instance, in language
aggregation to compose models of different artifacts by re-
solving their respective inter-model references.
Utilizing the cross-referencing of symbols, our approach

extends the symbol table infrastructure by enriching it with
further generator information. Therefore, we augment the
symbols further with access information templates of the
target code. Figure 2 depicts our concept of the extended
symbol table infrastructure. Similar to existing approaches,
we foresee the extension of symbols with a GeneratorInfo,
defining the overall API of the generator synchronization
mechanism. As we strive for a general solution not bound
to a definitive technological space, the signature is specified
in a language-agnostic way.

In a first attempt, we propose CRUD operations for a gener-
alized API to create, read, update, and delete constructs
in an object-oriented sense. Thus, the GeneratorInfo at-
tached to each symbol offers the corresponding methods
independent of its kind. For proper access derivation, each
operation expects a respective context in which the access
occurs. For instance, in our running example, the context is
the variable p of type Person, which is used quite differently
in both scenarios. Next, as updating an object constitutes
mutating access, it requires an additional value parameter
to write, i.e., the new value to update with. This value, of
course, is only provided at the model level. However, it is
crucial to consider it here, as the generator needs to insert it
in the mutator template. Finally, we conceive a collection of
additional optional parameters that can be used to parame-
trize the access further. For instance, when updating only a
single value inside a list, these parameters can provide the
respective position.
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String create (context, params)

String read (context, params)

String update (context, value, params)

String delete (context, params)

«interface»

Scope
«interface»

Symbol

*

*

GeneratorInfo

0 1

«rte»

«ml»

CD

Automaton

Symbol

State

Symbol
 

 

.ftl.ftl.ftl.ftl

accessor

templates

id

language-

specific symbols

Figure 2. Extended symbol table infrastructure for storing
generator-specific CRUD accessor templates for each symbol.

The proposed symbol table extension with generator in-
formation based on CRUD operations is independent of a
particular modeling language. However, this only constitutes
a general API via which generators can communicate the
access data. The methods delegate to corresponding accessor
templates which are, in contrast, attached to the symbols
(resp. to their generator information) on the language level.
Thus, each symbol kind comes with a particular set of tem-
plates carrying the accessor information for the respective
generator’s target code. In fact, it is even possible to provide
different symbols of the same kind with distinct templates
based on their use.

The extended symbol table infrastructure enables modular
generators to look up the respective accessor code adaptively.
Figure 3 shows a simplified view of a symbol table instance,
providing accessor templates for the variable age of our
running example. That is, the generator information of the
variable symbol carries templates for read and update oper-
ations adhering to scenario (a). In this example, create and
delete commands are not allocated. While the approach
convinces the solution for arbitrary template engines, the
presented templates are written in FreeMarker syntax (.ftl)
for demonstration purposes.

Considering the template for the read operation, the first
line defines the signature of the template, containing the
variable symbol itself, the context, and optional parameters.
The second line describes the derivation of the respective
accessor (here, a getter method) by first referencing the cor-
responding context, followed by the static part .get and the
dynamic name of the symbol itself, concluded by (). Please
note that the presented template is a slight simplification as

:TypeSymbol

name =“Person”

:VariableSymbol

name =“age”

:VariableSymbol

name =“name”

scopes omitted

.ftl

${tc.signature(“sym”,“context”, “params”)}

${context.getName()}.get${sym.getName()}()

:GeneratorInfo

c r u d

.ftl

${tc.signature(“sym”,“context”, “val”, “params”)}

${context.getName()}.set${sym.getName()}(${val})

Person

String name

int age

«model»

«symbol table»

CD

OD

Figure 3. Object diagram representation of the symbol table
for a corresponding class diagram model with attached read
and update templates for accessing the generated artifacts.

for a proper getter signature, the first letter of the attribute’s
name is capitalized, which is not reflected here. During gen-
eration, this template gets evaluated by the corresponding
engine providing the required accessor code.

3.2 A Light-Weight Infrastructure for Composing
Template-based Generators

Employing the extended symbol table infrastructure, we can
further design compositional generator tools. For this pur-
pose, we propose a generator architecture encapsulating
language-specific printers that use the cross-language API
of the generator information now delivered with the partic-
ular symbols. Figure 4 gives an overview of this architecture.
Generally, such a tool comprises the standard components,
such as a parser transforming the input models into an AST
and a template engine for code generation. Additionally, we
attach a composition printer for dealing with the incorpo-
rated symbol tables. Whenever an accessor code is required,
this printer is incorporated, resolving the respective symbol
and retrieving the corresponding accessor template.
It is important to note that such a printer only needs

to know the constructs of its own language (usually but
not limited to expressions) and not those of the referenced
symbols. For instance, a printer for the automaton generator
(cf. Figure 1) would know how to translate expressions, such
as x >= y, in general, but fetches the concrete target code
accessors from the templates of the loaded symbol table.
This mechanism enables the seamless composition of target
artifacts while simultaneously preserving the loose coupling
of language aggregation.
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.ftl

Parser

Template

Engine

.ftl.ftl

Model
.ftl.ftl

Generator Tool

Composition

Printer

.ftl.ftl.ftl

symbol table with

attached accessor

templates

AST with attached

generator templates

Generated

Artifacts

Figure 4. Conceptual generator tool with a built-in printer
utilizing symbol-attached templates to supply the generator
engine with accessor information on external artifacts.

4 Discussion and Open Challenges
The presented approach to seamlessly compose generated
artifacts of heterogeneous modeling languages is based on
template-enriched symbol tables and a lightweight interface
using CRUD-like operations. Considering previous work, we
envision extending existing concepts for accessor provision-
ing via symbols and establishing a more general solution for
object-oriented target languages.
Previous approaches of related attempts require knowl-

edge of the access signatures for each symbol type [22]. This
hampers the loose coupling of some composition techniques,
such as language aggregation, since generally, we cannot
assume global knowledge of all loaded symbol kinds. Our
proposal delegates access to CRUD-like operations, thus re-
laxing the tight coupling of generators. Moreover, previous
approaches were limited to a fixed relation of the modeling
and target programming languages, while our proposal aims
for more generality.
Different approaches to composing generators or their

generated artifacts on a more general level rely on highly
generic, often bulky composition interfaces or require their
explicit definition [7, 20]. Our technique avoids these draw-
backs since we mainly build on existing composition mecha-
nisms and rely only on a simple, standardized API. To provide
for composability, a generator developer simply creates ac-
cess templates and attaches these to symbols according to
predefined CRUD operations. No further knowledge about
employing generators is required. In turn, the developer of
a generator, which requires access information, does not
need any knowledge of the providing language despite its
anyways provided symbols. A modeler using the languages
does not need any knowledge of the generation process, the
communication mechanism, or the attached templates.
However, our proposal for lightweight generator syn-

chronization is a mere starting point with open challenges
that need further investigation. For instance, the mentioned
context in a generator template (cf. Figure 3) is often more

complicated than in the highlighted example. In general, all
symbols traversed during resolution must be considered, re-
sulting in a collection of contextual symbols of which some
might be relevant while others are omitted. While this is a
task for the engineer providing the access templates (i.e., no
issue that hampers the composability), it could turn out to be
challenging to create the required templates for complicated
situations in the first place. Thus, future investigations are
required to evaluate whether the composition mechanism is
as lightweight and applicable as envisioned.

Moreover, while our approach is generalized, it fits partic-
ularly well on infrastructures that provide an explicit symbol
management system accessible to the language (or generator)
developer. For frameworks that do not allow for customiza-
tion or augmentation of symbols, concrete implementation,
while generally possible, may turn out more difficult.

Furthermore, our approach does not yet consider that a
model element can be mapped to several conflicting target
elements. For instance, we can translate a single class of a
class diagram into multiple classes on the code level. This
makes the target access ambiguous. Generally, generators
can always be modularized to minimize this issue. Other
attempts propose an identifier, making the mapping unique
[22]. However, both approaches have the disadvantage that
knowledge about the generation process of the source gen-
erator is required.

Finally, the proposedAPI needs further investigation.While
we envision a lightweight and straightforward generator syn-
chronization interface, CRUD-like operations might not be
sufficient. The requirements on the API strongly depend on
which information of the target artifacts is relevant for syn-
chronization. However, as a state is per se no type on the
model level, this information does not directly emerge from
the CRUD operations but requires additional consideration.
Thus, while the CRUD-like API already covers a large set
of necessary access patterns, it cannot be considered final.
We need a detailed analysis of common symbol kinds and
their potential target code information to extend further and
refine the access interface.

5 Conclusion
As language engineering becomes increasingly sophisticated
with composition techniques at concrete and abstract syntax
level, so must it become for integrating generated artifacts.
For this purpose, we presented an approach that envisions
augmenting the symbol table, used in language aggregation,
with additional templates to exchange access information
of the target artifacts. We highlighted the need for a light-
weight interface between generators and discussed a sim-
ple API based on CRUD-like operations. Furthermore, we
have depicted challenges for further investigation regard-
ing the portion of the information that must be exchanged.
Seamlessly synchronizing generators is a crucial step for
completely integrating languages.
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