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Abstract—The engineering of digital twins and their user
interaction parts with explicated processes, namely process-
aware digital twin cockpits (PADTCs), is challenging due to the
complexity of the systems and the need for information from
different disciplines within the engineering process. Therefore, it
is interesting to investigate how to facilitate their engineering by
using already existing data, namely event logs, and reducing the
number of manual steps for their engineering. Current research
lacks systematic, automated approaches to derive process-aware
digital twin cockpits even though some helpful techniques already
exist in the areas of process mining and software engineering.
Within this paper, we present a low-code development approach
that reduces the amount of hand-written code needed and uses
process mining techniques to derive PADTCs. We describe what
models could be derived from event log data, which generative
steps are needed for the engineering of PADTCs, and how process
mining could be incorporated into the resulting application. This
process is evaluated using the MIMIC III dataset for the creation
of a PADTC prototype for an automated hospital transportation
system. This approach can be used for early prototyping of
PADTCs as it needs no hand-written code in the first place, but
it still allows for the iterative evolvement of the application. This
empowers domain experts to create their PADTC prototypes.

Index Terms—Process-Aware Digital Twin Cockpit, Low-Code
Development Approaches, Sensor Data, Event Log, Process Min-
ing, Process-Awareness

I. INTRODUCTION

A. Motivation and Relevance

The development, maintenance, and evolution of digital
twins are still challenging research areas [1]. The original
system typically comes along with a high complexity and
within the engineering process of digital twin information
from different disciplines is needed, e.g., (1) experts from
the main domain such as civil engineering [2], avionics [3],
injection molding [4], laser cutting [5], or healthcare [6], (2)
people knowledgeable of the related IT systems and databases
(which might be the experts from the main domain or related
departments), (3) experts knowledgeable of further relevant
context information such as legislation, financial affairs, busi-
ness processes, or maintenance, and (4) people knowledgeable
of the software engineering processes of digital twins. This
results in heterogeneous views on an original system which
have to be harmonized in the requirements analysis of a

digital twin, e.g., via integrated, consistent collections of
heterogeneous models [1].

Current research on the engineering of digital twins is
moving towards more automation in the engineering process
but still requires tight cooperation between domain and digital
twin engineering experts with a software engineering back-
ground. Methods like model-driven software engineering and
its executable models help transitions from concrete imple-
mentations for one physical object in one concrete domain
towards more generalized development methods [7]. Some of
these approaches might overlap with low-code development
approaches, which aim to reduce the amount of hand-written
code [8] and shift the power to domain experts. These methods
enable domain experts to take an active role in the engineering
process of the digital twin.

Whereas full automation in the engineering of digital twins
and all relevant services might be a big vision, a first reachable
goal is the automated engineering of Process-Aware Digital
Twin Cockpits (PADTCs). A PADTC is the user interaction
part of a digital twin, which provides functionality to handle
explicated processes of the physical object and its’ context. As
any (also process-unaware) digital twin cockpit, it provides the
Graphical User Interface (GUI) for visualizing data organized
in digital shadows [9], models and the GUI for interaction with
services of the Digital Twin (DT). As DTs digitally represent
material [10], [11] and immaterial [12], [13] objects and
processes from the real world, the PADTC allows to access,
adapt, add information, and monitor and partially control the
physical system. These relevant processes are reflected in
existing data of the related software systems but are often not
explicitly visible.

To support the engineering of PADTC, the process model as
a main artifact in business process management [14] is needed.
One option to discover such a model is process discovery,
which is one of the main techniques in process mining. Any
process mining technique requires as input an event log that is
usually extracted from the information systems, which in case
of digital twins are the software systems accompanying the
physical object. Furthermore, such event logs can be extracted
from sensor data, which offers already a lot of information
about the physical object.
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B. Research Question and Objectives

The main research question addressed in this paper is: how
to create a process-aware digital twin cockpit from event logs?

Our objectives are (1) to propose a (semi-)automated pro-
cess which allows for agile increments starting from a pro-
totype to a full system, and (2) show its realizability in a
prototype. Moreover, we show how process mining facilitates
the creation of PADTCs for digital twin engineers.

C. Main Contribution

Our main contributions are a low-code development ap-
proach (Section III) that takes an event log as an input and gen-
erates a process-aware digital twin cockpit. We have developed
a prototype for an automated hospital transportation system
(Section V) to show the realizability of this approach and make
use of automation techniques to improve this process. The low-
code development approach is validated and it matured on this
realization. In detail, our research contributions are:

• a definition for digital twin cockpits and process-aware
digital twin cockpits,

• a method to extract event logs from sensor data, the
extension of an existing method to infer a domain model
from event logs [15] for the identification of necessary
data types, and a method to identify roles from event
logs,

• a method for a model-to-model transformation from (pre-
processed) BPMN, domain, and tagging models to GUI
and data models,

• a process on how to integrate the different transformation
steps into an automated process, and

• an intensive discussion on how to further automate these
steps as well as challenges and further extensions.

As showing the realizability of research concepts is as im-
portant for us as the method itself, our practical contribution
includes the engineering of the whole process including a
prototype for a process-aware digital twin cockpit. Our lessons
learned during this process influenced the description of the
method and resulted in additions, e.g., the step pre-processing
of discovered models. We show examples of concrete pre-
processing steps of models in the prototype. We had to
incorporate existing methods to extract BPMN models from
event logs in Python into a Java-based automation process in
the prototype, which improved our understanding of a realiz-
able system architecture. We have made profound adaptions
of the existing MontiGem [16] generator framework to be
able to handle process models during runtime. In detail, we
implemented additions to the two generators as well as in the
runtime environment.

D. Relation to previous work

Within two visionary papers [17], [18], we have already
presented concepts for low-code development platforms of
digital twins and the engineering of process-aware digital twin
cockpits, however, the method presented in Section III is yet
unpublished. Overlapping between all these papers is (1) the
use of the MontiGem generator framework for cockpits but

each paper with own additions needed, (2) the MontiCore
Domain-Specific Languages (DSLs) used as they provide a
common basis, and (3) our digital twin definition. Paper [17]
presents the vision for a low-code development platform for
digital twins in a 2-step generation process but (1) does not
include any process mining techniques or event logs, and
(2) creates models manually or by choosing them from a
model library. [17] has a focus on language composition and
model reuse, whereas this paper uses a data-driven automation
approach. Paper [18] presents how process mining and model-
based digital twins could cooperate with a specific focus
on the concept of digital shadows. The differences between
paper [18] and this article are that (1) this article focuses on
process-aware digital twin cockpits whereas [18] focusses on
process mining in interaction with self-adaptivity services in
a MAPE-K loop of digital twins, and (2) this article provides
automatic transformations from sensor data to models and the
running system, whereas [18] presents design time models
without considering their automatic transformation from other
information sources. Moreover, this article provides a concrete
prototype in contrast to the two visionary papers.

Paper Organization. Section II briefly discusses the main
concepts and notions. We introduce a running example to
explain the approach in Section IV. Section III describes the
main steps to generate the digital twin from an event log.
Section V shows an application use case for our low-code
approach. Section VI summarizes the related work and the
last section concludes this paper.

II. PRELIMINARIES

We introduce key terms and concepts to provide a founda-
tion for understanding the paper.

A. Background and Definitions

We provide details why we position ourselves as low-
code development approach and details about the digital twin,
digital twin cockpit and process-aware digit twin cockpit
definitions we use.

1) Low-Code: The term low-code was initially introduced
by Richardson and Rymer [19] in the context of achieving
faster alternatives to implementing customer-facing apps in-
stead of using traditional development platforms. Low-Code
Development Platforms (LCDPs) need no or only a reduced
amount of hand-coding to create an entirely operational ap-
plication. This allows for the fast delivery of applications and
helps to test business ideas with working code within days or
weeks [19]. To allow for customization at a higher level of
abstraction, LCDPs include graphical, textual, or form-based
modeling environments.

Other low-code approaches besides extensive LCDPs are,
e.g., low-code development approaches which facilitate the
development of software applications with reduced code [8]
These approaches might use models, data stored in schema-
less XML/JSON documents, or relational databases.

Following the categorization of model-driven engineering
(MDE) and low-code by Di Ruscio et al. [8], we can position



ourselves on level two, which describes low-code development
approaches using models. This level is an overlap between a
set of low-code approaches with a set of MDE approaches that
have in common that they use machine-processable models,
aim to reduce the amount of hand-written code, e.g., via code
generation or interpretation but are not offering deployment or
lifecycle management capabilities for the created system.

Within this paper, we propose a low-code development
approach to facilitate the creation of digital twins from event
logs, which are upfront extracted from the sensor data. Using
modeling and automation reduces the hand-written code
dramatically and allows for faster delivery of applications.
The applications we focus on within this paper are process-
aware digital twin cockpits.

2) Digital Twins and Digital Twin Cockpits: There exists
a plethora of definitions for digital twins,however, there is
little consensus about what a DT actually is [20]. The main
weaknesses about the available definitions are that they are:

1) ambiguous, by deferring to another undefined term, such
as a “virtual representation” [21], “a virtual projection of the
industrial facility into the cloud” [22], or a “computable virtual
abstraction” [23];

2) narrow, by focusing on specific use cases, domains, or
technologies, such as a “digital model of the real network envi-
ronment” [24]; “product avatar” [25] which includes only the
product perspective and not machines, processes, or material;
or a “virtual representation based on AR-technology” [26];

3) underspecified such as [27], where a digital twin is
mainly defined via its automatic data flow from virtual to
physical object but falls short on discussing the role of models
and additional information, characteristics, and functionalities
a digital twin has over its physical object; or

4) utopian, due to all-encompassing aspirations, such as an
“integrated virtual model of a real-world system containing
all of its physical information” [28], or a “complete digital
representation” [29].

As none of these definitions fit, researchers in the German
cluster of Excellence “Internet of Production”, which involves
about 200 participating researchers from more than 30 co-
located institutes from different disciplines, such as engineer-
ing, material science, computer science, economics, and social
sciences, and more than 50 industrial partners, have come up
with the following definition:

Definition 1 (Digital Twin [30]).
A digital twin of a system consists of

• a set of models of the system,
• a set of digital shadows, and
• provides a set of services to use the data and models

purposefully with respect to the original system.

To be able to create a digital twin requires that we have ob-
servable elements in the physical world that can be monitored,
sensed, or actuated and controlled.

The set of models helps to understand the system in the
physical world, e.g., structure, behavior, physical, geometrical
or mathematical models. These models can be, e.g., used to
create the digital twin or to compare the current status of the
twin with planned states.

Each digital shadow in the set of digital shadows includes
“a set of contextual data-traces and/or their aggregation and
abstraction collected concerning a system for a specific pur-
pose with respect to the original system” [9].1 Following this
definition, a digital shadow is a passive set of data [31] which
is an information source about a system’s state and history.
The shadows are collected, filtered, and reduced for their
purpose in varying forms of abstractions and are purely digital
artifacts produced by a (physical) system. We can use, e.g.,
process mining algorithms for aggregating digital shadows
from observed data [31]. Moreover, shadows may contain
information from different perspectives, e.g., systems (physical
and organizations), processes, products, and humans [32].

The provided services during runtime of the digital twin
might include process mining, artificial intelligence, simula-
tion and predictive control services. Process mining techniques
can be used within DTs as services to further improve and
adapt the used knowledge. Artificial intelligence services
help to realize real-time decisions and explainable AI within
decision support helps to reduce human errors in decision
making [33]. Services to control the physical object need to
send execution commands via APIs to the physical object and
are often related to self-adaptiveness [34].

To visualize relevant information, an interface for domain
experts is needed, which leads us to the term digital twin
cockpit:

Definition 2 (Digital Twin Cockpit).
A digital twin cockpit is the user interaction part
(UI/GUI) of a digital twin. It provides the graphical user
interface for visualizations of its data organized in digital
shadows and models, and the interaction with services of
the digital twin, and thus enabling humans to access,
adapt and add information and monitor and partially
control the physical system.

A cockpit is, by definition, a part of the digital twin, and can
be seen both as a special service provided by the digital twin
and an integrative front-end component for various specific
services that the digital twin provides. A cockpit visualizes
various forms of data, which includes, e.g., digital shadows,
any form of data received from third-party systems, all kinds of
data and commands entered by the humans using the cockpit
and models of the physical system or the operation processes
of the physical system.

A specific kind of a digital twin cockpits is a PADTC:

1For more details about digital shadows, we refer the reader to [9] which
presents a conceptual model, gives details on each concept and provides an
example from the production domain.



Definition 3 (Process-Aware Digital Twin Cockpit).
A process-aware digital twin cockpit is a digital twin
cockpit that additionally provides functionality to han-
dle explicated processes of the physical object and its’
context.

A PADTC is a digital twin cockpit but has a stronger focus
on processes, which are explicitly defined using appropriate
process definition languages. A PADTC knows the allowed
processes (in the form of models), the current status of these
processes (in the form of status data), and the history of
these processes states and executed actions (in the forms of
data lakes). Processes describe the steps needed to be carried
out by (1) the physical object, (2) the digital twin, or (3)
are expected to be executed by the context, which includes
humans and other physical objects respectively their digital
twins. A process may have several active participants, but not
all of those need to be participating in each process definition,
which allows various forms of automation of processes. Thus,
a process step is executed automatically by the physical object,
the digital twin (only), which means it is a form of data
processing. In addition, it is executed by physical objects in
the context, is executed by humans involved, or is executed
by humans involved using the physical object.

To realize digital twins and their cockpits is an increasingly
complex task that leads us to the idea of increasing the degree
of automation for creating them.

B. Technologies Used

We provide an overview of event logs and their use in
process mining, and introduce the generator framework that
we use as the basis for generating digital twin cockpits.

1) Event Logs: The central artifact of any process mining
technique is an event log. The event log is defined as a col-
lection of events. Each event contains at least: 1) an attribute
called case identifier, necessary to distinguish between differ-
ent business process instances; 2) an activity name, essential
to know the steps followed in the process in order to achieve a
particular business goal; and, 3) the timestamp, which indicates
the time occurrence of each event [14]. Besides that, an
event log might have different optional attributes, such as the
resource, which indicates the entity responsible for executing
the activity or the department under which the activity is
executed. All events pertaining to the same case identifier
constitute an execution trace or a business process instance.
The association of events with the case identifier establishes
a perspective called case notion [35].

In traditional process mining, these event logs are extracted
from the database or data warehouses of a given organization
[36]. Therefore, the extraction process handled by the process
mining experts requires a clear definition of the case notion
[37]. Once the extraction process takes place, the event logs
are tailored to different process mining techniques like process
discovery, conformance checking, and process improvement
[38]. A process discovery technique takes as input an event
log and by applying one of many discovery algorithms (e.g.,

Alpha Miner [39], Heuristic Miner [40], Inductive Visual
Miner [41]) outputs a process model. In contrast, conformance
checking is used to check whether events recorded in the event
log conforms to the process model or vice versa. Finally,
the performance of the process model can be improved by
analyzing the bottlenecks. A collection of different process
mining techniques is made available in a workbench tool called
ProM [42].

The databases of running information systems are not the
only source for deriving such logs. Sensor data are another
source of information to extract the event log [43]. In this
case, the event log can provide insights regarding the activities
of people, machines, and the way how they behave in a
specific environment. However, discovering the process model
of human behavior from sensor data is a challenging task
that is caused by the gap between the sensor data, and the
event log structure [44]. In addition, the sensor data have
no explicit process notion awareness like activity name and
execution instance. Therefore, we aim to address this challenge
and use the extracted event log to automate the construction
of a PADTC.

C. Digital Twin Cockpit Generation

Within [30], we have used the generator framework Mon-
tiGem [16] to create a digital twin cockpit. The generated DT
cockpit relies on a client-server infrastructure and presents
relevant information via different GUIs. Figure 1 shows the
generation process using a variety of models and the resulting
system architecture of a DT cockpit in combination with a
set of services of the DT. The services communicate with the
physical object, its data sources, and 3rd party applications
such as related information systems via defined interfaces.

Fig. 1: Generating Digital Twin Cockpits with MontiGem

MontiGem [30] takes a set of textual models as input and
creates a running information system. To define the models, we
use DSLs created in the language workbench and development
tool framework MontiCore [45]. The input models include
two models using the UML/P class diagram notation: The
domain model used to define concepts of the application
domain resulting in the latter data structure and several data



models which represent a subset of this domain model and
define views on this data for each GUI. To describe graphical
user interfaces, MontiGem can understand GUI models which
are defined using a specific DSL [46]. MontiGem also allows
to add optional models: Restrictions, e.g., for validation of
input data, can be modeled using Object Constraint Language
(OCL) and additional information such as platform-specific
details or rights and roles could be added to the domain model
using tagging models. Such tagging models [47] can be used to
add additional (technical) semantic information onto concepts
of existing models without changing the original models, e.g.,
tag an attribute of a class diagram with database technology-
specific information.

The following approach is based on using event logs in an
automated way to create process-aware digital twin cockpits.
Our first steps were in the production domain, however, it soon
became apparent that our approach could be applied to other
application domains where physical objects are monitored, and
such data exists.

III. GENERATING PROCESS-AWARE DIGITAL TWIN
COCKPITS FROM EVENT LOGS

This paper aims to facilitate the engineering process of
digital twins by increasing the degree of automation. In more
detail, we aim to generate process-aware digital twin cockpits
from event logs, which are upfront extracted from the sensor
data.

Our approach includes two main roles: The digital twin
engineer who follows the suggested approach and creates a
process-aware digital twin cockpit and the domain or process
expert who works with the PADTC during the runtime of the
application.

From the perspective of a digital twin engineer, our PADTC
creation process includes three phases (preparation, genera-
tion, adaption) and its generation result at runtime, which we
consider as the fourth phase.

Figure 2 gives an overview of the suggested approach. The
following description of the four phases (in the figure right)
references the numbering of the steps in the figure. Each
of these steps is discussed in more detail in the following
subsections. In Section V we present a prototype using the use
case from Section IV. It covers steps 1-11 in Figure 2.

Phase 1: Preparation. In the preparation phase, (1)
the sensor data from a physical object is used to extract
an event log, which is later used to discover (2) the
domain information (e.g., Domain Model in Figure 2),
(3) process models, and (4) relevant roles (e.g., Tagging
Model in Figure 2) via data-to-model transformations.

Phase 2: Generation. In the generation phase, the
models ((2), (3), and (4)) derived from the previous
phase are used as an input within step (5) in Figure 2)
a model-to-model transformation to create data models
(views) and GUI models (6) representing the different

Fig. 2: Overview of the generation process and resulting
Process-Aware Digital Twin Cockpit

process tasks. A generator (8) in Figure 2 could be used
to synthesize (9) the source code of the process-aware DT
cockpit, also referred to as model-to-code transformation.

Phase 3: Adaption. In the adaption phase, it is
possible to make additions to the generation process
and the digital twin cockpit. To allow for adaptability,
additional handwritten models, (7) in Figure 2 could be
used as an input for the generator (8). Handwritten code
(10) can be added to the backend and frontend of the
generated PADTC as an extension of the generated code
(9) using the TOP-mechanism.



Phase 4: Runtime. The PADTC is built within
step (11) of Figure 2, which is then tested, released,
and deployed. Afterward, the connection to relevant
digital twin services (12) is made available. At runtime,
live data (13) from the physical object or third-party
applications are used by the DT, and the DT can
influence the physical object via commands. The domain
users can interact with the physical object and the digital
twin services via the process-aware digital twin cockpit.

A. Phase 1: Preparation

This phase aims to discover all relevant information from
sensor data and transform it into models usable for generative
approaches (data-to-model transformations).

1) Event Log Extraction from Sensor Data: Extracting an
event log from the sensor data can be a challenge as they
are not explicitly aware of process notions like activity name
and execution instance. Therefore, the challenge that needs to
be tackled is to correlate the sensor data to specific process
instances by having in mind a clear business goal. The fact
that each process instance execution pertains to one case in the
event log and each case is defined as a collection of ordered
events implies the need to specify the core attributes of each
event: case identifier, activity name, and timestamp.

Depending on the format of the sensor data and the
business goal other approaches like in [44], [48] can be used
to extract an event log.

2) Inferring the Domain Model from Event Log: Within this
low-code development approach for PADTC generation we
have to ensure the existence of a data structure. Therefore, we
are using the previously extracted event log to infer a domain
model that is later used to create the data structure capable of
storing and managing a collection of data values. One could
use the approach presented in [15] to discover a domain model
represented as UML class diagram from an event log. The
approach groups the event log attributes into the domain model
classes by generation first an intermediate representation called
Activity-Attribute relationship (A2A) diagram (see Figure 3).
This diagram stores the relationship between the activities and
attributes captured in the event log. Besides that, the number of
access occurrences for each relation is calculated, representing
the number of times an access relation between an activity and
attribute holds.

An example of the A2A diagram derived for an example
event log is illustrated in Figure 3. For example, the activity
A is accessing the Att1 three times and Att2 two times. While
Att1 and Att2 is accessed by the same number of times (2)
from the activity B.

The domain model generation considers as input the A2A
diagram and based on the relation between two or more
attributes a set of predefined rules are applied to judge whether
these attributes belong to the same domain model class or
not. In addition, the relations between the generated classes

Fig. 3: An example of the A2A diagram inferred from the
event log [15]

and multiplicity is defined based on the number of relations
between the activities and attributes in the A2A diagram.

For generative approaches, it is additionally interesting to
identify data types when inferring Class Diagrams (CDs)
from the event log. However, the approach presented in [15]
neglects the data type attributes in the discovered domain
model. Therefore, it could be extended in order to identify the
data type for each attribute. This allows handling the domain
model in an automated way and representing the GUIs data
according to its type. To solve this, for each attribute inferred
in the data model class the data type is defined by parsing all
data values in detail.

It is complex to unambiguously identify the exact type in
given data as it can be written in various styles. E.g., the
natural number (integer) 712 can be written by the simple
version 712 as a long value 712L, an octal value 01310, or
a hex value 0x2C8. Such different writing styles might also
occur in event logs.

A simple approach to identify data types is to investigate
existing data values in the event log, distinguish between
numbers and strings, and further check if it is an integer or
float. The pseudo-code in Listing 1 depicts a simple logic to
recognize integer, float, date, string, and enumeration types.
In addition, it is possible to subdivide them further to support
more specific types, such as byte and long. The identification
of enum variants (see Listing 1, line 10) is possible by
checking if the values of an attribute can be grouped in a
fixed set of possible values. The identification is possible with
a threshold of 5 or 10 different values.

Listing 1: Sketch of the type recognition algorithm



1 if (isNumber) {
2 if (isFloatingPoint) {
3 => float
4 } else {
5 => int
6 }
7 } else if(time or date format) {
8 => date OR time
9 } else { // string

10 if (isEnumeration) {
11 => enum
12 }
13 => string
14 }

The type recognition is just a semi-automatic process
such that it provides recommendations for the data model
attributes. Those types always depend on the attribute values
of the corresponding event log. In the end, a domain expert
together with the digital twin engineer must decide if the
data structure extraction is done correctly. The identified data
types are added to the domain model and used to generate
the process-aware digital twin cockpit.

3) Extracting BPMN Models: The generation of the
process-aware digital twin cockpit requires the process model.
Different process mining techniques (e.g., Inductive Visual
Miner [41], Heuristic Miner [40]) exist to discover a process
model from an event log in the process mining area. Our
language of choice to show processes in digital twins is
Business Process Model and Notation (BPMN) [49], [50].
For measuring the quality of the discovered process model,
one of the existing quality metrics can be used (e.g., replay
fitness, precision) [51]. The first one quantifies the degree to
which the discovered process model can reproduce the event
log traces. In contrast, precision measures the fraction of the
behavior that is possible in the discovered process model, but
it can not be seen in the event log.

4) Extracting Roles for a Tagging Model: We use the
information provided in the event log to automatically extract
roles for the PADTC, which reduces the manual effort to
achieve such extraction. One option is to make use of the
tagging models [52], used to access specific data onto concepts
in the domain model. The tagging models allow us to add
additional information to existing models while keeping the
original models, in this case, the domain model, untouched.
Within the generation process, roles in tagging models define
possible roles in the generated process-aware digital-twin
cockpit.

Figure 4 shows the principle process about how to get a
tagging model for roles. For an automated approach, there
exist two possible ways to identify roles:

• The first extraction possibility depends on which infor-
mation is included in the event log: If specific user groups
could be identified from the event log, e.g., by using a
role discovery algorithm [53] which groups actors into
roles, this information can be used for creating the tags.

Event Log

Role A

Role B

+ +Task 1 Task 2

Task 3

Task 4

L
a

n
e

 A
L
a

n
e

 B

Role Extraction Variant Event Logs

BPMN Model

Role A

Role B

Role Extraction Variant Lanes

Fig. 4: Variants of role extraction

• The second approach only works if the BPMN model
includes lanes: Each lane in a BPMN model defines
different user groups and can be extracted as a role with
the lane name as the role name.

In a second step (see Figure 5) these identified roles are
used to add tags to classes from the domain model. We know
which class to tag with which role as we use information from
the event logs: Actors are related to specific attributes, and we
have discovered in the first step to which class each attribute
belongs to.

Domain Model

Tagging Model

taggingModel{

tag class Role = „roleA“

tag class Role = „roleB“

}

1

2

3

4

TaggingDSL

Roles as Tags

Role A Role B

Fig. 5: How to create a tagging model with roles and infor-
mation from the class diagram

Following this method, we now have a domain model, one
or more BPMN models, and a tagging model, which can be



used in the next step – the generation of the PADTC.

B. Phase 2: Generation of the PADTC

The overall generation process is split up into two
main parts, including a model-to-model and a model-to-
code transformation (see Figure 2). The model-to-model
transformation ((5) in Figure 2) uses the models discovered
from an event log ((2), (3), and (4) in Figure 2) to generate
additional models (e.g., data models, GUI models (6)).
While the generator (8) syntheses the source code (9) of the
process-aware digital twin cockpit from models (model-to-
code transformation) and provides a runnable PADTC.

1) Preprocess Discovered Models: Dependent on the
discovery algorithms in the former steps, it might be
necessary to transform the discovered models to another
representation in order to use it as an input for a generator.
For example, PM4PY [54] creates a BPMN in XML format,
and the transformation uses another textual BPMN DSL as
input. Another option is to change the BPMN XML format
to fit the input format specified by a process engine such as
Camunda2. To the best of our knowledge, most tools are not
compatible in the first place. Therefore, we expect this step
to take place in several implementations.

2) Discover Additional Models: Our aim in this step is
to provide all needed models to start the generation of the
PADTC. Therefore, we need a model-to-model transformation,
which takes the discovered and preprocessed models, e.g.,
domain, BPMN, and tagging model in Figure 2, as input and
creates data models and GUI models.

For each activity in the BPMN model, one GUI model can
be generated. This GUI model allows us to represent the data
needed within this activity graphically, provides input fields
for data input, and ensures navigation possibilities to mark
an activity as completed. One data model is created for each
GUI model, which defines the necessary data to be shown and
stored in a corresponding GUI. This data always represents a
subset of the concepts in the domain model and can be seen
as similar to views used in the database.

With these models in place, we can move further and start
the generation process of the PADTC.

3) Code Synthesis: The code for the PADTC is synthesized
from the provided models. This requires (1) to have or create
a code generator which is able to handle the different models,
namely the domain, process, role tagging, GUI and data
models and (2) to provide a runtime environment (RTE) to
generate the code into, as not all software code is generated.
This runtime environment should be able to handle process
models during runtime in order to be process-aware.

A PADTC is typically realized as a client-server architecture
with a web-interface for users. This requires to generate the
data structure within a database, the persistence logic in the

2https://camunda.com/products/camunda-platform/bpmn-engine

backend, the GUIs in the frontend, and the communication
infrastructure between backend and frontend.

The discovered process models contain information relevant
for the source code of the PADTC. Participants of the business
process and the tagging models (steps (3) and (4) in Figure 2)
can be used to create roles and test users in the generated
application, while the data model (6) and the domain model
input (2) should be used to create the data structure of
the database and the communication between frontend and
backend of the PADTC. The discovered process models should
be additionally added as data into the generated application,
this way they can be used during runtime.

The synthesized PADTC code from the provided models
requires: (1) the creation of the code generator that can handle
different models, namely the domain, process, role tagging,
GUI, and data models; (2) to provide a runtime environment
to generate the code into, as not all software code is generated.
This runtime environment should be able to handle process
models during runtime in order to be process-aware.

A PADTC is typically realized as a client-server architecture
with a web interface for users. Therefore, it is necessary to
generate the data structure within a database, the persistence
logic in the backend, the GUIs in the frontend, and the
communication infrastructure between backend and frontend.

The discovered process models contain information relevant
for the source code of the PADTC. Participants of the business
process and the tagging models (steps (3) and (4) in Figure 2)
can be used to create roles and test users in the generated
application, while the data model (6) and the domain model
input (2) should be used to create the data structure of
the database and the communication between frontend and
backend of the PADTC. The discovered process models should
be additionally added as data into the generated application. In
this way, the discovered process can be used during runtime.

The result of the generation process is a PADTC with basic
GUIs for the discovered processes. The PADTC should be a
runnable application that allows domain experts to validate the
discovered processes, roles, and data structures. The models
and generated code can be manually extended by the digital
twin engineer in the next step.

C. Phase 3: Adaption

To apply this approach in practice, the infrastructure has
to adapt and extend the generation process and the resulting
application. In our approach, this can be achieved in two
ways: 1) by using (6) the generated model and (7) additional
hand-written models as an input for (8) the generator; 2) by
adding (10) handwritten code as an extension to (9) generated
code.

1) Add Handwritten Models: A digital twin engineer can
add handwritten models, e.g., with domain information, for
graphical user interfaces and additional data models to further
customize the process-aware digital twin cockpit.

The additional domain model contains information, which
is useful for the domain and visualizations but could not be

https://camunda.com/products/camunda-platform/bpmn-engine


extracted from the event log, e.g., attributes that are relevant
during runtime but were not captured in the event logs. Such
additions could also include structures to be able to handle
some runtime models, e.g., the concepts of the meta-model
of digital shadows or basic process structures [18]. Defining
them in addition to the domain model enables this approach
to generate the concepts in the data structure of the resulting
PADTC. This enables us to store the models during the runtime
of the application.

GUI models should be customizable for the specific use-
case and come along with related data models for representing
the relevant part of the data. Typical added GUI models are,
e.g., domain-specific dashboards with statistical information
or user interfaces containing pictures or other media showing
the physical object, which the digital twin stands for.

2) Add Handwritten Code: Further adaptations can be
accomplished by adding handwritten code extensions ((10)
in Figure 2). To remain compatible with the generated code,
handwritten code is extending generated code. Typical hand-
written additions are artifacts that occur only once in the code
and are not interesting for generation processes. Usually, they
refer to business logic, e.g., the duration calculation from
two given points in time or summarizing data for specific
categories. Other relevant additions are in the case of a PADTC
connectivity information to digital twin services, which means
the implementation of according APIs, e.g., REST3, WebSock-
ets4, or MQTT5.

After all, additions are added, the PADTC (11) can be
automatically built and tested. After some manual usability
checks, the digital twin can release and deploy it.

D. Phase 4: Runtime

During runtime, data in the PADTC (11) can be initialized.
In addition, the cockpit is connected via APIs to DT services
and able to receive and handle live data via them. The users
during runtime are the domain or process experts.

1) Initialize Data: Typically, the generated system comes
along with an empty database. As we already have event logs
containing physical objects (1), the resulting PADTC can be
automatically (initially) populated with information from the
event logs, namely the historical data. Additionally, the roles
and test users for each role can be initialized.

2) Runtime Models: The PADTC includes the technology
to handle process models during runtime, e.g., via a process
engine. During runtime, we can add additional runtime
models, e.g., instances of digital shadows or a process model
for planned processes (cf. [18]). Which runtime models
could be added during the application’s runtime dependent
on which DT services should be connected with the PADTC.
These could be, e.g., AI services, Process Mining services, or

3https://restfulapi.net
4https://websockets.spec.whatwg.org
5https://mqtt.org

services of a self-adapting loop. As an example, if we connect
it with the self-adapting MAPE-K loop presented in [30], we
should be able to define event models or case-based reasoning
models during runtime.

3) Live Data: As we know from the event logs, which
data is interesting for us, the relevant data structures exist
in the PADTC, and we have already generated the backend
functionality to store or update data. This infrastructure is used
for the data received from the physical objects during runtime.

It is possible to dynamically visualize the live data in the
graphical interfaces, e.g., via regularly updated charts. This
depends on the information defined within the GUI models
or what was added in the handwritten code. Moreover, it is
interesting to have the functionality to visualize a process
model step by step using live data during execution and to
compare the live data with the already discovered process
models.

In addition, based on the live data, the discovered process
model from the extracted event log can change over time,
and its visualization helps the domain or process expert get
process models updates based on these changes. The low-code
development approach presented in this paper can be applied
to different application domains.

IV. USE CASE: HOSPITAL TRANSPORTATION SYSTEM

We use the following use case inspired by a real-world
healthcare process to explain our approach further. Transporta-
tion of patients is an essential aspect outside as well as within
hospitals [55], [56]. Suppose that the patients are admitted for
diagnoses and treatments into a hospital. During the time in
the hospital, the patient movements are monitored based on
the sensors applied to each wheelchair or bed. Whenever a
patient arrives at the hospital a wheelchair or a hospital bed is
occupied by him, which is then used to capture its movement
in the hospital premises.

One wheelchair or bed can be assigned only to one patient.
The patient has to move through different departments to
receive the necessary treatments from different specialized
doctors. Suppose that each sensor of the wheelchair or bed
signals whenever the patient enters and leaves a department.
This way, it is possible to track and monitor the movements of
all patients from the moment they are admitted to the hospital
till the moment they are discharged.

As it is illustrated in Figure 6, the patient arrives at the
hospital and occupies a wheelchair with sensor number 1 and
visits department A. In this department, the patient will be
treated by doctor A. The sensors attached to the wheelchair
and the department’s doors keep track of the department name
whenever the patient enters and leaves the corresponding de-
partment. The patient might need to visit several departments
for further diagnoses and treatments, and all his movements
are tracked based on the corresponding sensors.

The emitted sensor data are stored in some text files and
contain the following information (see Table I): the time when

https://restfulapi.net
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Fig. 6: An automated transportation system for patients

the patient enters (i.e., in-time column) and leaves (i.e., out-
time column) the department, the sensor id used to identify
the activated sensor. Based on this information, it is possible
to derive the department identification number (i.e., used
to identify between several departments within the hospital)
because the configuration of sensors is known beforehand.

in-time out-time department
id

sensor
id ...

12/7/2021 9:49:00 12/7/2021 11:06:22 Emergency
Department B23 ...

13/1/2021 7:32:34 13/1/2021 10:07:52 Neurology A03 ...

13/1/2021 11:08:34 13/1/2021 11:52:52 Emergency
Department B23 ...

13/1/2021 7:32:34 13/1/2021 8:07:52 Medicine A07 ...
13/1/2021 9:32:34 13/1/2021 12:07:52 Medicine A07 ...

... ... ... ... ...

TABLE I: Example of sensor data

If the hospital aims to create a PADTC, various disciplines
have to share effort in the engineering phase: We need experts
from the medical department and experts from the IT and
maintenance department. They have to analyze and identify
relevant data, design the PADTC, which includes to manually
extract the needed data structures from existing applications,
manually describe the relevant processes, e.g., using process
modeling languages, design the system architecture of the
PADTC and start implementing its main components, includ-
ing the visualization, process management, and data exchange.
After several iterations and feedback from domain users, the
PADTC can be used. The following section shows how to
reduce the time needed for the first steps by increasing the
automation and reducing hand-written code.

V. PROTOTYPE

We realize the presented approach using a) data from the
MIMIC III database [57], b) models of DSLs created in the
language workbench and development tool framework Mon-
tiCore [45] and c) the generation framework MontiGem [16].
The generated application is a client-server architecture. The
used programming languages are Java for the backend, Type-
Script and HTML within the Angular 6 framework for the
frontend.

A. Phase 1: Preparation

To build a prototype of our low-code approach, we are
using the MIMIC III database [57] which contains electronic
healthcare records of patients admitted to the critical care
unit at the Beth Israel Deaconess Medical Centre (BIDMC).
Each entry in the database table is considered as one event
triggered from the sensor (in the same format as in Table I).

Event Log Extraction from Sensor Data. One of the earliest
steps in our approach is to extract an event log from the
sensor data. The format of the sensor data (the same as the
one explained in Section IV) is necessary but not sufficient
to identify such event attributes because they contain domain
activation time stamps (general case), and patient-related in-
formation is missing. In addition, this information is about
the incoming, outgoing time, and department identification
number (Table I). The sensor identification number can be
derived from the department number because it is known
which senor belongs to which department. Besides that, it
is necessary to set up mapping with the patient data. Such
data might include the patient identification number, name,
age, gender. This connection is created whenever the patient
is admitted to the hospital and occupies the sensor wheelchair
or bed and is lost whenever the patient is discharged from the
hospital in order to allow for a new connection when a newly
admitted patient occupies the same seat. In this way, we will
be able to append the patient-related information to the raw
sensor data and use such information to extract an event log.

The selection of the case notion strongly depends on the
domain, and the business process model goal [58]. Considering
the format of our sensor data and our final goal, we select the
Patient Admission as a case notion of our event log. In this
way, each case in the event log contains events regarding the
patients’ visits to the respective departments. The same patient
can be admitted several times into the hospital; therefore, a
new case is defined in the event log for each admission.

One option for identifying the event log activities from the
sensor data is considering the department names. As for the
timestamp of the event, the time tracked by the sensor (e.g.,
in-time, out-time) can be used, representing the time when
the patient enters and leaves the corresponding department.
Events related to the time when the patient is admitted (e.g.,
the same time when the patient occupies the wheelchair or bed)
or discharged from the hospital are named the same for each
event log case: the first event is called admit, and the last one
is called discharge. For each pair of events, each pertaining to
one department, the event with the earliest timestamp is the
named admit plus the corresponding department name, and
the latest one is named discharge plus the department name,
which corresponds to the time when the patient is admitted
and discharged from the department. In addition, information
related to the patients can be added as optional attributes in
the event log.

Following the approach presented in Section III an example
of the extracted event log is illustrated in Table II. The case



id equal to 1 contains 4 events. Each activity represents the
department that the patient has visited from the moment they
are admitted (i.e., the first event starts with admit) to the
moment they are discharged (the last event is called discharge)
from the hospital. Therefore, the first event in each case starts
with admit and the last one ends with discharge. The admit
event corresponds to the time when the patient arrives at the
hospital and occupies a wheelchair or hospital bed. In contrast,
the discharge event corresponds to the time when the patient is
discharged from the hospital and released from the wheelchair
or hospital bed.

The event log extracted from the MIMIC database contains
25.463 events and 6.455 cases executed during one year.
For security reasons, the time in the MIMIC database is
anonymized. Therefore, the events pertaining to our event log
belong to the year 2153.

Following the next step of our approach, the domain model
for the previously extracted event log has to be discovered.

Fig. 7: Excerpt of the class diagram describing the use-case

Inferring the Domain Model from Event Log. The domain
model is discovered from the event log extracted from the
MIMIC database. The initial discovery defines each attribute
as String data type, which is in principle usable in the
generation process. To support addition datatypes and give it
is required to run the type recognition algorithm described
in Listing 1. Figure 7 shows the data structure, including the
discovered data types needed for the digital twin generation
represented as a UML class diagram in a graphical notation.
The defined structure can be read as follows: 1) a patient
can have any number of admissions 2) an admission always
happens at a specific department 3) an admission corresponds
to a visit of a specific patient in a department (as denoted by
the given cardinalities). Supporting different data types allows
users to specify different input fields, e.g., data time, text,
integer.

During our prototype implementation, we use a textual
notation for the discovered domain model (Figure 7) in the
UML/P [59] DSL Class Diagrams for Analysis (CD4A),
which includes the concepts class, attribute, and association.
These concepts are sufficient to generate the data structure in

the PADTC database.

Extracting BPMN Models. Once the event log is extracted
from the sensor data in the next step, the process model is
discovered by applying the Inductive Visual Miner algorithm
[41]. We are using the PM4Py [60] library to discover the
process model from the event log. Our language of choice for
represent the process model is BPMN [50], [61] (see Figure 8).
For simplicity reasons, the threshold of the discovered process
model is set to 90%.

The process starts with the admit activity, which represents
the time when the patient is admitted to the hospital and
occupies the wheelchair or bed. Afterwards, the patients is
either admitted to the ED Emergency Department or Labor &
Delivery. The discharged patient from ED Emergency Depart-
ment (e.g., discharge ED Emergency Department) are admitted
to the Medicine department (e.g., admit Medicine). While, the
patients discharged from the Labor & Delivery department
are moved to the Obstetrics (Postpartum & Antepartum) for
further postpartum treatment. Finally, the patient is discharged,
and the wheelchair or the hospital bed is made available for
another patient.

Since the quality metrics strongly depend on the algorithm
used to discover the process model and the variety of vari-
ables involved in the process [62], we argue that finding the
best discovery algorithm is out of scope for this application
scenario.

Extracting Roles for a Tagging Model. To specify which
roles should be able to fulfill a certain task in the digital
twin, we can extract a tagging model from either the BPMN
model or the event log. Our event log does not explicitly
include actors but participating departments, so our extraction
algorithm assumes that one role for each department exists.
Additionally, one role for the group of patients is added.
The example tagging model is depicted in Listing 2, which
denotes the name of the tagging model and the BPMN model
that is getting tagged (l. 1 Transportation, the model in
Figure 8). Then each line (ll. 2-4) contains a tag Role with a
value of what role is associated with what part of the model.

Listing 2: Roles tagging model

1 tags ResourcesTags for Transportation {
2 tag Transplant Role = "transplantDoctors";
3 tag EmergencyAction Role
4 = "emergencyDoctors";
5 tag Patient Role = "patient";
6 }

B. Phase 2: Generation

Within this phase, we first have to preprocess the discovered
models to use them in the transformation, transform them,
and then use them for the generation of the digital twin
cockpit. We already have a first prototype of the PADTC at
the end of this phase.



case id activity time age gender
1 admit 22/03/2153 10:02 22 F
1 admit ED Emergency Department 22/03/2153 12:30
1 discharge ED Emergency Department 22/03/2153 14:33
1 admit Medicine 22/03/2153 22:44
1 discharge Medicine 22/03/2153 23:45
1 discharge 22/03/2153 23:59
2 admit 13/08/2153 01:07 56 F
2 admit Labor-Delivery 13/08/2153 02:36
2 discharge Labor-Delivery 13/08/2153 15:33
2 admit Obstetrics(Postpartum-Antepartum) 13/08/2153 16:04
2 discharge Obstetrics(Postpartum-Antepartum) 14/08/2153 20:44
2 discharge 15/08/2153 22:14

TABLE II: Simplified example of an event log extracted from the sensor data

Fig. 8: The discovered process model illustrated as BPMN after applying the Inductive Visual Miner algorithm. For simplicity
reason several activities are excluded from the process model

Preprocess Discovered Models. As expected, the BPMN
model discovered using PM4PY in XML format is not directly
compatible with, e.g., the Camunda BPMN XML structure.
Thus, we have to transform this BPMN XML model auto-
matically into Camunda BPMN models and another textual
representation, namely our own MontiCore [45] BPMN DSL.

The transformation requires a preprocessing step as we use
parts of the Camunda library to access the input BPMN XML.
The structure of the discovered BPMN model from PM4PY
includes a diagram and a process part. The Camunda
library expects them in the opposite order, resulting in the
need to swap these parts in the XML. Another aspect was,
e.g., that PM4PY does not include the direction of gateways
which refers to whether the gateway is a split (called diverging
in the XML) or join (called converging in the XML). Counting
the incoming and outgoing connections can be automatically
detected and added in the XML.

The transformation to our own MontiCore BPMN DSL
starts with reading the BPMN XML into an internal data
structure (similar to the meta-model of the BPMN language),
parsing it to the target language, and printing the transformed
model. This has the negative aspect that large models require
more memory store but has the advantage that the order of
elements in the input BPMN XML is irrelevant, the printing
process can be optimized as we know how many elements
of which type should be printed and the internal structure
is reusable if other transformations will be implemented in
future. The transformation creates a textual BPMN model in

the MontiCore BPMN DSL.

Discover Additional Models. The domain, tagging, and
transformed BPMN models are then used as input models
within the model-to-model transformation step. The resulting
models are a GUI and a data model for each of the activities in
the BPMN model. We also derive an additional class diagram
for commands that specifies the process-specific commands,
e.g., the command to start the respective process. To realize the
model-to-model transformation, we use FreeMarker6 templates
that take relevant information from the input models from the
created abstract syntax tree and replace defined placeholders
in the templates.

Table III gives an overview of the transformations for
mapping BPMN models to GUI models. Figure 9 illustrates
the generated GUI structure from a user task in a BPMN
model based on these transformations. That is, transformation
1 defines that one GUI model is generated per user task in the
BPMN model. The generated GUI model consists of a card
element as known from most UI frameworks. Transformation
2 defines that the name of the user task, taskName, is used as
the heading of this card element. Additionally, the task name
is a part of the name of the GUI model file, the name of the
webpage element in the GUI model and the name of generated
input and output forms which are needed in Angular for user
input and output.

6https://freemarker.apache.org

https://freemarker.apache.org


Fig. 9: Relationship between the GUI and the BPMN model

Nr Concept in BPMN Realization in the GUI

(1) task with type
user task one GUI model per task

(2) task name

integrated in the name of the
GUI model file, name of the
webpage element, label on
top of the first card in
the GUI model, name
of input and output forms

(3)
input and output
objects of
one user task

name as heading, name of the
generated domain form group
template (see Figure 10)

(4)
attributes of input
and output objects
of one user task

a field for each attribute
including support for
datatypes, e.g., a dropdown
for enums, calendar for dates

(5) split gateway method to navigate to the next
task based on attribute values

TABLE III: Transformation from BPMN concepts to GUI

With transformation 3, the names of the input and output
objects, object1 and object2, are used as the headings
of the generated form groups of these objects within the card
element. The types of these objects, namely Object1 and
Object2, are further used as the names of the generated
domain form group templates, as shown in Figure 10.

With transformation 4, for each of the attributes of the input
and output objects, e.g. attr1, attr2, attr3, and attr4
of object1 and attrA of object2, one respective input
field is generated considering its data type. For example, text

input is generated for a simple text, a dropdown input is
generated for an enumeration, a checkbox is generated for
booleans, or a calendar is generated for the date attribute.
Transformation 5 defines that a split gateway in a BPMN
model is used to generate a method to navigate to the next
task based on attribute values. The method is called when the
according button is pressed.

In our approach, we use a 2-step generation process to gen-
erate the GUI models (see Figure 10): Firstly, we use a hand-
written FormGroup.ftl template which instantiates hand-
written field templates and generate generates domain form
group templates for each in and out object of the task (see Fig-
ure 10, two generated DomainFormGroup.ftl templates
marked in red according to the in and out object types in the
BPMN model in Figure 9). Each DomainFormGroup.ftl
covers the fields of one input or output object needed in the
UI.

Secondly we are generating the GUI model: For each user
task, one GUI model is created using the TaskForm.ftl.
For each input and output of the task, the TaskForm.ftl
instantiates a template matching the type of the data element,
e.g., for the output of a task with type Object1, the template
Object1.ftl is instantiated. The same occurs for the input
with type Object2 and the template Object2.ftl. The
template Object1.ftl is made up of the fields of the class
Object1, and corresponding field templates are added, e.g.,
three times a TextField.ftl with the corresponding data
type of the input field and one CheckBox.ftl. The fields
from the input data are disabled if they are not to be changed
within this activity.

The buttons in Figure 10 are defined in the
TaskForm.ftl and call methods within the backend
of the PADTC. If these task GUIs are just used to step
through the process, a simple next button is enough to
navigate to the next task. If the process steps should also
be replayable within the digital twin, a claim, disclaim and
complete task should be included, which is then reflected in
the task list of the current user.

A BPMN model might also include aspects that are not
reflected in a GUI, e.g., service tasks that are performed
without user interaction. In this case, we generate a Java
delegate implementation, which the developer must extend to
provide the task’s business logic. The process engine can call
this implementation.

Moreover, this model-to-model transformation generates a
commands.cd, which includes classes to start new instances
of a process and complete user tasks, and a data model
is generated, which includes process-specific Data Transfer
Objects (DTOs) for the inputs and outputs of each user task.
These DTOs can be sent between the backend and frontend
of the process-aware digital twin cockpit.

Adaptions within the runtime environment of the applica-
tion. Our generated code that has a connection to manually
written code, predefined components, and the runtime envi-
ronment, altogether also referred to the target system [45].
To handle processes during the runtime of the application,



Fig. 10: Structure of generated GUI models with the FreeMarker template structure

we had to make some additions within the RTE of the target
system, namely our process-aware digital twin cockpit. These
additions were only made once and remain for every process-
aware digital twin cockpit independent from the application
domain.

As we want to use process models during the application’s
runtime, we had to add a process engine in the RTE. In the
current implementation, we are using the Camunda process
engine7. However, this might also be replaced by handwritten
code, which can handle processes when no predefined compo-
nent should be used. Therefore, it is possible to use the BPMN
models in XML format during runtime of the application,
which are discovered in the data-to-model transformation from
event logs and are preprocessed.

Another aspect that is needed in every PADTC is the
visualization of task lists. Our current realization of the
runtime environment includes code and models, which exist
in every implementation. We have added the corresponding
GUI models for task lists, including running and completed
tasks.

Code Synthesis. Having this initial set of models prepared,
we can start the first model-to-code generation iteration. The
MontiGem generator takes the models as input, transforms
them into an internal representation which is transformed
into an output internal representation, uses templates for the
Java backend and the TypeScript and HTML frontend, and
generates the code (see [63] or [46] for details). The generated
system without hand-written additions consists of the database,

7https://camunda.com/products/camunda-platform/bpmn-engine/

the backend infrastructure (to handle database objects and
data shown in the frontend), the communication infrastructure
(between backend and frontend), and some basic views for the
process steps.

C. Phase 3: Adaption

As hand-written additions for this evaluation, we have
added maintenance and event log meta-data to the domain
model, added a picture of the floor plan in .svg, created GUI
models and data view models for the dashboard, and some
other pages. By adding hand-written models and hand-written
code (see (7) in Figure 2), more complex visualizations are
possible.

Add Handwritten Models. The additions to the domain
model are all separate class diagram files, which will be
merged before they are used as input for the generator
framework. Listing 3 shows an excerpt of the additions in
a domain model regarding the meta-structure of an event log.
The attributes can be identified from the event log used at the
beginning of this approach.

Listing 3: Meta-Structure of Event Logs as addition to the
domain model

1 classdiagram eventlogs extends domain {
2 class EventLog {
3 int caseId;
4 String activity;
5 ZonedDateTime time;
6 int age;
7 String gender;
8 }

https://camunda.com/products/camunda-platform/bpmn-engine/


9 }

Listing 4 shows an excerpt of the additions in a domain
model regarding maintenance tasks for devices. The devices
(l.3-6) have a particular type (l.8-10) and are related (l.12) to
one concrete maintenance plan (l.19-24). Each maintenance
plan includes several operations (l.30). These operations (l.19-
24) define what has to be done in which interval (l.26-28)
and under which regulation. Each of these operations can be
executed (l.36). In this case, the start and end times of the
execution will be stored together with a derived attribute that
calculates the duration of the execution (l.32-37). Aspects such
as changes in maintenance plans and operations have to be
considered together with a more complex regulatory structure.
These aspects are omitted here to keep the example compact.

Listing 4: Maintenance of devices as addition to the domain
model

1 classdiagram maintenance extends domain {
2

3 class Device {
4 int deviceId;
5 DeviceType type;
6 }
7

8 enum DeviceType {
9 WHEELCHAIR, BED;

10 }
11

12 association [1] Device <->
↪→ MaintenancePlan [1];

13

14 class MaintenancePlan {
15 int mPId;
16 String description;
17 }
18

19 class MaintenanceOperation {
20 int mOId;
21 String description;
22 MaintenanceInterval neededInterval;
23 String regulation;
24 }
25

26 enum MaintenanceInterval {
27 DAILY, WEEKLY, MONTHLY, ANNUALLY;
28 }
29

30 association [1] MaintenancePlan <->
↪→ MaintenanceOperation [*];

31

32 class MaintenanceExecution {
33 int mEId;
34 ZonedDateTime startTime;
35 ZonedDateTime endTime;
36 /long duration;
37 }
38

39 association [1] MaintenanceOperation <->
↪→ MaintenanceExecution [*];

40 }

Handwritten Tagging Models. It is also possible to add
further information such as privacy or security concerns with
tags. In our current implementation, it is possible to define
data restrictions in the generated activity forms, e.g., disabling
and hiding individual form fields. To include this feature, an
additional tagging model is required.

Handwritten GUI Models. It might be necessary to also
include the handwritten GUI models for the dashboard of the
application, e.g., as shown in the excerpt in Listing 5. In a
GUI model, we have to define which data is needed (l.2) to
be shown, e.g., in a data table: In l.12, we use the entries
objects in the object TransportDataTable to get each row with
its data. We can add layout information, e.g., container (l.4) or
rows (l.17) and use predefined graphical components, e.g., a
card with head and body (l.5,6,9), labels (l.7), data tables (l.11-
16) or buttons (l.18-20). The data table (l.11-16) has columns
for each relevant attribute, where we can specify the presented
name in the GUI and the name of the attribute as it is called
within our data model. For buttons (l.18-20), it is possible
to define a method executed when the button is pressed. The
concrete implementation of this method has to be added as
handwritten code, as only the method declaration is generated.

Listing 5: Excerpt of the handwritten GUI model for the
dashboard

1 webpage Dashboard(
2 all TransportDataTable tdt, ...){
3 ...
4 container(45%){
5 card {
6 head {
7 label "Transport Devices in Operation"
8 }
9 body {

10 ...
11 datatable "TransportData" {
12 rows < tdt.transportDataEntries {
13 column "ID", id;
14 column "Location", location;
15 column "Duration", time(duration);
16 }}
17 row(r){
18 button "Historical Transport Data" {
19 click -> navigateToEventLogPage()
20 }
21 }
22 }}}
23 }

Handwritten Code for the Application. The current imple-
mentation of the generator framework MontiGem requires
some handwritten additions, e.g., the logic to load and ag-
gregate data from the database into the objects transferred to
the frontend for visualization. Other additions were needed in
the method bodies in the frontend, which should be executed
when pressing a button.

Furthermore, the current runtime environment includes
APIs using REST and WebSockets as technologies. If it is
needed to connect our process-aware digital twin cockpit



with DT services, we can add handwritten code, which helps
us to handle transferred and received data in the backend of
the PADTC. To test this, it would be possible to implement,
e.g., a mock third-party application that sends maintenance
information.

To be able to use process mining algorithms during runtime,
we have added an additional docker container that can run
Python code and provides a Flask REST API to access its
functionalities. The event log data is stored in the database of
the PADTC and can be accessed by the Python implementation
via the backend to run process mining algorithms on this data.
We have implemented, e.g., the visualization of the Directly-
Follows-Graph (DFG) from the given event log data, both
visualized as an SVG and as a table with filtering options.

We had to add handwritten GUI models for handling the
process mining results during the application’s runtime. This
included two pages, one showing the SVG of the DFG and
one for the textual representation. If a user opens the GUI
page, the DFG implementation in PM4Py is called. In the
additional Docker container, the JSON response is parsed
and populated into a DTO in the backend and then sent to
the frontend GUI page. The SVG is shown directly in the
frontend.

Generated Process-Aware Digital Twin Cockpit. Figure 11
shows an example GUI for the transportation data and process
from a department perspective in the DT cockpit. The card
top left visualizes the different locations of departments and
allows users to use the picture as navigation to details. The
other cards show information related to the selection, the
Medicine department. The bar chart bottom left shows the
transport capacity using real-time and historical information.
The card top right presents some critical indicators regarding
wheelchairs and transport beds maintenance. The dashboard
below allows the selection of a time period of interest, and by
clicking the Show the Process button, the discovered process
can be shown. The process expert might learn the patient path
through the hospital. The process and critical key indicators are
shown on a separate page. The card on the bottom right shows
data from transportation devices in a selected time period and
allows access to detailed historical information via a button.
Based on the considered models and the final business goal of
the digital twin, other information can be visualized in Figure
11.

D. Phase 4: Runtime

The created PADTC allows for live monitoring as sensor
information or lives data from the physical objects or third-
party applications can be handled in digital twin services and
visualized in the cockpit. Moreover, the users can control
the digital twin via the process-aware digital twin cockpit
by using execution services that translate user commands to
machine or control commands and send them to the physical
object, more precisely the cyber-part controlling the physical

object. The latter is not implemented in our prototype; for
example, we refer the reader to [34].

Initialization. We automatically add the data from the event
logs used for model extraction into our PADTC database. This
allows us to make this information already available when the
process-aware digital twin cockpit is started for the first time.

We have also added the discovered roles and a dummy
user for each role to be able to test the application. As part
of the existing runtime environment, the digital twin cockpit
already provides a settings menu where all roles and users
are listed. This means that our domain or process expert is
can see this data via the settings menu.

Runtime Models. We can use the models at runtime to step
through the discovered processes. The discovered process
might help the process expert to understand how the patient
moves through the different departments in the hospital. In
addition, from the discovered process, it is also possible to
understand which departments are visited exclusively to each
other. For example, considering the discovered process model
depicted in Figure 8 the patients which go to the admit Labor
& Delivery department never go to the admit Emergency
Department.

Process Mining during Runtime. Our prototype allows
running process mining algorithms during runtime of the
PADTC. This enabled the process expert to analyze event
logs or parts of them, e.g., to see if specific departments are
always accessed from the same former departments, which
can be used to organize the distribution of the transport beds.

Live Data. We have implemented a WebSockets connection,
which allows us to visualize the live data in the graphical
interfaces in a dynamic way, e.g., via regularly updated charts.
Furthermore, it is possible to use this live sensor data to
create new process models step by step, which can be again
visualized. Another alternative is to use an already discovered
process model and highlight the occurring process steps.

Moreover, it is possible to control the physical objects
via the PADTC: maintenance needs could call services for
rerouting and automatically guide the physical objects to
the technical department, errors on the “cyber” side of the
physical object might require remote maintenance, which
can be organized via the PADTC, and bottlenecks in the
transport capacity of departments can be handled by automatic
rerouting of beds.

This application scenario has provided us insights into the
power of this approach and aspects where a higher degree of
automation is desired and would help to lower the number of
handwritten models and code.

VI. RELATED WORK

We relate our approach to digital twin engineering ap-
proaches in general and discuss different aspects comparable to



Fig. 11: Process-Aware Digital Twin Cockpit

our approach, as there exists only a low number of publications
about low-code development approaches for process-aware
digital twin cockpits.

(Low-Code) Digital Twin Engineering: Commercial So-
lutions. In recent years, various commercial platforms for
the engineering of digital twins were developed, e.g., Eclipse
Ditto8 for developing DTs that provides standardized APIs
for IoT devices could be used in combination with the Vorto
modeling language9 for describing device interfaces connected
to (cyber-physical) systems. Similar solutions provide Amazon
Greengrass10 or Microsoft’s Digital Twin Definition Lan-
guage11. Other products including 2D and 3D visualizations
are AWS IoT TwinMaker 12, the low-code data science plat-
form Gramex 13 or the ASCon Digital Twin Product Suite 14.
The ASCon Digital Twin Product Suite might come closest to
a PADTC, as it includes process models and a workflow engine
in contrast to the others. Gramex and the ASCon Digital Twin
Product Suite state that they provide a low-code experience. To
the best of our knowledge, all of these solutions do not provide
an automated mechanism to extract models from given sensor
data or event logs, which means the digital twin engineer
still has a high effort for defining the models or making
configurations manually within the platforms. In some of
these approaches, software engineering knowledge is needed

8https://www.eclipse.org/ditto/
9https://www.eclipse.org/vorto/
10https://aws.amazon.com/de/greengrass/
11http://www.aka.ms/dtdl
12https://aws.amazon.com/de/iot-twinmaker
13https://gramener.com/gramex
14https://ascon-systems.de/en/product-suite/application-engine/

to define the required information. Moreover, most of them
allow manually connecting data with predefined visualization
components, but they do not generate GUI models from
existing data.

(Low-Code) Digital Twin Engineering: Exemplary Aca-
demic Contributions. The data sources which are interesting
to consider for digital twins are diverse and spread over
heterogeneous applications. Faber et al. [26] discuss digital
twins for the monitoring and analysis of wind farms us-
ing cloud technologies. They show different types of data
sources for wind farm monitoring, which come from heteroge-
neous data sources and applications, e.g., Enterprise Resource
Planning- (ERP), Customer Relationship Management (CRM),
or Supply Chain Management(SCM) systems. In contrast to
our approach, they do not provide an automated mechanism
to extract models from given data or use models to define
graphical user interfaces.

Govindasamy et al. [64] have created a digital twin for air
quality management. Their digital twin prototype measures
CO2, temperature, and humidity values of rooms within a
building. The purpose of collecting this data in a digital
twin is to improve work productivity and reduce the risk for
virus infections. Furthermore, they suggest three services to
be added to their implementation: a visualization, a physical
simulation, and a prediction service. For processing the data
received from the physical twin of the room the conceptual
schema is presented. Similar to our approach, these models
provide the required digital twin functionality. Unlike our
approach, the models used as input for the framework are
manually created and not automatically generated for the input

https://www.eclipse.org/ditto/
https://www.eclipse.org/vorto/
https://aws.amazon.com/de/greengrass/
http://www.aka.ms/dtdl
https://aws.amazon.com/de/iot-twinmaker
https://gramener.com/gramex
https://ascon-systems.de/en/product-suite/application-engine/


data.
Bibow et al. [4] present a digital twin for an injection mold-

ing process. The presented approach aims to engineer digital
twins while supporting domain-specific customization and at
the same time automating the essential activities based on the
model-driven reference architecture. The realization requires
defining a domain model, a tag model to link concepts in the
domain model with database information, and defining event
models that occur in the physical system. Their generated,
executable digital twin is still extendable using handwritten
additions. Unlike our approach, the input data are queried from
the so-called Data Lake, an extensive data storage containing
multiple databases or other data providers. In addition, the
Data Lake is responsible for data preparation and processing
in case the repositories contain unstructured data. Similar to
our approach, they use the domain model to describe the data
structure the digital twin-component needs to exchange with
each other. In contrast, the domain model is manually created
with the help of the domain expert and is not automatically
inferred from the data stored in the Data Lake. Moreover, the
following steps and the prototype in [4] are different from our
approach and prototype as they use, e.g., architectural models
as input of a code generator.

Our presented low-code development approach does not of-
fer built-in deployment and lifecycle management facilities for
the created process-aware digital twin cockpit. The proposed
approach could be embedded into a low-code development
platform to enable that. In [17], we have presented a vision
towards LCDPs for digital twins where domain experts can
select language plugins and, according to architectural com-
ponents, generate a digital twin in the next step. The low-
code development approach proposed in this article could
be integrated into such a LCDP for digital twins, as this
would allow domain experts without software engineering
knowledge to create the first version of their process-aware
digital twin cockpit. However, this goes beyond the current
implementation.

To sum up, in comparison to our proposed approach, the
approaches for digital twin engineering do not provide an
automated mechanism to extract models from given sensor
data or event logs, which means the digital twin engineer has
a higher effort for defining the models manually. Thus, our
approach allows for a higher degree of automation in digital
twin construction. Besides that, none of these approaches
aim to generate the process-aware digital twin cockpit from
the sensor data. Moreover, most of them do not consider
BPMN models during runtime within a workflow engine or
generating GUI models from process models.

Event log extraction from sensor data. Our approach
starts in step 1 (see Figure 2) with the event log extraction from
given sensor data. There exist several approaches in literature
discussing such extractions.

Eck, Sidorova, and van der Aalst [44] have applied process
mining on sensor data in order to discover the process model
based on human behavior. First, an event log is extracted

from the sensor data subsequently analyzed using different
process mining techniques. A smart product designers use
the insights gained from the discovered process. The first
challenge that the authors emphasize is the mapping between
the sensor measurements to human activities, and the second
one is grouping these activities into the process instances.
Unlike our approach, the sensor data are not known from
which sensor they are coming from. Therefore, the first step
of their approach is to divide the sensor data into windows.
After making sure that each window contains measurements
from a single sensor. Afterward, the domain knowledge comes
into play to label them. The choice to determine the main
characteristics of the process instances is also made by domain
knowledge.

Janssen et al. [43] are applying unsupervised learning tech-
niques in the form of clustering to transform the sensor data
into event data. The main goal of this step is to identify
the sub-traces and afterward group them. The authors use
a combined time- and quantity-based similarity measure to
find similar traces. After the clusters of similar traces are
discovered in the next step, the activity labels are defined,
which requires the involvement of humans. In addition, they
are addressing the challenges of concurrent behavior between
activities. Their sensors attached to smart homes or factories
cannot identify entities. This is different from our setup
scenario in which we are assuming that the sensors are logging
the department name whenever they become active.

Senderovich et al. [48] provides a transformation of sensor
data (e.g., Real-Time Locating System data) into the event
log data based on the interaction notion, which is defined as
an intermediate knowledge layer. Under the assumption that
interactions correspond to an activity instance, the authors
propose an optimal matching solution to map interactions
to event log activity labels. A set of interaction-to-activity
mapping complements the event log extraction. Based on the
domain of our running example, the interactions correspond
to business entities such as patients or doctors. If two entities
share the exact location indicates an interaction that can be
part of a particular activity instance. Similar to our sensor data,
interactions between entities are known and can be captured
only within a department.

Process Mining and Digital Twins. In resent years, the
use of process mining for and within digital twins increased.
van der Aalst [65] emphasizes that the creation of the digital
twin in one organization requires the need to define the fabric
of the real operational process. In addition, he argues that
process mining is an excellent option to move towards the
digital twin. However, this publication does not provide an
approach regarding the construction of a digital twin. In more
recent work, Park and van der Aalst [66] present how to create
a digital twin of an organization. They have implemented a
web service for building, updating, and visualizing digital twin
interface models, which are object-centric Petri nets. Their
implementation could be a part of a process-aware digital
twin cockpit which allows only hand-written code additions
where our approach allows to add hand-written models. More-



over, our approach provides additional visualizations for non-
process related data which is generated from GUI models.

Brockhoff et al. [18] show a vision towards the use of pro-
cess mining techniques during the run-time of a self-adaptive
digital twin in combination with digital shadows. They also
include process-aware digital twin cockpits as one part which
is generated but focus on process mining in interaction with
self-adaptivity services in a MAPE-K loop of digital twins.
They present design time models without considering their
automatic transformation from other information sources and
they use event logs within digital twin services but not as
source for deriving models for the generation process.

Lugaresi and Matta [67] use a process mining approach to
discover manufacturing systems automatically. They automat-
ically retrieve relevant characteristics of a production system
from data logs and create digital twins that can estimate system
performance. Again, we would not call the derived result a
digital twin but digital twin services which could be used in a
digital twin. Moreover, they do not generate GUIs from event
log data and do not provide a process engine component.

Similar approaches exist, mainly using artificial intelligence
approaches for model discovery from event logs instead of pro-
cess mining. Yang et al. [68] provide an approach where they
use event logs to create transition systems. These transition
systems train a neural network that creates a digital twin that
predicts the remaining cycle time in the manufacturing pro-
cess. In their understanding, a digital twin is a set of pictures in
smart manufacturing processes to conduct experiments. From
our understanding, we would not call the derived result a
digital twin but digital twin services which could be used in
a digital twin. Their approach generates no source code and
provides no process engine component; thus, it can not be seen
as a process-aware system.

To sum up, various approaches cover different aspects of our
approach, especially the commercial digital twin engineering
platform providers, but not in the given combination.

VII. DISCUSSION

This section discusses the strong points and the limitation
of our method and the presented use case application.

Challenges in event log extraction. Usually, the require-
ments for an event log that is subject to process mining
are easily defined when they are extracted from process-
aware information systems that operate based on process
models [69]. However, it might be necessary to extract such
event logs from process-unaware information systems, which
implies that the event log might lack the information required
for the process mining. Therefore, the association of the sensor
data with the process instances is a challenging task [70].

Challenges in the event log extraction strongly depend
on the sensor data format and the final business goal. Our
final goal is mainly focused on the patient flow within the
hospital. If it is necessary to extract the event log, keeping in
mind a different business goal, the process discovery must be
adjusted to meet these goals. Another challenge of working

with sensor data is to correlate them into event log cases,
representing process instances since they are not outputs from
process-aware information systems.

Correctness of the Transformations. Within the prototype,
the data-to-model, model-to-model, and model-to-code
transformations were tested using a test infrastructure, a set
of models covering all concepts of the DSL grammars, and
a comparison with the expected outcome. This approach
works fine for the model-to-model and model-to-code
transformations, as we know what outcome to expect. It
might be challenging to know what is expected in the
data-to-model transformation as event logs and the resulting
BPMN models could be quite large. However, it is also
feasible to choose individual cases from the event log and
compare them with their occurrence in the resulting BPMN
model.

Using process models for generation. Our process in
Fig. 3 shows that we use BPMN models for the system
generation, which requires the regeneration of the system
in case new processes are discovered. However, as this step
could be automated together with continuous integration and
deployment strategy, this is not a strong limitation. Another
possible realization is to use BPMN models only at runtime.
However, this would require a higher amount of handwritten
code for GUIs.

Extension of the extracted BPMN models. Dependent
on the aim of the process-aware digital twin cockpit and,
consequently, what should be shown in the user interfaces,
it might be interesting to make additions to the derived
BPMN models ((3) in Figure 2). Our current implementation
would, e.g., allow specifying input and output data of process
steps. Thus, the discovered GUI models ((6) in Figure 2)
could include input forms with different fields to add data
as a user within a process step. This is only possible if the
needed information exists within the BPMN model, requiring
a handwritten extension. In the current implementation, this
is not realized.

Increase the degree of automation. The proposed approach
relies on its higher degree of automation in comparison to
manual engineering processes of PADTCs and the aim to
reduce the handwritten code. However, this could be even
further improved:

• The structure from event logs which is used as an addi-
tional handwritten domain model, could be automatically
discovered from the given event log as well. This would
result in an additional data-to-model transformation.

• The current approach allows to add a domain model
which includes additional concepts from the domain, e.g.,
the maintenance information for CPS in our example.
This information is typically included in other appli-
cations, e.g., SAP Plant Maintenance (PM). Analyzing
third-party applications could help to detect which



domain information might be relevant for the digital twin.
Additionally, the analysis of engineering models for
the creation of the physical object under investigation
might also reveal important information usable within the
domain model.

• The structure of digital shadows and process struc-
tures could be already provided in some model libraries
for application-independent models, such as suggested
in [18] and automatically added in the first generation
step. To derive the concepts for the used DSLs during
runtime can be easily realized for MontiCore [45] DSLs,
as the grammar is already mapped to a class diagram
which could be directly used.

• GUIs for processes and event logs could be already pre-
defined and provided as application-independent models.
This would allow the digital twin engineer to reduce effort
and directly use them within the generation process.

• GUI models related to the domain can be generated in a
similar way to the approach in [46], where visualizations
for each data class and their relations are generated. To
stay flexible, it is possible to change or extend generated
GUI models with additional handwritten ones following
one of the approaches in [71]. If we are able to generate
large parts of the GUI models would significantly reduce
the number of needed handwritten ones.

Extendable architecture. As mentioned by Bock and
Frank [72], it is interesting to provide an adaptable software
architecture with predefined components or services. Our
approach is highly extendable as it is possible to connect
DT services with the process-aware digital twin cockpit.
Furthermore, we allow making handwritten extensions of
the code, which means this handwritten code can be larger,
existing application parts which are reused.

DT services for process prediction and forecasts. Current
approaches in research move towards process model
forecasting [73] and prediction. To include such approaches
could also be an interesting aspect for PADTC, as they
provide the domain experts additional insights into the future
of their physical objects.

Plugin system for digital twin services. The current
implementation requires adding the digital twin services via
APIs, which requires handwritten code to handle the sent
and received data. It might also result in the need to start
a regeneration process if specific data received from these
services has to be stored in the database, but no according to
structure exists. This would also require adding GUI and data
models. A better approach to allow the connection with DT
services is to realize a plugin system for DT services together
with a generic structure to be able to store data. This would
not result in the need for regeneration.

Connection to Low-Code Development Platforms for
Digital Twins. In principle, it would be possible to take the

first steps of our approach and realize it as an extension of a
low-code development platform for digital twins. However,
to integrate such an extension in existing platforms would
require (1) contacts to the platform developers as they are
closed systems and provide, if any, only means for restricted
extensions or (2) to develop your low-code development
platform [17].

Generalizability of the approach. The general approach
is domain-independent, and it can be used for different
domains where a PADTC is needed for a physical object. The
information in the described models is needed to generate
as much as possible. However, the described languages are
replaceable, e.g., to use other users interface languages or
process modeling languages. Replacing languages would result
in other data-to-model and model-to-model transformations.
If another process language than BPMN is used, e.g., Petri
nets, a process engine tailored for this language [74] is
needed. The largest effort in realizing this approach is needed
to implement the code generator.

VIII. CONCLUSION

This paper presents a low-code development approach to
generate a process-aware digital twin cockpit from event logs
and show a prototype for an automated hospital transportation
system. We suggest using process mining techniques to extract
an event log from sensor data and then apply data-to-model
transformations to infer the data model, and to discover the
process model and roles. We suggest using model-to-model
and model-to-code transformation techniques to automate the
digital twin generation process. The discovered models are
used as input for a code generator. We applied our approach
to real-life sensor data in an automated hospital transportation
system use case and show that it is possible to achieve a high
degree of automation in the process-aware digital twin cockpit
engineering process.

In future work, it would be interesting to integrate the pro-
posed low-code development approach in a low-code platform
such as described in [17], where domain users are empowered
to guide remaining semi-automatic steps via a GUI and make
additions needed to define a more sophisticated process-aware
digital twin cockpit. This requires further analysis of the
hand-written parts of the application to make suggestions for
abstractions.
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ment, Ö. Babur, J. Denil, and B. Vogel-Heuser, Eds. Cham: Springer
International Publishing, 2020, pp. 43–54.

https://www.iop.rwth-aachen.de


[2] F. Jiang, L. Ma, T. Broyd, and K. Chen, “Digital twin and its imple-
mentations in the civil engineering sector,” Automation in Construction,
vol. 130, p. 103838, 2021.

[3] V. Zaccaria, M. Stenfelt, I. Aslanidou, and K. G. Kyprianidis, “Fleet
monitoring and diagnostics framework based on digital twin of aero-
engines,” in Turbo Expo: Power for Land, Sea, and Air, vol. 51128.
American Society of Mechanical Engineers, 2018, p. V006T05A021.

[4] P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, and A. Wortmann, “Model-Driven Development of a
Digital Twin for Injection Molding,” in Advanced Information Systems
Engineering, ser. LNCS, S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and
V. Pant, Eds., vol. 12127. Springer, 2020, pp. 85–100.
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