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Summary

Efficient testing is a crucial prerequisite to engineer reliable automotive software
successfully. However, manually deriving test cases from ambiguous textual
requirements is costly and error-prone. Model-based software engineering cap-
tures requirements in structured, comprehensible, and formal models, which

enables early consistency checking and verification. Moreover, these models
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serve as an indispensable basis for automated test case derivation. To facilitate
automated test case derivation for automotive software engineering, we con-
ducted a survey with testing experts of the BMW Group and conceived a method
to extend the BMW Group's specification method for requirements, design, and
test methodology by model-based test case derivation. Our method is realized for
a variant of systems modeling language activity diagrams tailored toward test-
ing automotive software and a model transformation to derive executable test
cases. Hereby, we can address many of the surveyed practitioners' challenges
and ultimately facilitate quality assurance for automotive software.
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1 | MOTIVATION

The focus of automotive engineering has shifted from mechanical and electrical engineering toward software engineer-
ing by the notion of automotive interacting connectivity, autonomous driving, and gesture human machine interaction
(cfFigure 1). Current vehicles are already sophisticated systems comprising many interacting software modules to provide
system-wide functionalities and features. Considering the current notion of automotive development toward autonomous
driving and CAR2X communication,? complexity is increasing and the demand for more flexible, yet robust, interaction
between systems in an open environment arises.

Additionally, customers demand a shorter time-to-market and even more functionality. While, in the 1980s, the auto-
motive development cycle took about 5 years, it has already been reduced to three years in the 21st century,® not to
mention the large number of innovations introduced during that period. Considering inflation, the rising customer expec-
tations call for a cost reduction of 4% per year.* Consequently, cost and time reduction while mastering increasing system
complexity at the same time became a prime concern in automotive software engineering.

Nowadays, automotive agile development processes are often based on the V-Model,> which structures require-
ments and specifications of a system in different abstraction layers. Each layer is associated by corresponding quality
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FIGURE 1 Complexity drivers in automotive engineering move from mechanical and electrical engineering to software engineering.!
5G, fifth generation; CAN, controller area network [Colour figure can be viewed at wileyonlinelibrary.com]

assurance tasks, eg, a set of tests. These tests are usually created manually, which holds several disadvantages and raises
the impression of a bureaucracy in software development.

« Links between tests and specifications are vague; thus, consistency between tests, requirements and specifications is
difficult to ensure. This prevents test automation, and thus hampers productivity.

« Once a specification is updated or added, it is necessary to update all of the corresponding handwritten tests manually.

« Due to the large expenses and time pressure, a system's functionality is often extended on the lowest abstraction layer
only. Engineers therefore do not adopt requirements and specifications on higher abstraction layers in general and
thereby introduce possible inconsistencies between requirements, models, and the implementation.

These deficiencies contribute to long and expensive development cycles. New concepts and methods are required to fulfill
current customer demands and to enable the development of modern, safe and affordable mobility solutions.

Other engineering domains, such as avionics® and robotics,” master similar challenges by leveraging model-based soft-
ware engineering®'® together with model-based testing (MBT).!'"* The aim is to reduce the conceptual gap between
the problem (eg, autonomous driving) and the solution domain (eg, software engineering) by means of abstract,
domain-specific, and sustainable models as primary software artifacts. For automotive software engineering, model-
ing techniques following these paradigms need to be tailored to the specific requirements regarding safety and process
standard compliance, while retaining agile efficiency.™

We developed a methodology to manage requirements, design, and test in the automotive industry to overcome present
challenges in automotive software development. The specification method for requirements, design, and test (SMArDT)*
targets the deficiencies of the established V-Model. The SMArDT relies on model-based software engineering techniques,
providing model artifacts on each abstraction layer. Consistency checking between layers and automatic generation and
regeneration of test cases reduces bureaucracy imposed by the classical V-Model. We present two central solutions for
these challenges within SMArDT, based on experiences conceived by its application at the BMW Group.

The automated consistency assurance concept was developed along with SMArDT and is based on view verification for
each abstraction layer. The abstract model-based system artifacts enable us to develop a general and abstract verification
concept to obtain meaningful links between requirements, specifications and tests. Hence, with roughly the less effort
than with manual test derivation, developers can take advantages of automated test derivation to improve test deriva-
tion efficiency, quality, and consistency of results. Especially consistency checking, ie, disallowing the many individual
interpretations of test developers that would arise by manual test implementation, is a big advantage of automated test
derivation.

*The abbreviation SMArDT is related to the German term “Spezifikations-Methode fiir Anforderung, Design und Test” (specification method for
requirements, design, and test)
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Since verification and validation are important for reliable automotive products, testing is a well-known part of the
automotive industry. A new concept should recognize existing knowledge of testing strategies and provide assistance to
test engineers to tackle inefficiencies in the test creation.

To develop our functional testing strategy, we conducted a systematic survey among test experts at the BMW Group
to identify deficiencies of the current testing concepts and opinions on possible efficiency improvements along with the
introduction of SMArDT. Based on our findings, we developed a method for systematic test case creation, which enables
test experts to adapt test cases of each abstraction layer to specification novelties or changes efficiently. Our methodology
also enables a close collaboration between function and test specifiers working on the same artifact, which guards against
erroneous function or test specifications at an early stage of the development. The implementation of our method is based
on automatic model analysis and model transformation supported by the MontiCore language workbench.'s

In the following, we present the notion of SMArDT in Section 2 and a view verification for consistency assurance
between the abstraction layers in Section 3. We present details of functional testing within SMArDT by presenting our
survey in Section 4 and the derived extended method for systematic test case creation in Section 5. In Section 6, we present
the MontiCore based implementation for automatic test case generation. Our contribution is discussed in Section 7 and
related to existing approaches in Section 8. We conclude in Section 9.

2 | PRELIMINARIES

The SMArDT tackles the issues of the V-Model mentioned in Section 1. The method enforces function specification by
means of a subset of systems modeling language (SysML) diagrams with unambiguous semantics. Thereby, it facilitates
higher consistencies between abstraction layers by construction, which is most valuable to the iterative, incremental,
and evolutionary agile development projects in automotive engineering. Building upon formal semantics,”” the diagrams
enable further systematic validations such as (1) backward compatibility checking'®* for software maintenance and evo-
lution between different diagram versions of the same layer as well as (2) refinement checking?? between diagrams of
different layers for the detection of interlayer specification inconsistencies. In turn, consistent requirements and models
enable a stable generative development process, which facilitates systematic test case creation and guarantees that tests
are meaningful and synchronized with the overall system.

Four abstraction layers structure the SMArDT process as illustrated in Figure 2. In particular, they focus on on
requirements, design, and testing of system engineering artifacts according to the ISO 26262 specifications.

1. Layer 1 contains a first description of the object under consideration and shows its boundaries from a customer's point
of view. This layer elevates requirements and use cases (UCs) for each functionality. The modeling artifacts of this layer
are UC diagrams and requirements.

2. Layer 2 specifies the abstract functional specifications without providing implementation specifics by activity diagram
(AD), state charts (SCs), sequence diagrams, and internal block diagrams (IBDs).

3. Layer 3 details the abstract description of Layer 2 by adding implementation specifics. The layer comprises refinements
of the Layer 2 artifacts and complements them by more detailed internal block diagrams.

4. Layer 4 represents the software and hardware artifacts according to the specification of Layer 3. This layer contains
the actual source code.

The SMArDT enables structural verification® between each layer by formal SysML semantic modeling.!” A view-based
technique and its implementation covering this aspect are described in Section 3. Since SMArDT artifacts are elements of a
formalized subset of consistent SysML diagrams,* a systematic and automated generation of functional test cases for each
layer is possible. Automatic generation and transformation for application on all lower layers assure consistency between
test cases of each layer. This is illustrated on the right side of Figure 2. For example, Layer 1 describes a functionality of the
product on the highest level. Hence, the corresponding test cases cannot be used directly on the lower layers, and therefore
must be transformed to multiple low-level test cases.”” This can be achieved by substituting abstract signal names and
placeholders with concrete hardware signals and values.

SMATrDT Layers 1 and 2 are conceptual in the sense that their diagrams cannot be mapped directly to counterparts
in the final implementation. The aspects modeled by these diagrams are usually scattered across several implementa-
tion artifacts later on. Signals used in these diagrams are logical, ie, they abstract from signals of the implementation.
Consequently, logical signal values encapsulate a range of values present in the implementation. In contrast, the
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FIGURE 2 Overview of the specification method for requirements, design, and test (SMArDT) methodology. SysML, systems modeling
language!® [Colour figure can be viewed at wileyonlinelibrary.com|

elements of the third and fourth layers have a direct representation within the implementation. The third layer describes
platform-independent functionality of a system, whereas the fourth layer contains software and hardware parts specific
to a given target platform and handles low-level behavior such as I/O interrupts.

3 | MODEL CONSISTENCY IN SMArDT

The SMArDT development process tackles the deficiencies of the classical V-Model. An important aspect is the con-
sistency between artifacts on different abstraction layers, which allows efficient adaptation of all artifacts to changes
or novelties in requirements or specifications on any layer. Consistency between specification artifacts between layers
enables automatic transformation of tests to lower levels. Thereby, SMArDT supports evolutionary development in a
unique way.

We illustrate how automated requirement consistency verification is realized within the SMArDT methodology using
real world requirements employed for specifications of a publicly available adaptive light system (ALS).?>* The example
ALS model controls adaptive high and low beam turn signals as well as cornering and ambient light. Adaptive high and
low beam adjust headlamps to the traffic conditions and ensure an optimal illumination experience without dazzling
other road users. Cornering lights illuminate the area to the side of a vehicle to look around the bend. Finally, ambient
lights welcome the driver with a subtle illumination. The complete collection of the 93 original ALS requirements can be
found on our support website.

3.1 | Architecture specification using views

Automotive software systems are often created using component and connector (C&C) languages such as Simulink®
describing functional, logical, or software architectures® in terms of components executing computations and connectors
realizing component interaction and data flows via directed and typed ports. A particular strength of the C&C paradigm

Thttp://www.se-rwth.de/materials/cncviewscasestudy/
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is the ability to decompose complex components such as the ALS hierarchically. By following the divide and conquer
principle, each simple component can be developed by a different team. Systems modeling language®! and Modelica® are
two other popular representatives for C&C modeling languages. As SMArDT relies heavily on model-based design, it is
of great importance to be able to handle big model repositories, to compose models developed by different teams and
to guarantee their consistency and compatibility throughout the whole development cycle. In this context, the notion of
C&C views plays a major role and is therefore indispensable for SMArDT. The C&C views* equip C&C developers with
a technique enabling them to focus on specific aspects of large C&C models without having to understand the rest of the
system unimportant for the viewpoint of interest. For example, a view can be constrained to show a component's decom-
position into subcomponents without revealing their respective ports and connections. Hence, the main goal of the C&C
views concept is to provide many small, precise, and comprehensible viewpoints of a large C&C model that can be used
for specification and validation purposes in SMArDT. Therefore, C&C views introduce four major abstractions: hierar-
chy, connectivity, data flow, and interfaces of C&C models. The hierarchy of a system's components in C&C views is not
required to contain all levels as intermediate components may be skipped; abstract connectors can cross-cut component
boundaries and also connect components directly, ie, omitting the interfacing port. Hence, it is allowed to hide inter-
face parts such as port names, types, and array sizes. Abstract effectors describe data flows which abstract from chains of
components and connectors.

Intuitively, a C&C model satisfies a C&C view if and only if all elements and relations revealed by the abstract view have
a satisfying counterpart in the concrete model. The formal definitions of C&C models, C&C views, and their satisfaction
are available in the work of Maoz et al** and on the supporting materials on the complementary website.?

Component and connector view verification and witnesses for tracing in SMArDT

Figure 3 shows an example C&C model of an ALS. The modeled functionality controls the flash LEDs for turning as well
as the left and right light bulbs for cornering and ambient lights. The ALS consists of the two subcomponents Flashing
and HeadLight. The HeadLight component is further decomposed into the subcomponents CorneringLight, and
AmbientLight. The C&C view ALSI shown in Figure 4 describes the CorneringLight component illuminating the
road the driver wants to turn. Thus, the input port BlinkerLever of the ALS component has an effect on at least one
input port of the CorneringLight component, which is modeled by an abstract effector. The computed light values
CLeft and CRight of the CorneringLight component are passed directly and without further modification to the
output ports of the ALS component modeled by two abstract connectors. The C&C view ALS2 grasps the relationship
between the Flashing and the AmbientLight component. It specifies that the F1Left (flashing left) output of the

/"~ component C&C Model
ALS < component name port
Flashing _ _ port| M€
/
BlinkerLever FlLeft L inerion &E FiLeft
Hazard FIRight {IFIRight
Key .
HeadLight
CorneringLight
FlLeft
_ _ FIRight ClLeft ClLeft
LightSwitch LightSwitch CRight CRight
Speed Speed
Voltage [1 Voltage
9 connector—" g_ =
Amblentngm_t . ALt
Brightness [1 Brightness .et .et
Key ARight ARight

FIGURE 3 Very simple example component and connector (C&C) model for adaptive light system (ALS)?® [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 Two component and connector (C&C) views ALS1 (top left) and ALS2 (bottom left). Witness for satisfaction ALSIs (top right)
and witness for nonsatisfaction ALS2n (bottom right).?® ALS, adaptive light system [Colour figure can be viewed at wileyonlinelibrary.com]

component Flashing affects the ambient left light (port ALeft of component AmbientLight), eg, there is a brighter
left ambient light when the left parking mode is activated. The model ALS satisfies the view ALS1.

The C&C view verification* receives a C&C model and a C&C view as inputs. The algorithm returns a Boolean, which
indicates if the C&C model satisfies the C&C view. Additionally it calculates a local minimal satisfaction, or local nonsatis-
faction witnesses, which emphasize improper model elements. For example, ALSIs, a witness for satisfaction, is shown in
Figure 4. It demonstrates how the C&C model satisfies ALS1. The SMArDT approach employs the generated witnesses to
automatically generate traceability information between SysML artifacts of Layer 2, often provided as C&C views against
Layer 3 model designed as concrete C&C SysML diagrams. The witness itself is a well-formed model. It contains all compo-
nents of the view as well as their parent components to reveal the entire hierarchy between the two components specified
in the view. Therefore, the witness also includes the HeadLight component. Furthermore, the positive satisfaction wit-
ness incorporates all ports corresponding to a view. Consequently, it embraces the Bl inkerLever port of ALS as well as
the CLeft and CRight ports of CorneringLight. Additionally, the witness contains all model connectors and all data
flow paths. The abstract connector from CorneringLight (port CLeft) to ALS (port unknown) introduces the follow-
ing elements in the witness: (1) port CLeft of component HeadLight, (2) connector of ports CLeft from component
CorneringLight to component HeadLight, and (3) connector of ports CLeft from component HeadLight to com-
ponent ALS. For the abstract effector from ALS (port BlinkerLever) to CorneringLight the following elements in
the chain serve as witness: (1) component Flashing, (2) ports BlinkerLever and F1Left of Flashing, (3) connec-
tor of ports Bl inkerLever from ALS to Flashing, (4) connector of ports F1Left from Flashing to HeadLight,
and (5) connector of ports F1Left from HeadLight to CorneringLight.

The model ALS does not satisfy the view ALS2. Every negative nonsatisfaction witness contains a minimal subset
of the C&C model and a natural-language text, which explains the reason for nonsatisfaction. These witnesses are
divided into five categories, namely, MissingComponent, HierarchyMismatch, InterfaceMismatch, MissingConnection, and
MissingEffector.®* A witness for nonsatisfaction ALS2n, namely, a MissingEffector, is illustrated in Figure 4. It depicts all
outgoing connector/effector chains starting at port F1Left of component Flashing as well as the abstract effector’s
target port, AmbientLight's ALeft, which is not reachable. It is sufficient to remove the effectors in ALS2 to make the
model satisfy the view even though Flashing and AmbientLight are direct siblings in the C&C view but not in the
C&C model since C&C views allow to abstract away the intermediate component HeadLight.

Identifying design inconsistencies with C&C views

The previous paragraphs illustrated how C&C view verification can be used to ensure structural consistency in the
SMATrDT process and how to generate tracing witnesses between view models of Layer 2 and concrete logical C&C mod-
els of Layer 3. In the following, we focus on structural design inconsistencies between different artifact models of the
same layer. Figure 5 shows two requirements concerning the cornering light. Since the last requirement AL-139 is a safety
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FIGURE 5 Design inconsistency of two component and connector views?®

feature for armored vehicles, a dedicated team of safety experts is responsible for it. Hence, two different teams develop
the architectural designs (view AL-122 and view AL-139) for the two requirements.

The top design shows the CorneringLight with two modes (subcomponents Cornering Active,
Cornering Deactive, and MultiSwitch). The mode Cornering Deactive is activated if the voltage level
is low otherwise Cornering Active is used. In the bottom design model, the min block, in combination with the
Switch, deactivate the cornering light by propagating 0% as light value to OvervoltageProtection input ports
when the DarknessSwitch port has the value true. The C&C view synthesis® is the process of deriving a valid C&C
model conforming to all given C&C views. The first part of the synthesis algorithm checks whether views contain design
contradictions. If all views as in our example are positive views, ie, only declaring what should be fulfilled but not con-
taining restrictions such as “component A should not contain port B,” the contradiction check can be done in polynomial
time and scales easily to hundreds of views.?

The contradiction check for the two views view AL-122andview AL-139 would resultin an error. In the top view,
the port CLeft of component CorneringLight is directly connected to the component OvervoltageProtection
and no further modification of the passed value takes place. In contrast, in the bottom view, the value from
CorneringLight's CLeft is manipulated by the min component before it goes to the OvervoltageProtection's
CLeft port. Similar to the C&C view verification process presented, the contradiction algorithm generates an intuitive
witness to highlight incompatible parts of two views. The formalized C&C view verification problem, together with the
derived contradiction problem, enables early analysis of structural design models in the SMArDT process to detect incon-
sistencies between different artifacts created by different developers or teams at early development stages. In this way,
expensive integration problems occurring at later development stages due to incompatible software modules developed
on inconsistent designs can be avoided very efficiently.

3.2 | Formalized ADs

Combining formalized ADs* with Object Constraint Language (OCL) constraints is another powerful modeling tech-
nique, which can be employed for test case creation’® and is therefore an integral part of the SMArDT modeling tool set.
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In the following, we explain how formalized ADs can help finding inconsistencies in requirement specifications along
the SMArDT process to generate better test cases and to enhance the overall software quality. The ADs in Figures 6 and 7
model the steering column stalk and the hazard lights behavior as required by AL-40 and AL-41,” respectively. In Figure 6,
the model obtains the state of the steering column stalk through the corresponding input port. In case the steering column
stalk is turned to left, the left lights of the car blink with an on/off ratio of 1:1; we refer to this mode as BLINKING1 1.
This value is written to the output port of the AD. The else branch is underspecified, ie, nothing is said about the output
for the cases if the steering column stalk is set to right or to straight. Note that this is in accordance with the underlying
requirement.

In the AD of Figure 7, the state of the hazard light switch is checked to decide whether the lights need to be turned on or
not. However, to determine the concrete blinking mode, the position of the ignition key is required. If the key is inserted,
the 1:1 blinking mode is activated. Otherwise, the 1:2 mode is used to reduce energy consumption. The else branch is
underspecified once again. Note that, according to the requirement, the same physical lights are used for hazard blinking
as for direction indication. This leads to a contradiction that becomes obvious in the two ADs, ie, if the key is not inside
the lock and the hazard light switch is pressed, according to AL-41, the vehicle's indicators lamps should blink with a
ratio of 1:2. If, at the same time, the steering column stalk is set to blinking (left), according to AL-40, the blinking ratio
of the left direction indicators should become 1:1.

AL-40 Direction indicator (left): When the steering column stalk is moved into [ o \
|req AL-40)
the position blinking (left) all left direction indicators (rear left, exterior mirrors _

left, front left) start blinking synchronously with an on/off ration of 1:1.

~

(DirectionlndicatorLeft

Steering Column
Stalk (SCS)

Read Steering
Column Stalk

[else]

[SCS == LEFT]

otherwise, the LeftLights = BLINKING1:1

value of ) '
LeftLights is ' Left Lights
underspecified
\_~ g
N J

FIGURE 6 Activity diagram for AL-40 describing the steering column stick behavior [Colour figure can be viewed at
wileyonlinelibrary.com]

AL-41 Hazard lights: As long as the hazard light switch is pressed, all direction indicator lamps blink
synchronously. If the ignition key is inside the lock, the on/off ration is 1:1. Otherwise, the on/off ratio is 1:2.

HazardLights
Hazard Light Read Hazard
Switch (HLS) Light Switch
[else] X [HLS == ON]
Ignition Key (IK)
[IK == OFF] X [IK == OFF]
LeftLights = Blinking1:2 LeftLights = Blinking1:1
RightLights = Blinking1:2| RightLights = Blinking1:1

Set Left Lights 1 Left Lights
Set Right Lightst? Right Lights
- g J

FIGURE 7 Activity diagram for AL-41 describing the emergency lights behavior?
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Keeping in mind that a faster blinking drains the battery in a shorter amount of time, this specification error might
even become critical for human lives in cases of emergency. The error is discovered automatically with ease by creating
a table mapping the three input signal combinations. For Figure 6, we would obtain one single combination, namely,
(SCS = LEFT,HLS = DC,IK = DC) — LeftLights = BLINKINGI_1, RightLights = DC), where DC stands for “do
not care.” Figure 7 produces two combinations one of which is (SCS = DC,HLS = ON,IK = OFF) — (LeftLights =
BLINKING 1_2,RightLights = BLINKING 1_2). Expanding the DC fields to all possible values reveals that the specifica-
tion requires two contradictory outputs for the same input. Without this consistency check, degenerate test cases might
be extracted, eg, accepting any output or requiring two different outputs at the same time.

4 | THE STATE OF TESTING IN AUTOMOTIVE SOFTWARE ENGINEERING

The SMArDT aims at managing requirements, design, and testing by means of model-based software engineering
(cf Figure 2) more efficiently than the classic V-Model. The SMArDT methodology strongly relies on consistency verifica-
tion as well as systematic test creation to decrease the effort of adapting all development artifacts to changing specifications
and requirements. As discussed in the previous sections, this is supported by formal models such as C&C views and
ADs. As software testing is a well-known field and test engineers already conduct certain strategies, we aimed at utilizing
their knowledge to develop a systematic testing concept for SMArDT. Therefore, we conducted a systematic survey on
model-based test case creation (MBTCC) at the BMW Group. Aggregated survey results were initially published in 2018.%
This section describes our research questions, the survey design, its findings, and the conclusions in detail.

4.1 | Research questions

Since imposing model-based technologies on engineers top-down has often proven difficult, we investigate possible ben-
eficiaries of MBT at the BMW Group.* Hence, we survey the target group (test engineers) about MBT and MBTCC. The
data allowed to draw conclusions which enabled us to develop an MBTCC method that suits the test engineer's needs.
The survey aims at analyzing whether MBT is suitable to improve the quality of testing and to identify application envi-
ronments. Targets of the quality investigation are overall test coverage and usability of individual test cases. The question
whether MBT test cases are suitable to be used in test beds and can be applied to test subsystems or the entire system is
also addressed.

Figure 8 illustrates the traditional textual test case creation as applied at the BMW Group and compares it to the concept
of MBTCC test case creation. Traditional test case creation is based on natural language requirements, which are used to
develop a test case concept (Figure 8), ie, the basic test steps. Subsequently, the test engineers implement executable test
cases derived from the test case concept. Using MBTCC, the intermediate manual translation becomes obsolete due to
automatic processing of model-based requirements. The model-based input requirements for MBTCC allow an automatic
derivation of the test concept. However, test engineers are still intended to be able to configure certain test case aspects
manually.

Usually, test engineers examine the requirements and deploy a test case concept (cf Figure 8). This test case concept
comprises basic test steps. Based on the concept, the test engineer develops the automated test case. Hence, the main
research questions of our survey are as follows.

R1 What is the background of the test engineers? Who can benefit from a (semi)automatic MBTCC?
R2 Isit possible to enhance the test quality and the test coverage by MBT (from the test engineers’ point of view)?
R3 Which environments are the most promising for MBT in the BMW Group context?

The survey's main purpose is to reveal the potential of MBTCC in contrast to the predominant textual
requirements-based test case creation as usually practiced in automotive software engineering. Regarding R1, the

textual-based test case creation -
(natural language) Requirements n]—-| Test case concept H Automated test caset]

MBTCC in SMArDT | Model-based requirements‘]——%—-{ Automated test case t]

FIGURE 8 Comparison of traditional test case creation method versus model-based test case creation (MBTCC) in specification method

for requirements, design, and test (SMArDT) [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Survey questions on background of the participants and main test case artifacts linked to the request questions

1D Question Question type Linked to
Q1 What is your main function? Multiple Choice R1
Q2 What did you study? Multiple Choice R1
Q3 For how long have you been working in the automotive industry? Time R1
Q4 For how long have you been working in the sector of test case creation? Time R1
Q5 Which is your focus of testing? Multiple Choice R1,R3
Q6 Please indicate the importance of the following resources: Likert-rating R2
Q7 Please indicate the input for your test case creation: Multiple Choice R1, R2
Q8 Please indicate your test case creation method: Multiple Choice R1,R2
Q8a Please explain your method: Text R1,R2
Q9 Please indicate the output of your test case creation: Multiple Choice R1,R2
Q9% Please explain your answer: Text R1,R2
Q10 What is the most time-consuming test activity? Text R2
Q11 Are the test cases performed automatically? Multiple Choice R2
Qlla In which environment are your test cases performed automatically? Multiple Choice R3
Q11b If not performed automatically - What are the reasons? Text R2,R3
Qllc If not performed automatically -

How could test cases be performed automatically? Text R2,R3

questionnaire investigates the participants’ main function, working background, years in the automotive industry, years
of experiences in test case creation, the focus of testing, and the attitude toward MBT. We draw conclusions about the
participant's background based on a profile obtained from this information. Moreover, we inquire about artifact sources,
starting point for test case creation, degree of automation, test environment, ie, test bed, subsystem or the complete
vehicle, purpose of testing, test case creation method, current, and possible estimated test case coverage to elucidate R2
and R3.

4.2 | Study design and conduction

The anonymous survey comprised 27 questions (13 closed questions and 14 open questions) divided into three sections.
To clarify the background information, eg, professional education, the first section inquires five background questions
(Table 1).

The questions Q1, Q2, Q3, and Q4 investigate the participant's individual background and years of experience (R1).
Question Q5 investigates the focus of testing to understand the participant point of view (R1) and Q5 investigates about
the targeted system, ie, software, component, subsystem, or system (vehicle) (R3). The second section of the survey
investigates the main test case artifacts and proceedings (Table 1).

To compare the different test case creation procedures, the survey investigates the procedure steps and content of the
artifacts (Q6, Q7, Q8, Q9, Q11, Q11b, and Q11c). These data enable a detailed comparison of the participant indications
and MBTCC (cf Figure 8). Hence, the comparison facilitates an assertion of the benefits from MBTCC (R1) and the quality
(R2). Furthermore, the questions Q11b and Q11b concern test case automation, possible improvements for artifacts (R2),
and environments (R3). In the third section, the survey investigates additional topics that could not be directly associated
with the background and the main test case artifacts and procedures (Table 2).

We contacted 196 professionals, test engineers, and test managers of the BMW Group. To decrease the probability that
the results are a chance encounter, we calculated with a statistically significant level of 5%. According to this level, we
determined a required sample size of 65 out of 196 contacted test engineers for a statistically significant result. Based on
the sample size, we are 95% confident that the proportion of all invited test engineers, with an error margin of 10% (approx-
imately 20 participating test engineers) corresponds to the ascertained survey findings. Overall, we received 70 answers,
with 69 valid questionnaires. The invalid questionnaire is without any content.

4.3 | Results

The survey provides multiple choice or Likert-rating scales as response possibilities. An external survey department of
the BMW Group implemented and hosted the survey, which was conducted between August 23 and September 22, 2017.
Exact survey results, however, cannot be published due to confidentiality.
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TABLE 2 Survey questions of the third section linked to the request questions

ID Question Question type Linked to
Q12  Please estimate the current test coverage: Number R2
Q13  How could you improve the current test coverage? Text R2
Q14  Please estimate the possible test coverage: Number R2
Ql4a Which resources do you need to improve the test coverage? Text R2
Q15  What is your focus on verification and validation? Likert-rating R2
Q16  What is a valid test case? Text R2
Q17  What is the frequency for delivering your test cases? Multiple Choice R1
Q18  What is the frequency for testing of test cases? Multiple Choice R1
Q19 Do you think MBTCC creation will help you? Likert-rating R1
Q19a Please explain your choice: Text R1
Q19b What are the benefits/disadvantages of MBT in correlation

to test case creation based on natural language based requirements? Text R1

Abbreviations: MBT, model-based testing; MBTCC, model-based test case creation.

TABLE 3 Survey answers of the participants to background with computed mean value (), standard deviation (s), and sample size (n)

1D Question / Answer options Result ID  Question / Answer options Result
Q1 What is your main function? (n = 69) Q2 What did you study? (n = 68)
Development of requirements: 8.96% Computer science: 8.70%
Create test cases: 26.87% Electrical engineering: 39.13%
Automate test cases: 5.97% Industrial engineering: 4.35%
Execution of test cases: 13.43% Mechanical engineering: 23.19%
Analise testing results: 17.91% Mechatronics: 15.94%
Test management: 26.87% Other: 8.70%
Q3 For how long have you been working (n = 69) Q4 For how long have you been working (n = 66)
in the automotive industry? X =10.16 in the sector of test case creation? xX=433
X and s in years: s = 8.08 X and s in years: s = 4.60
Q5 Which is your focus of testing? (n = 69)
Software: 15.94%
Component: 24.64%
Subsystem: 17.39%
System (vehicle): 42.03%

The participants' background revealed that more than 90% are indeed mainly working on testing (cf Q1 in Table 3). Gen-
erally, the professional background of the participants is electrical engineering (Q2), followed by mechanical engineering
(automotive engineering), mechatronics, computer science, industrial engineering, and related studies, ie, physics, math-
ematics, chemistry, or economics. The range of experience in years is from 0.5 up to 41 years in Q3 and 0.5 to 20 years in
Q4. Hence, each mean value (x) of Q3 and Q4 resembles to its belonging standard deviation (s).

The most important resources for test case creation (Q6), according to its score of 78%, are natural language require-
ments, followed by personal experience, existing test cases, error descriptions, and unified modeling language (UML) or
SysML models, respectively (Figure 9). Regarding the input for the test case creation (Q7), three out of four test engi-
neers start test case creation with requirements. About 14% start with test concepts and 9% with drafts of test cases
(Table 4). To sharpen the different steps between requirements and the final automated test case, the questionnaire distin-
guishes the test case concept and the test case draft. The test case concept is an informal or formal test case not depending
on any tool, whereas the test case draft is a more specific form of a test case implemented in a certain test case envi-
ronment tool. The data of question Q9 reveal that half of the participants create a concept of a test case; about 12%
create a draft of a test case and about 36% an automated test case. To determine the most common scenario, we directly
linked the participants' indications to the starting point of test case creation with the output of test case creation. Hence,
each participant's starting point was linked to each output, eg, requirements concept of a test case, requirements draft
of a test case, requirements-automated test case, and rough test case description concept of a test case. Subsequently,
we compared the combinations. One third of the processes start with requirements and end in executable test cases
(requirements-automated test case). More than half of the interviewees create their test cases based on a defined method
(Table 4). About 40% of participants adjust their test case creation depending on the type of test case, while automatically
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Natural language requirements I with % =4.19; s=121; n=67
UML or SysML models ® with = 1.58; s =0.96; n =48
Error descriptions 1l with ¥ =3.00; s=1.15 n=64
Personal experience I with % =3.37; s=1.07; n=63
Existing test cases IE——— with % =3.35; s=125 n=63
0% 20% 40% 60% 80% 100%

mvery important (5) mimportant (4) = fairly important (3) = slightly important (2)  not important (1)

FIGURE 9 Results of Q6, “Please indicate the importance of the following resources,” with computed mean value (x), standard deviation
(s), and sample size (n). SysML, systems modeling language; UML, unified modeling language [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 Survey answers to artifacts of the participants with computed mean value (x), standard deviation (s), and sample size (n)

1D Question / Answer options Result ID Question / Answer options Result
Q7 Starting point of test case creation (n = 69) Qs Test case creation method (n = 69)
Requirements: 76.56% Defined method: 56.25%
Rough test case description: 14.06% Depends on the test case: 40.63%
Basic test case structure: 9.38% Automatically generated: 3.13%
Q9 Output of test case creation (n =69) Q11 Testcases automatically performed (n = 67)
Concept of a test case: 51.67% Yes: 34.34%
Draft of a test case: 11.67% No: 10.44%
Automated test case: 36.67% Partly (x = 68%; s = 26%): 55.22%
Qlla Environment of automated test cases (n = 68)
HiL (Hardware in the Loop): 81.67%
SiL (Software in the Loop): 5.00%
MiL (Model in the Loop): 1.67%
Vehicle in the Loop: 11.66%

o Current with x = 67.4%; s=25.3%; n=62

=
c 20 .
31s Possible with z =87.6%; s=14.2%; n=58

< 10

0-10  10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Test coverage estimation in %

FIGURE 10 Results of Q12 and Q14: Estimated current and possible test coverage3® with computed mean value (x), standard deviation (s),
and sample size (n) [Colour figure can be viewed at wileyonlinelibrary.com]

generated test cases are less used for test case creation. In Q10, about two third of the participants indicated that the most
time-consuming activity is related to requirement clarification.

Regarding the basic testing environment, most test engineers (42%) focus on creating test cases for the entire system
(vehicle) (Table 3). The remaining engineers concentrate on creating component tests (24.6%), subsystem tests (17.4%),
or software tests (16%). Consequently, automatically performed test cases targeting model in the loop (MiL) represent
1.7% of the total, while software in the loop (SiL), 5% (cf Table 4). Test cases, mainly designed for hardware in the loop,
comprise 81.6%. In contrast to the basic environment for testing (Q5), the system environment association vehicle in the
loop is indicated as less important (11.7%).

To investigate potential test coverage improvements, the participants were questioned regarding the current and the
possible coverage (Figure 10). The data of questions Q12 and Q14 reveal that a current estimation mean value (x) of 64.7%
and a standard deviation (s) of 25.3% are about 20% lower than the mean of the possible estimated coverage of 81.6% and
a standard deviation of 14.2%. Thus, according to the interviewees there is a possible improvement for test coverage of
about 20%.

Furthermore, the survey investigates quality focus (cf Figure 11). Functionality rates as the most important factor for
test case quality (R2). Subsequently, robustness is indicated as the second most important with a similar mean value
to reliability and functional safety. Efficiency, followed by reusability, integrability, effectiveness, and maintainability are
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Functionality with £ = 3.71; s=0.55 n=68

Robustness with = 3.16; s =0.95; n =67
Reliability

Functional Safety

with ¥ =3.06; s=0.95; n=67
with ¥ = 3.00; s=1.05; n=64
Efficiency with £ = 2.70; s=0.91; n=60
Reusability with ¥ = 2.67; s =1.02; n =63
Integrability with % = 2.62; s=0.88 n=65

Effectiveness with ¥ = 2.16; s =0.83; n =63

Maintainability with ¥ = 2.14; s=0.88; n=65
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FIGURE 11 Results of Q15, “What is your focus on verification and validation?,” with computed mean value (), standard deviation (s),
and sample size (1) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Survey answers to frequency of test case creation and test case execution with sample size (n)

ID Question / Answer options Result ID Question / Answer options Result
Q17 Frequency for delivering test cases (n = 58) Q18 Frequency for testing of test cases (n = 61)
Milestones(intervals longer Milestones(intervals longer
than one month): 46.30% than one month): 77.19%
Monthly: 5.56% Monthly: 3.51%
Weekly (Sprints from one Weekly (Sprints from one
up to 3 weeks included): 35.19% up to 3 weeks included): 12.28%
Daily: 3.70% Daily: 7.02%
One time: 9.25% One time: 0.00%
6% = MBTCC is very useful. (5)

13% MBTCC is useful. (4)

38% MBTCC is neither usfeul nor useless. (3)
3% MBTCC is additional expense. (2)

MBTCC impede my work. (1)

FIGURE 12 Expected benefits (Q19) from model-based test case creation (MBTCC)*® with computed mean value (X), standard deviation
(s), and sample size (n) [Colour figure can be viewed at wileyonlinelibrary.com]

indicated as less important. The indications about the validity of test cases (Q16) revealed that generally test cases have
to fulfill certain specification. Especially the automated test cases are valid only, if they are accurately executed in the
corresponding test environment (test bed).

To investigate the frequency of the creation and testing process, the survey asks for cycles. The questionnaire distin-
guishes between milestone based, monthly, weekly, daily or onetime delivering, and testing, respectively (Table 5). The
data reveal that delivering and testing is mainly based on certain milestones and weekly sprints.

Figure 12 shows that 45% of the participants consider MBTCC as useful or very useful, 36% of them indicated a neutral
opinion toward MBTCC, and 19% consider it as a disruption. With the purpose of statistical data analysis an ordinary
numerical scale was labeled with a Likert-scale, from one (MBTCC impedes my work) to five (MBTCC is very useful),
respectively. Furthermore, the answers of Q19a and Q19b facilitate understanding the indications in Q19. Furthermore,
the results of Q19a and Q19b facilitates understanding the indications in Q19. Besides a majority of positive associated
explanations, we analyzed the negative associations. A common concern is that the requirements are too convoluted to be
modeled. One participant admits that she/he does not know how to model the current requirements. Other participants
assume expenses in the maintenance of the model.

Based on a mean value (x) of 3.29, a standard derivation (s) of 0.98, a sample size (n) of 55, and a majority of positive
explanations, we conclude on a generally positive expectation from MBTCC.

To investigate the aspect of a potential correlation between the personal background and the expected benefits of MBT,
we linked question Q19 with the profile (R1). Hence, we assumed that their opinion about the benefit of MBTCC is not
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TABLE 6 Correlation between background (Q1 to Q4) with
expectation on model based testing (Q19)*® with computed
correlation coefficient (r), p-value (p), and sample size (n)

ID Background question r p n
Q1 What is your main function? -0.05 0.371 53
Q2 What did you study? 0.03 0421 55

Q3 Experience in automotive industry  0.19  0.088 55
Q4 Experience in test case creation 0.10 0.240 55

influenced by their background. The correlation coefficients (r) of the questions Q1 and Q2 are lower than the correlation
coefficients of the questions Q3 and Q4 (cf Tables 6 and 3). Moreover, the p-values are higher for question Q1 and question
Q2. The correlation coefficients lower than |+ 0.20l reinforces our hypothesis about only a weak connection between the
participant's opinion (cf Figure 12) and the background (cf Table 6). Yet, the p-values indicate statistically insignificant
results.

4.4 | Survey conclusion

A considerable share of the participants (R1) acknowledges the benefits of MBTCC, regardless of their backgrounds. The
survey results allow to conclude that they have a positive attitude toward MBTCC (cf Figure 12). Based on the correlation
coefficients, we assume that the positive perception is independent of the experience level, professional background, or
focus of testing (cf Table 6). Despite the fact that a widely-adopted model-based approach is not in place, yet, more than
one third of the participants expect to benefit from MBTCC, hence SMArDT (cf Figure 9).

The evaluation reveals that a considerable share of test engineers use personal experience, old test cases, and error
descriptions as basis for test case creation (cf Figure 9). In case of new or changed requirements demand small adoptions
of new test cases, test engineers usually adapt existing test cases to create new ones. SMArDT with MBTCC enhances this
test case creation aspect. Instead of only adapting existing test cases, the new test cases are linked to a model. Hence, test
case modifications are easy to understand.

Model-based test case creation in general enables users to generate test cases directly from requirement models. Hence,
new or adjusted requirements should be derived instantly instead of adjusting existing test cases. Moreover, MBTCC
should provide automatic checks to test if the test cases are relevant for testing model changes. Error cases are integrated
in the early functional behavior requirements. Thus, these cases can be included in test cases with MBTCC. The clear and
understandable specification of SMArDT tackle the time-consuming activity of requirements clarification. In addition,
SMATrDT involves test engineers in an early development phase and facilitates the automated test case creation. Hence,
MBTCC should enable generating test cases independent and/or aligned to milestones, sprints, or regular deliveries. The
SMATrDT thereby deploys personal experience, and thus implicit expert knowledge becomes explicit in the diagrams. In
consequence, the process is less vulnerable to volatile expertise caused by personal changes, besides reinforcing the test
case creation and supporting hypothesis (R2).

The second functional and the third technical layers of SMArDT address functionality, functional safety, robustness,
and reliability (cf Section 2). According to our survey, participants already acknowledge the focus on verification and
validation. The concluded potential for test case coverage reveals that MBTCC should be capable of enhancing the test
case quality and further consolidates our hypothesis R2.

According to the participating test case engineers, system tests, subsystem tests, and component tests are the most
promising environments for MBTCC at the BMW Group (R3). The low approbation of SiL and MiL shown by the survey
is probably related to the group of participants. The target group of the survey is composed of test engineers and not
software developers, who usually perform SiL and MiL tests. In relation to the system's basic environment, automatically
executable tests are primarily performed on hardware in the loop environments (cf Section 4.3), whereas the focus of
testing is often the complete vehicle or its subsystems. The findings also reveal that MiL and SiL play a less important role.
These findings of MiL and SiL as well as the indicated less considered sources of UML and SysML models (cf Figure 9)
could be because of the target group of test engineers. Test engineers usually use requirement specifications in natural
language while software developers work with models.
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51 ASMArDT APPROACH TO MBTCC FOR AUTOMOTIVE
SOFTWARE TESTING

Our survey findings reveal that model-based software engineering in the automotive industry does not fully exploit the
potential of the model-artifacts created by requirements engineers, yet (cf Section 4). The aim of MBTCC is to utilize
model artifacts for purposes beyond documentation. The SMArDT requires a systematic testing concept for test case
creation on every abstraction layer to decrease test case adaptation and creation efforts, which have proven problematic in
classical V-Model development processes. An MBTCC approach seems beneficial and applicable to SMArDT's formalized
SysML models. However, existing approaches to automatic test case generation®**? do not suffice to fulfill project-specific
requirements on the modeling language. This is due to the fact that (1) within SMArDT's second layer, data types are not
yet specified but no extra testing diagram is created for test case creation. Thus, input for test case creation are production
models of the second layer without data types. (2) The BMW Group's production models contain modeling constructs
such as cross-synchronization.** Existing AD semantics do not allow such constructs.

Therefore, we developed a SMArDT concept for automatic test case generation. As the models are consistent throughout
all SMArDT layers (cf Section 3), MBTCC provides means to transform test cases of one layer to corresponding test cases on
all lower levels. Thereby, tests are also consistent on each layer and provide additional support for consistency checking.
By means of MBTCC, test case adaptation effort could be reduced significantly, as our survey revealed (cf Section 4). Based
on the results, we concluded that a semiautomatic test case derivation by MBTCC would support test engineers. This
includes adapting existing test cases to requirement changes and deriving test cases for complex system tests. Hence, our
MBTCC approach for SMArDT constitutes an extension to the current testing concept. Due to the model-based functional
system requirements, we aim to automate manual steps in the test case creation process. This section presents our MBTCC
approach for the second SMArDT layer. It utilizes SysML ADs to generate test cases that verify functional properties
automatically. Test engineers may utilize these test cases for direct testing on any test bed, or as starting point to formulate
test cases that are more complex.

5.1 | Model-based test case creation concept

In Section 3, it has been shown how the formalized SMArDT model artifacts can be used to assure consistency between
models on each layer. Our MBTCC approach uses these models to derive functional test cases in a systematic and
(semi)automated way.

Figure 13 illustrates how MBTCC is integrated within the second layer of SMArDT. System requirements are elevated
on the first SMArDT layer and modeled by UC and composite SysML diagrams. The testing strategy on this layer, which
utilizes these artifacts, has not yet been conceptualized. The requirement diagrams are passed to the second SMArDT
layer for abstract functionality modeling by means of SysML ADs. Representing first class requirement function models,
they are input for the (semi)automated test case derivation concept presented here. The resulting test cases are used in a
verification step to map signals to components of the system under test and can be executed on a test bed.

Model-based test case creation is applied in the Test Case Derivation step of Figure 13. The formal SysML input models
contain references to logical information flow entities and thereby specify different system functionalities. Within the
second layer of SMArDT they are represented by logical signals, which can be mapped to hardware and software signals

System Req. System
Specification Sign-Off
. 9)
o~ customer test
% models results |+
<y A
Function Req.
P Verification

Specification created
JS NS

<N /automatically
Lo Test Case oo @
= C -1l S
consistent first class J\ signal mapping for
requirement function fest cases system
models under test

FIGURE 13 Including the test case derivation in the overall systems engineering process® [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 14 Excerpt of an activity diagram (AD) describing requirements on the activation of headlights controls3® [Colour figure can be
viewed at wileyonlinelibrary.com|

on the third and fourth layers. Our MBTCC-based generation of test cases yields a set of test cases according to the path
coverage criterion C2c,* ie, loops are considered up to a finite number of iterations. Path coverage implies the presence of
at least one test case for each path of the AD's graph representation. The paths considered here correspond to functional
execution paths. An execution path corresponds to a certain input and temporary signal value assignment such that all
its guard conditions hold, ie, a signal interpretation. For each path, its validating signal interpretation can be calculated
by evaluating all guard conditions and signal assignments that correspond to a Boolean satisfiability problem (SAT). If a
signal interpretation exists among all signals of the paths and their possible value set, the path is considered valid.

Figure 14 presents an excerpt of a simplified version of the running example AD introduced in Section 3. Although
supported by our method, we omit object flows at this point. The interface, ie, input and output ports, contains information
about the input and output signals of the function modeled by the AD. For a given path, all possible signal interpretations
according to the inputs are determined based on its guard conditions and assignments. Boolean guard conditions restrict
the range of viable input signal values for the path's execution; signal assignments define its result output signal value set.
Consider the leftmost path in Figure 14, which is only entered, if signal headlightsSwitch is set to on. Given the set
of possible values for each signal in the diagram's scope, the path is valid if on is contained in headlightsSwitch's
possible value set. Otherwise, the path is marked invalid, ie, no signal interpretation exists, such that the path is executed;
thus, no test case is needed.

For loop handling, we set the C2c-limit of loop iterations to two. Initial applications of our method showed that a limit
of two iterations suffices for the test case creation of current models. A higher number of iterations deluges the amount
of test cases without contributing important content to the test cases. Even so, our tooling provides a way to configure the
limit if a higher number of loop iterations needs to be tested.

5.2 | Test case structure

Our method structures test cases into three blocks, ie, preconditions, actions, and postconditions. The preconditions define
the initial situation prior to a test case's execution. If all preconditions are fulfilled, the action block is executed. The exe-
cution of a test case corresponds to the execution of its respective path in the source AD. Thus, the action block represents
the core of the derived test case. Finally, the post conditions define the expected situation after the execution of a test case.

Each block consists of atomic test steps. An atomic test step provides information about (1) the type of action, ie,
setting (Set) or checking an information (Check); (2) the name of the logical information; and (3) the value to which an
information is set or which is expected when reading the information.

Considering our running example in Figure 14, the AD models the functionality of the light switch. A test case to check
this particular functionality of the system should validate whether the actual headlights turn on and the cockpit indicator
shows the correct headlight state. Table 7 shows the action block of an exemplary test case corresponding to the leftmost
execution path. Its action block contains three atomic test steps. Each step either sets or checks the value of a logical
signal. More specifically, checking input signal values in a guard condition results in a Set step, while value assignments
result in Check steps. The signal names of the test case refer to the switch for the headlights (headlightsSwitch)and
the indicator light (1ightsIndicator) in the cockpit as well as the actual headlights (headlights).

Table 7 shows that the sequence order of atomic test steps matches the order of passed token elements in the corre-
sponding AD (cf Table 7 and Figure 14). Since test cases correspond to valid paths through an AD, the occurrence of
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TABLE 7 Exemplary action block of a derived test case*®

Action Parameter Expectation
Set:headlightsSwitch on

Check:headlights on
Check:lightsIndicator active

information flow entities, ie, signals, on the respective path determines the ordering within the action block. Timing
information, necessary for execution on a test bed, may be bed later on. As it depends functionality's actual source code
implementation, however, this information should not be part of second layer SMArDT models as this layer describes
abstract functionality without implementation specifics. For example, timing information could be necessary between
Set:headlightsSwitch and Check:headlights.

5.3 | Test case execution

Before running the test case generator, additional information for the generation can be provided. This information is
not contained in the model and facilitate generating specific test cases. (1) The test case generator enables the user to
add customized precondition and postcondition (cf Section 5.2). Often test cases need a specific system state, ie, a set of
hardware and software signals. These signals are set in the precondition. After the action block, the postcondition sets
the signals in the original state. These conditions have to be added, due to not being part of the specific modeled function.
(2) Including an environment model enables the user to assign specific testing values to variables, eg, temperature to
minimum, 30 degree Celsius, or maximum. Moreover, default values, derived from the model, can be overwritten.

On the second layer of SMArDT, abstract ADs only reference logical information names rather than specific software
and hardware signals (eg, bus signals). To execute the derived cases, however, it is important to map the logical signals to
their specific software and hardware counterparts beforehand as shown in Figure 13. The mapping defines how to execute
each atomic test step of a derived test case in the system under test. If necessary, timing information is added. Thus, a
single atomic step in a test case might result in several test steps on the actual test bed.

To guarantee that a derived test case can be executed automatically, each atomic test step must be automatically exe-
cutable on its own. Hence, such a mapping between the logical information flows of a derived test case and the system
under test is crucial for our method. It ensures that each derived test case can be executed on a test bed without the need
of manually mapped logical information flows to specific signals. Thus, the mapping highly depends on the system under
test as well as the test bed. Currently, this mapping is manually created as part of our method, however, developing an
automated solution is work in progress.

6 | ASMArDT TEST CASE GENERATOR

The MBTCC method presented requires a stable and adaptive implementation of a test case generator. Our intention is to
target test case creation within SMArDT. Our method does not prescribe a modeling environment, thus, the implemen-
tation aims to be independent of the modeling tool. To serve this aim, we used the MontiCore language workbench to
develop a domain specific language tool, ADs for SMArDT (AD4S), into which ADs modeled in any modeling environment
can be translated easily.

6.1 | The MontiCore language workbench

MontiCore is an extensible workbench for engineering compositional, textual modeling languages. Developers define
languages as context-free grammars that specify concrete and abstract syntax. MontiCore generates the model-processing
infrastructure (eg, parsers) to facilitate checking and transforming models of the language into code automatically. Various
MontiCore languages have been engineered and applied to different domains,* including automotive, cloud comput-
ing, smart homes, robotics, and software engineering itself. For the latter, we have developed the UML/programmable
(UML/P) family of modeling languages,* which is a subset of UML* that is refined to enable pervasive model-driven

*See http://monticore.de/languages/
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engineering without the underspecification discrepancies of UML. This subset includes ADs, class diagrams, SCs, and
sequence diagrams. All of these languages are well integrated with each other and come with comprehensive tooling
(model checkers, model transformations, code generators, etc). As SysML ADs are closely related to UML/P ADs, we
created AD4S as a derivation of the UML/P version.

MontiCore also provides an infrastructure to include the well-formedness rules of input models via context conditions,
which is of special value for SMArDT and MBTCC. As shown, model inconsistency checks between layers require for-
malized models. For the automatic derivation of functional test cases, the input models need to represent a certain logic;
otherwise, they are not machine readable preventing any kind of automatic processing. In the following sections, we will
present the MontiCore-based AD4S, which provides the working environment for the test case generator including an
adaptive data structure and well-formedness checks.

6.2 | Activity diagrams for SMArDT

In the context of SMArDT, our aim was to develop a tool for automatic test case generation. The implementation should be
independent of the modeling environment and aid in identifying erroneous models at an early development stage within
SMArDT. Hence, we developed AD4S using a MontiCore context-free grammar, shown in Figure 15, as a derivation of
the UML/P AD.

Naturally, the language contains a nonterminal for each basic UML/P AD-element. As Node is an interface, hierarchi-
cal structuring of Act ivity elements is possible. Each Activity has a list of Nodes, which may be simple Actions
or Activities themselves (cf lines 2 to 6, Figure 15). An Action represents the most basic kind of node in an AD.
Activities and Actions may be referenced by a requirement specified in SMArDT Layer 1. To cover all SMArDT
Layer 1 requirements, test cases have to be linked to the requirements contained in the underlying diagram. Hence,
Activity and Action objects may be linked to an arbitrary number of Requirements. These elements consist of a
simple string name, a value that holds the requirement's text, and a security attribute. The latter holds the informa-
tion whether the requirement, and thus, the activity modeled by the Node is safety critical. This information is needed
to identify test cases for functional safety. A Node also holds a list of Cont ro1Nodes, which is an interface for the basic
control nodes of UML/P ADs and an implementation of Node. Figure 15 shows their implementations in lines 14 to 20.

The UML/P AD connection between nodes, ie, edges, are also part of the AD4S (lines 23 to 30). The id simply serves
for identification purposes while source and target reference the connected nodes. A guard on a transition is
optional, but is an important construct in SMArDT ADs. Here, AD guards serve two purposes, ie, (1) if source is a
DecisionNode, it should always contain a condition in form of a Boolean expression. Without it, path validation as
explained in Section 5 is not possible. The condition may be else, dictating the path in case all other conditional guards

01 | grammar ActivityDiagram { interface definition of activity nodes
02 interface Node; J

03 Activity implements Node = "activity" Name Requirements? "{"

04 Parameter support for nested ADs

05 (Node | ControlNode | Edge)*

06 TS

o7 Parameter = "in:" | "out:" Name ("," Name) ";" ;

08

09 Action implements Node = "action" Name Requir‘ements?;k—\ basic action node

10 r—— Infrastructure for
11 Requirements = "[" req:Requirement ("," req:Requirement )* "]1" ";" ; requirement handling
12 Requirement = "(" Name "," value:String "," security:["security"] ")" ";" ;

13

14 interface ControlNode extends Node; & definitions of basic control nodes
15 InitialNode implements ControlNode = "initial" ";" ;

16 FinalNode implements ControlNode = "final" ";" ;

17 FlowFinalNode implements ControlNode = "flowfinal" “ ;" ;

18 ForkNode implements ControlNode = "fork" Name ";" ;

19 JoinNode implements ControlNode = "join" Name ";" ;

20 DecisionNode implements ControlNode = "decision" Name ";" squards for Boolean expressions, variable
21 MergeNode implements ControlNode = "merge" Name ";" ;  definitions or assignments

22

23 Edge = "transition" id:String? source:Name ("->" guard:Guard? target:Name)+ ";" ; >
24 Guard = "["/" Variable+ | ("else" ("/" Variable+)) | (BooleanExpr ("/" Variable+)) "]" ;
25 Variable = signal:Name ("=" value:Name)? ";" ;

26 |}

FIGURE 15 MontiCore (MC) context-free grammar of the activity diagram for specification method for requirements, design, and test
(AD4S) [Colour figure can be viewed at wileyonlinelibrary.com]
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Action2

FIGURE 16 Deadlock: exactly one token is placed at the initial node. None of the contained activity diagram (AD) elements, ie,
DecisionNode and action, create other token. The join node waits until two tokens from the two incoming edges arrive, but the join
node will only ever be reached by one token and can never continue

of the branch falsify. (2) They can be used to model signal assignments or definitions, as modeled by the last option of
Guard. A combination of both is possible.

The calculation of all paths within an AD requires well-formedness in a way similar to UML/P ADs, which is based on
Petri-Net semantics as suggested by UML ADs.* MontiCore provides the valuable concept of context conditions, which
we utilized to impose well-formedness constraints on SMArDT ADs.

6.3 | Well-formedness constraints for ADs for SMArDT

The SMArDT method relies strongly on automated processing of SysML models. The method described in Section 5
derives functional test cases for each execution path modeled by an AD. To ensure correct path calculation, we need
to impose strict well-formedness constraints on the input diagrams. The control flow graph cannot impose all of these
constraints; instead, MontiCore provides a context condition infrastructure including interfaces and visitors for model
checking. Therefore, we equipped AD4S with the following context conditions:

(1) Diagrams may not contain deadlocks that occur in cyclic waiting situation. Figure 16 illustrates an example. The
join node will continue if two incoming flows have arrived.”’ (2) Infinite loops cannot prevent path calculation. They
occur whenever a node can be reached from itself and no exit condition will ever come true. (3) Branches must always
be complete, ie, its guard conditions must cover the diagram’s entire value range. This is necessary for path validation,
because branching is not decidable otherwise. (4) Input variable values must not be changed on any path of an AD.
(5) Names and IDs of nodes and edges must be unique. (6) Edges originating from a DecisionNode need to always
specify a Boolean guard condition.

6.4 | A tool for automatic test case generation

Activity diagram for SMArDT is designed to provide a mean for MBTCC in the automotive industry independent of the
modeling environment. Our tool is equipped with a parser, which translates ADs in extensible markup language (XML)
to AD4S.

The output of the modeling tool is therefore translated to XML before parsed into AD4S. The AD4S-representation
(Figure 19) can now be used to derive test cases which are stored in a format executable by functional test execution tools.
The corresponding tool chain comprises the following components: (1) The AD-converter transforms the ADs exported
from the SysML modeling tool to AD4S; (2) the test case creator transforms the ADs into an intermediate test case rep-
resentation. In this step, the configuration (cf Section 5) to customize the generated test cases is processed; and (3) a test
case exporter transforms the resulting test cases to the desired output format. Currently, the tool supports spreadsheet
files (XLSX) or formats executable on automotive test beds. Figure 17 shows an illustration of the overall toolchain and
the underlying process.

Figure 18 shows an excerpt of the XML-transformation of the running example introduced in Section 4. The
XML-elements represent the basic AD-elements Diagram, Node, Pin, and Edge, which are subtyped by the type and
nodeType-attributes. Edges reference source and target nodes via the Node or Pin attribute id. Guards are represented
by children of Edge.

The XML is given to the ADConverter and parsed into the AD4S representation of the original model. Figure 19
shows the AD4S representation of the running example. As AD4S is a MontiCore DSL tool, generated parsers can be
used out of the box. Once the model is parsed, the generated context condition checker assures syntactic and semantic
well-formedness of the input. Erroneous models can be identified at this stage of the test case generation process and
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8l sysmL test case g
Modeler modeling tool execution” | Testing tool
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MontiCore- Excel )\ &
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FIGURE 17 Model-based test case creation tool chain. AD, activity diagram; ADA4S, activity diagram for specification method for
requirements, design, and test; SysML, systems modeling language; TC, test case; XML, extensible markup language [Colour figure can be
viewed at wileyonlinelibrary.com]

01 | <Diagram id= "d@@001" name= "AD_AL-40::DirectionIndicatorLeft" type=AD> XML
02

03 <Node id="n@002" type="ControlNode" nodeName="DecisionNodel" nodeType="DecisionNode" >
e4 decision node
05 <Edge id="cf0003" type="ControlFlow" source="n0002" target="nooo8">

06 <Guard>else</Guard>

07 </Edge> branch on edge of control flow

08 ej

09 <Edge id="cf@004" type="ControlFlow" source="n0e02" target="nooos5">

10 <Guard>SCS==LEFT</Guard>

11| </Edge> basic node with pin

2 ,2
13 <Node id="n@@B5" type="ActionNode" nodeName="SetLeftlLights" nodeType="BehaviorAction">
14 <Pin id="poee6" type="Pin" pinName="setLeftLightsPin"/>

15 </Node>

16 r~  edge of object flow

17 <Edge id="o0f@007" type="ObjectFlow" source="p00Ol" target="nooe9">

18

19 <Node id="ne@ee8" type="ControlNode" nodeName="MergeNodel" nodeType="MergeNode">

20

21 <Node> id="n@@@9" type="ControlNode" nodeName="FinalNodel" nodeType="ActivityFinalNode">
22 .

23 | </Diagram> control node final

FIGURE 18 Extensible markup language (XML) transformation result of the running example Section 4 [Colour figure can be viewed at
wileyonlinelibrary.com]

01 | activity DirectionIndicatorLeft { AD4S
in: : D,

02 in: sCs; input and output parameters

03 out: LeftlLights; <——

04 L.

05 action ReadSteeringColumnStalk; /_\ node definition list

06 action SetLeftLights; » o

o7 decision DecisionNodel; transition definition

gg merge MergeNodel; variable definition

10 transition "te@001" initial -> [/SCS] ReadSteeringColumnStalk;

11 transition "t0002" ReadSteeringColumnStalk -> DecisionNodel;

12 transition "t@003" DecisionNodel -> [SCS==LEFT /Leftlights = on] SetLeftlLights;

13 transition "t@004" DecisionNodel -> [else /Leftlights = off] MergeNodel;

14 transition "t@005" SetlLeftLights -> MergeNodel;

15 transition "t@006" MergeNodel -> [LeftLights] finalj; guard conditions and

16 |} variable assignment

FIGURE 19 Textual representation of a formalized activity diagram in activity diagram for specification method for requirements, design,
and test (AD4S) [Colour figure can be viewed at wileyonlinelibrary.com]

no further generation is performed. This feature of our MBTCC tool significantly benefits the notion of SMArDT as it
prevents erroneous models from being passed down to the implementation Layers 3 and 4.

A configuration model to include additional information needed by test beds in the test case automatically can con-
figure the TCCreator. This component creates the test cases for each path accordingly before handing them to the
TCExporter. The testing tool responsible for executing the test cases takes the exported files as input. Generally, the
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Export AD to

[no nested activities]

Transform
XML to AD4S

[no fork nodes]

[signal values provided] ’

Path Configuration Value
Calculation 9 Collection [signal values

not available]

Path Validation
Calculate SAT
formula

SAT solving
\J J

FIGURE 20 Activity diagram (AD) showing the intermediate steps of the automatic test case generation implemented by the test case
generator. AD4S, activity diagram for specification method for requirements, design, and test; XML, extensible markup language

modular infrastructure allows choosing the input and output formats according to the desired testing tool input format
by exchanging the corresponding parts of the MBTCC toolchain.

Figure 20 shows an AD to illustrate all intermediate steps of the test case generation process. First, the model editor
export is transformed into XML, which can be translated to XML. As the editor's export usually contains information
irrelevant for test case generation, the export is filtered and only necessary elements are stored in the XML. In a second
step, a translator translates the XML-AD to AD4S. Further processing steps can now utilize the abstract syntax tree (AST)
of this model to generate test cases.

To be able to calculate the execution paths represented in the AD, model-to-model transformations* of the AST resolve
nested activities and concurrency, if present. As for hierarchies, the nested activities are mounted in the uppermost AST by
connecting the edge targeting the nested AST with the nested initial node and creating an edge connecting the nested final
and the subsequent node at the superordinate level. Resolving concurrency requires an interpretation of its meaning. In
this case, as the test cases are functional, only the outcome, ie, the values of the output signals, is of interest. We therefore,
transform concurrent execution paths into one sequential sequence of nodes and edges based on the assumption that
parallel activities are independent and are thus executable in arbitrary order without imposing changes to the final output.
The transformation result is an AD4S model free of nested activities or forked paths.

In software testing, it is necessary to compare actual signal values to expected values. The value expectation may be
present in form of a mapping between information flow entities and the actual platform-specific signals as described
in Section 5.3. However, this mapping is not always provided. The value collection step therefore collects all possible
values occurring in the logical information flows of the input AD. The process checks every occurrence of an information
flow in the AD and gathers all of its values, giving a set of possible values for each logical information flow.

Additional configurations are applied in the next step. Our method provides means to customize the generation to
suit the requirements of test beds. Hence, prior to the actual path calculation, configurations can lead to additional
transformations of the AST.

Once the AST is transformed according to all configurations, the process calculates all execution paths of the trans-
formed AST according to the C2c path coverage criterion (cf Section 5). The AST now corresponds to a directed graph;
thus, we apply depth-first traversal get a set of all paths, regardless their validity, which is determined in the next step.

Naturally, the guard conditions along a path will only hold for certain signal interpretation sets. A path is valid if at least
one signal interpretation exists such that all its guard conditions hold. All possible signal interpretations for the input AD
have been found in the value collection step, if not provided as a mapping. Determining whether a path is valid or not
according to this definition depends on the satisfiability of the conjunctions of all guard conditions along the path and is
solved using the Z3 Theorem Prover.*” For the left path of the exemplary AD shown in Figure 14, the calculated formula is

headlightSwitch = on A headlights = on A lightsIndicator = active.

If a path is valid, Z3 creates a witness for a possible solution of the conjunction. This witness is used to determine the
value assignments for input information flows fulfilling the combined expression of a given path. If no witness exists, the
path is invalid and therefore discarded.
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After validating each path, the set of all valid paths and respective signal interpretations are used as input for the test case
generation. For each path of the set, the atomic test actions are exported into the format supported by the tool responsible
for the test execution as configured by the user.

7 | DISCUSSION, EVALUATION, AND LESSONS LEARNED

This section discusses the survey results, test cases evaluation, and highlights lessons learned from deploying SMArDT
MBTCC at the BMW Group regarding typical threats and empirical research.

7.1 | Threats to study validity

Distributing the survey by email and forwarding it lead to threats to the internal validity. Despite the careful selection
of our participants by their specialization in the context of test case creation, we cannot eliminate the threat of wrong
interpretations and duplicated submissions. We intend to reach a greater number of external test engineers involved in
the process of test case creation by forwarding the email. Due to not all the external companies gave permission to collect
their test engineer's opinions, we can neither ensure that all the companies were included in our survey, nor that all the
test engineers were questioned. For instance, the automation of test cases is usually assigned to external service providers.
If all external test engineers were included, the distribution of Table 4 could be different.

To preserve independence of development and testing, test engineers are often from external companies. As we could
not reach a higher rate of participants, there is a possibility that the results could have been different. So we added fictitious
circumstances “all resources and time you need” for possible coverage (cf Figure 10). By doing so, the questions could be
perceived as a performance review and lead to adjusted estimations.

Besides threats to internal validity, threats to construct validity arise from employing an online survey. The type of
questions, their style, and options that were presented as answers might have influenced the participants' response. For
instance, to get a solid statement, the question about the focus on quality assurance has no alternative for a neutral
statement, except “I do not know” (cf Figure 11).

Furthermore, threats to statistical validity arise from the mentioned statistically insignificant results, ie, indicated by
the p-values of Table 6. We are 95% confident that the margin of error for our sampling procedure and its results is no
more than + 20 participants with a total sample of 70 participants in the mentioned survey (see Section 4.3). Based on
the margin error and the possibility that not all the participants answered every questions, as well as the results being
statistical insignificant, we assume trends. Besides the survey data, we compared the generated test cases to traditionally
manual created test cases in the following section.

7.2 | Evaluation

Based on a promising e-drive function, a team of test engineers made an evaluation on the test cases generated with the
test case generator. This function suited the demands of the test case generator. Together with the professional testers, we
conclude that the MBTCC method has potential to save up to 50% of efforts, measured in hours, per test case (cf Figure 21).
For evaluation team of professional test, engineers chose 12 generated test cases of one e-drive function and manually
remodeled them, while their expended efforts in time were tracked.

Regarding to the results showed in Figure 21 we could affirm that the main saving potential is in developing the test
case concept. With this concept, the test generator directly creates test cases based on the functional model, instead of
interpreting the requirements and work out manually test cases. In addition, the model has to be evaluated for the test
case generator and the test engineer has to set up the test generator.

The team scanned 260 manual test cases for the aforementioned e-drive function. A share of 8% of the test cases are based
on volatile experience of the testers and cannot be formalized with MBTCC. For the remaining 92% of test cases, there
is a potential for savings to 46% (cf Figure 22). Assuming that the test engineers pick one promising e-drive function of
more than 30 e-drive functions, we finally conclude that on average the MBTCC method can save up to 46% for promising
e-drive functions with specific decisions in the functions.
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Time required for Time required for
manual test case creation automatic test case creation

3% 6% 39 6%

6% 6%

38% 9%

47%

38% 50 %

m Requirement evaluation
O Test case concept

O Test case draft

O Organisation

OReview

@ Requirement evaluation (model)

@ Requirement evaluation (obsolet)

B Test case concept (obsolet)

@ Configuration of test case generator

O Test case description

O Organisation

O Review

FIGURE 21 Potential for automated test case creation in time (hours) required for related activities. The function suited the demands of

the test case generator [Colour figure can be viewed at wileyonlinelibrary.com]

Amount of time for creating
260 test cases
120%

100%

80% 46 % less time
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92%
40%
46%
20%
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Manual Automated

@ Automation of TC possible

O Automation of TC not possible

FIGURE 22 Best case scenario: comparison of time required for 260 manual and 260 automated created test cases (TCs) [Colour figure can
be viewed at wileyonlinelibrary.com]

7.3 | Lessons learned from applying MBTCC at BMW Group

The successful introduction of new methodologies requires identifying and convincing all involved stakeholders. All per-
sons involved have to be convinced to benefit from the initial effort, even if the current advantage is not perceptible at first
sight. Hence, necessary organizational or procedural changes have to be supported or at least understood. The changes
of MBTCC are considered necessary and helpful by all partners in general. Nevertheless, we underestimated the effort
required to convince all involved stakeholders. Miscommunication lead to a misunderstanding of the term automated
test case creation. Some testers interpreted the term as a full work replacement by a more or less simple algorithm. The
persons involved misinterpreted the new approach. The requirement specifier perceived an additional workload. The cre-
ated test cases perceived that their experienced based and intellectual input could not be replaced. As a result, both sides
sealed themselves off instead of achieving a cooperation between specifier and tester. The initial misinterpretation of both
sides was replaced by the mindset to include the test engineers’ expertise into the model. From this moment, the team
members of MBTCC collaborated, discussed constructively, and supported the new method.

Despite the initial challenges, all involved parties agreed that the required additional effort learning MBTCC and adapt-
ing iteratively existing models significantly reduces with further tasks and ultimately pays off for all parties. Besides
a discussion of the method, the effort was to overcome the lack of common SysML understanding.® The test case
generator needs well-formed models that force the parties to settle a basic understanding in model elements and syn-
tax. The well-formedness rules created a common understanding in reading the model. Hence, domain expert and
people with less expertise could understand the models. To assist the modelers the method uses automatic model
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checks for well-formedness and generator compatibility to identify and correct models in an early stage of development.
Consequently, the misunderstandings decreased and there is less misinterpretation of models.

With the growth of the models, logical correctness and well-formedness of the models become more important. Our tool
chain discards models that are not well-formed. Hence, modeling errors are already detected at an early stage of SMArDT.
This strict adherence was initially perceived as a handicap. Often, parts of a model were logical correct and well-formed,
while other parts were still under construction. This lead to the idea of extending the configuration of our method and
tool chain to enable the creation of test cases only for parts of a model. This challenge is still under investigation.

Moreover, large projects with an immense number of requirements and corresponding models become more and
more difficult to cope with. It is therefore of great importance to automate the process of consistency checking between
requirements and various models representing different parts of the overall system as well as the correctness of model
refinements. Hence, a series of quality assuring techniques for structural and behavioral verification based on formal
modeling languages need to be integrated seamlessly in the SMArDT process and should be impossible to forego. A con-
tinuous integration of models in SMArDT improves the quality of the software design dramatically and delivers a solid
basis for a generative development process. Particularly, we observed that it reduces the number of semantical errors in
the generated test cases due to ambiguous specifications and facilitates the integration of software modules developed by
different teams in late development stages.

Another challenge is the request for test case generation of concatenated ADs. The test engineers want to derive test
cases for a list of separate functions. Activity diagrams should be “executed” in succession and test cases should be created
accordingly. This can already be done for ADs, which have distinct inputs and outputs. For ADs with intersecting sets of
information flow entities test case creation becomes more complex. The highly increasing number of paths, which need
to be covered, pose the actual challenge. We quickly realized that the C2c coverage criterion is not proper for this UC.
Hence, we are currently investigating new coverage criteria to fulfill the request of the test engineers.

The feedback for our method and its tool chain was very positive. The interaction between experts of different domains
(testing, modeling, engineering, and informatics) contributes to the success of SMArDT and leads to a high-quality
product.

8 | RELATED WORK

Research on improving and tailoring the V-Model mostly focuses on its integration into different business structures.’ The
SMArDT methodology on the other hand focuses on the formal and technical aspects of the specification diagrams of the
different layers in the V-Model to ensure traceable, verifiable, consistent, and particularly, testable artifacts throughout
the whole development process.

Our idea with its presented survey on MBT in automotive industry relates to other MBTCC approaches. One online
survey®! investigates quality assurance in the automotive, telecommunication and banking companies. This survey con-
siders the different test steps used for testing, who creates and runs the test cases, how they create test cases, the methods
for testing, the current situation of test case automation, and the performance of testing. The results indicate that test
cases are still mainly created manually. The focus of testing is associated with functionality tests (60% to 80%)> and it
corresponds to our results (70% to 80%). Furthermore, the online survey* investigated the effectiveness of the test cases.
Nearly 60%"' of the participants estimate that their test cases reveal most of the defects, while 20% estimate that several
defects can be identified. This data fits to the current test/requirement coverage presented in our survey. In contrast to
our approach, the online survey*' focused on quality assurance in different sectors; consequently, it is more generic. Our
survey investigates especially test case creation in the automotive domain, in which test engineers are chosen as partic-
ipants and the structure of the test cases is known. Another automotive survey>*> concentrates on the tool usage during
requirements engineering and testing instead of the potential benefits of MBTCC. Considering this focus, these findings**
did not address our research questions.

Besides the surveys that were already presented, there is a case study on MBT in the automotive industry conducted
in the BMW Group.*® The case study aims to compare the quality between the model-based tests and the traditional
“hand-crafted” tests. In contrast to the system structure diagrams of a single automotive network controller, our approach
targets full e-drive functions modeled with ADs and SCs. The results of the case study are promising. The automated
MBT approach detected more defects than the traditional hand-crafted tests. Especially the defects caused by inconsistent
requirements that could be also identified. Despite of this, neither the traditional nor the automated tests revealed all
errors. Hence, we conclude that it reinforces our findings of the additional value of MBTCC.
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Apart from the particular industry approaches, MBTCC is subject to active research.'? The topic of (partially or fully)
automated derivation of executable test cases from various input modeling languages has been brought forward by diverse
approaches. Most approaches concentrate on UML or SysML and can be distinguished based on their support of the
specific input models and on their support of concurrency in the input models. Various approaches to MBTCC employ
SCs or sequence diagrams as input models.*”** Furthermore, other concepts employing ADs as input models for MBTCC
do not support concurrency at all.***> Besides the target on the language usage, other approaches presented different
tools to support and to facilitate MBT, which include, for instance, the tool MBTsuite.>* It employs ADs for test case
creation and it is capable of exporting these ADs into a variety of different outputs. Compared with our approach, the
tool does not support concurrency in its input models. Another tool, UMLTest,>® which derives test cases from SCs, also
does not support concurrency of input models. On the other hand, UMLTGF,* which is similar to our idea, processes
ADs and supports ADs featuring concurrency. In contrast to our concept, UMLTGF proposes not to involve prematurely
the tester in details of the implementation. Furthermore, the tool is unable to produce the output format required by the
BMW Group.

Being one of the most popular model based engineering tool suites, Simulink® provides means for requirement man-
agement enabling one to link requirements to models and tests. Furthermore, it enables checks ensuring the compatibility
with standards such as ISO 26262 and design guidelines. Tests can be generated automatically using the SignalBuilder.
Therefore, Simulink provides means to measure the test coverage in models and generated code. The StateFlow tool per-
forms consistency and completeness checks on state machines. It lacks automated consistency checks, however, able to
discover behavioral or structural inconsistencies as we introduced them in SMArDT using C&C views and ADs.

The presented transformation from originally natural-language requirements, to model-based test cases, to AD4S, and
to executable function tests relates to approaches translating natural language requirements to test cases directly. For
instance, the aToucan4Test framework® transforms an input restricted to a subset of structured English. This approach
does not support the precision and complexity achieved through manual function test modeling by domain experts.

Moreover, various domains already leverage automated test case creation,*®** such as telecommunication, finance,
transport, and medical software engineering. The study by Weifileder et al*® confirmed MBTCC in these industries
increases testers’ efficiency. This especially holds for requirements adjustments that detect defects in earlier stages of
development and increases functional test coverage. These findings reinforce our observations. Despite these findings,
automated test case creation in automotive software engineering with its established development and testing processes
is rarely documented. Usually, research focus on specific tooling or propose just general and abstract overviews.%¢!

9 | CONCLUSION

Increasing connectivity, coupled with shortened and frequently modified processes, challenge the automotive industry
to achieve shorter time-to-market without quality loss. To maintain high-quality standards, testing is of crucial impor-
tance in automotive software engineering. To tackle these challenges, agile processes according to the V-Model dictate
the automotive development cycle. However, the classical way does not suffice because system adaptation is only rea-
sonable on the lowest abstraction layers. To maintain a high-quality standard and provide more functionality in shorter
time, artifacts on all abstraction layers must be consistent with the development stage at any time. The SMArDT aims
to provide mechanisms for efficient adaptation by relying on model-based software engineering techniques. Consistency
assurance between abstraction layers and automatic test case generation holds the potential to decrease adaptation efforts.
As a showcase, we discussed how C&C views and ADs are employed to tame large models with a big number of require-
ments, thereby improving the quality of the generated test cases. Furthermore, we investigated how MBTCC is perceived
to improve testing among experts at the BMW Group. We received 69 valid questionnaires out of initially 196 invitations
sent. The study revealed that the participants expect to benefit from automated test case creation regardless of their back-
grounds. Furthermore, the participants expect the test quality to increase and perceive MBTCC as most useful for system,
subsystem, and component tests. The survey findings combined with experiences found in the automotive industry served
as a basis for an approach to extend an existing specification method for requirements and testing.

The method is reduced to an adjustable tool chain that is capable of transforming functional requirements modeled
as C&C views, ADs, and SCs from various input formats into executable test cases for various output formats. A team
of test engineers evaluated 10 test cases and concluded that the SMArDT MBTCC could potentially save efforts up to
50%. In summary, the initial efforts required for convincing all parties to implement our proposed method has resulted
in positive feedback. The method, motivated by our survey results and evaluation, has a huge potential. Moreover, the
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method improves the cooperation between specifier and tester. Hence, SMArDT is less vulnerable to personnel changes,
supported by exchanging knowledge and combining function and test models to avoid redundancies.

Future work comprises the analysis and combination of further modeling languages and formal methods for the

model based development in the SMArDT process. Further potential of SMArDT needs to be revealed within large and
long-lasting case studies in automotive projects but also in other disciplines calling for a digitalization of their systems
engineering processes. Thereby, generative aspects beyond test case extraction need to be investigated in detail as well.
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