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Abstract Privacy regulations for data can be regarded as a

major driver for data sovereignty measures. A specific

example for this is the case of event data that is recorded by

information systems during the processing of entities in

domains such as e-commerce or health care. Since such

data, typically available in the form of event log files,

contains personalized information on the specific processed

entities, it can expose sensitive information that may be

traced back to individuals. In recent years, a plethora of

methods have been developed to analyse event logs under

the umbrella of process mining. However, the impact of

privacy regulations on the technical design as well as the

organizational application of process mining has been

largely neglected. This paper set out to develop a protec-

tion model for event data privacy which applies the well-

established notion of differential privacy. Starting from

common assumptions about the event logs used in process

mining, this paper presents potential privacy leakages and

means to protect against them. The paper also shows at

which stages of privacy leakages a protection model for

event logs should be used. Relying on this understanding,

the notion of differential privacy for process discovery

methods is instantiated, i.e., algorithms that aim at the

construction of a process model from an event log. The

general feasibility of our approach is demonstrated by its

application to two publicly available real-life events logs.

Keywords Differential privacy � Process mining � Event
logs � Data protection � Data sovereignty

1 Introduction

Event log files are used as input to every process mining

algorithm and may originate from all kinds of systems, like

enterprise information systems or hospital information

systems. Often, the aim of these algorithms is to derive an

as-is model of the process that created these logs which can

be used to further analyze the actual process execution. To

derive a process model from an event log file, the event log

must at least store the order of events, often established by

means of a timestamp, each event must belong to a case of

the process, and events must refer to activities of the pro-

cess under consideration (van der Aalst 2016). This mini-

mal set of event log attributes already makes it possible to

infer information related to individual working of entities

through the analysis of the duration of activities. Thus,

process mining allows a considerable insight into data,

Accepted after two revisions by the editors of the special edition.

Dr. F. Mannhardt

Department of Technology Management, SINTEF Digital,

P.O. Box 4760, Torgarden, 7465 Trondheim, Norway

e-mail: felix.mannhardt@sintef.no

Prof. Dr. A. Koschmider (&)

Department of Computer Science, Kiel University, Hermann-

Rodewald-Str. 3, 24118 Kiel, Germany

e-mail: ak@informatik.uni-kiel.de

N. Baracaldo

IBM Almaden Research Center, San Jose, CA, USA

e-mail: baracald@us.ibm.com

Prof. Dr. M. Weidlich

Humboldt-Universität zu Berlin, Rudower Chaussee 25,

12489 Berlin, Germany

e-mail: matthias.weidlich@hu-berlin.de

Dr. J. Michael

Software Engineering, RWTH Aachen University, Ahornstraße

55, 52074 Aachen, Germany

e-mail: michael@se-rwth.de

123

Bus Inf Syst Eng

https://doi.org/10.1007/s12599-019-00613-3

[MKB+19] F. Mannhardt, A. Koschmider, N: Baracaldo, M. Weidlich, J.  Michael: 
Privacy-Preserving Process Mining: Differential Privacy for Event Logs. 
In: Business & Information Systems Engineering, pp. 1--20, Springer, Aug. 2019. 
www.se-rwth.de/publications/

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-019-00613-3&amp;domain=pdf
https://doi.org/10.1007/s12599-019-00613-3


which carries the inherent risk that what is disclosed may

be private. Privacy concerns informal self-determination,

which means the ability to decide who is permitted access

to information about a person (Bergeron 2000). It is con-

sidered to be a fundamental human right and, thus, is

included in the legislation of different countries. Due to

Europe’s General Data Protection Regulation (EU GDPR),

organizations are obliged to consider privacy throughout

the complete development process (i.e., privacy by design)

(D’Acquisto et al. 2015a), which also applies for the design

of process mining systems.

Currently, process mining and privacy are considered

orthogonal. Process mining algorithms aim to discover

accurate process models from event logs at the expense of

disclosure of information that should be protected. For

instance, employee data is used in process mining for

predictions of employee performance. Such a trade-off

between accuracy and privacy has already been illustrated

and analyzed for data-mining-based approaches (Aldeen

et al. 2015). For process mining, however, such trade-offs

are largely unexplored. Notably though, privacy consider-

ations for process mining have recently been outlined by

Mannhardt et al. (2018), who point to two general chal-

lenges: technological privacy challenges and organiza-

tional privacy challenges. Technology privacy challenges

are related to the design of privacy-by-design or privacy-

by-default approaches, while organizational privacy chal-

lenges address the understanding and audition of data use

by enterprises. While Mannhardt et al. discuss various

relevant privacy challenges for process mining, they do not

provide any approach or solution for them.

The aim of this paper is, therefore, to fill this gap and to

provide a privacy-preserving technique for process mining

which considers technological challenges. More precisely,

we aim to define a protection model for event log privacy

with minimum loss of utility for process mining, i.e.,

process discovery remains useful while the disclosure of

sensitive data is reduced For this, however, the following

questions must be understood:

• RQ 1 At which stage of data paths is a protection model

for event log privacy required?

• RQ 2 How can event log privacy be ensured with a

minimum loss of utility for process mining?

Against this background, the remainder of this paper pro-

ceeds as follows. The next section defines the terms used as

input to define a privacy-preserving technique for process

mining and introduces our use case from a hospital that will

be used for illustration throughout the paper. Generally,

application areas of our approach are those with a demand

for high privacy preservation. Section 3 investigates pri-

vacy issues of process mining for our use case with the

purpose to answer RQ 1. Section 4 uses this use case to

construct the protection model based on differential pri-

vacy which is instantiated for event logs in Sect. 5. Sec-

tion 6 presents evaluation results, which are related to

RQ 2. Related work is discussed in Sect. 7. The paper ends

with a summary and an outlook on future work.

2 Foundation

Below, we discuss terms related to the context of privacy

and process mining and apply them to the use case of

healthcare processes in hospitals. Such processes describe

activities of medical treatments as well as their organiza-

tional support. This includes the tasks that were performed,

their date and the involved resources (medical staff,

administrative staff and patients). Hospital information

systems have a high demand for privacy and security

considerations, since electronic health records need privacy

protection. While we use a hospital use case to illustrate

our approach, there are many similar situations in which

organizations have centralized control over an event log

and want to protect the privacy of individuals for whom

cases are processed.

2.1 Privacy-Related Terms

As mentioned in the introduction, privacy concerns infor-

mal self-determination, which means the ability to decide

who is permitted access to information about a person

(Bergeron 2000). According to Hoepman (2014) eight

privacy design strategies exist which are compliant with

GDPR and can be considered as requirements for the

design of privacy-preserving process mining systems:

• minimize The amount of personal information that is

processed should be minimal.

• hide Any personal information that is processed should

be hidden from plain view.

• separate The processing of personal information should

be done in a distributed way whenever possible.

• abstract Personal information should be processed with

the least possible detail in which it is (still) useful

through summarizing or grouping data.

• inform Data subjects should be adequately informed

whenever personal information is processed.

• control Data subjects should retain control over the

processing of their personal information.

• enforce A privacy policy compatible with legal

requirements should exist and should be enforced.

• demonstrate Be able to demonstrate compliance with

the privacy policy and any applicable legal

requirements.
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Figure 1 shows the application of these privacy design

strategies for a database as adopted from Hoepman (2018).

These privacy design strategies can be applied analogously

to event logs ensuring privacy while conducting process

mining.

Now, we discuss how privacy is related to security and

data sovereignty. Security provides the foundations

required to ensure data privacy and is defined as ‘‘preser-

vation of confidentiality, integrity and availability of

information; in addition, other properties such as authen-

ticity, accountability, non-repudiation and reliability can

also be involved.’’ ISO/IEC 27000 (2018). Additional

principles which are introduced into regulations are (a) a

priori consent, and explicit opt-in, (b) data sovereignty and

(c) extra personal protection (Yu 2014), whereas others

also discuss the notion of (d) trust (Sicari et al. 2015).

While (a) and (c) are clearly defined, there exists no clear

definition for the terms data sovereignty and trust (Sicari

et al. 2015). A fairly common understanding of the term

trust seems to be that people do not share all data with

everyone, but do share certain parts of data with a person

they trust because of several factors, e.g., past interactions,

the type of relationships, similar personality attributes such

as interests, the sensitive nature of the data we are sharing

at that moment in time (Sacco et al. 2013). In the cloud

domain the term data sovereignty is related to the geo-

location of data (placing it within the borders of a partic-

ular nation) included in service level agreement (SLA)

contracts (Peterson et al. 2011). Data protectionists discuss

the term in connection with the personal rights of the

people from whom these data originate (Mettler 2016). The

main concern with data sovereignty is to maintain privacy

regulations such as GDPR. This means that systems which

do not comply with privacy regulations can hardly main-

tain data sovereignty. In this way, this paper provides an

essential step towards data sovereignty.

2.2 Process Mining Concepts

Once processes conducted by an organization, e.g., the

handling and treatment of patients at a hospital, are sup-

ported by modern information systems, the conduct of

these processes is commonly reflected in event data. Here,

an event denotes a recorded change of some operational

state, or the execution of an activity that has led to the

respective state change. In a hospital context, for instance,

an event may indicate that a particular treatment step has

been completed for a specific patient. An event log is a set

of such events. However, most process mining methods do

not work directly on such a set of events, but require the

definition of a case notion. That is, the events of a log are

partitioned based on which events are jointly considered as

Fig. 1 An illustration of eight

privacy design strategies for a

database (Hoepman 2018). The

strategies can be transferred to

event logs and, thus, serve as

requirements for the design of

privacy-preserving process

mining systems
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a single instance of a process. The definition of a case,

therefore, depends on the analysis questions to answer by

means of process mining. For instance, in a hospital, all

treatment events may be grouped per patient or per medical

staff member. The former then highlights how treatment is

conducted from the perspective of each individual patient,

whereas the latter highlights the flow of work as conducted

by staff members.

To formalize the above notion of event logs, we adopt a

relational model of events, which is a common model in

data stream processing (Arasu et al. 2016). Events have a

schema, which is modeled as a tuple of attributes

A ¼ ðA1; . . .;AnÞ. Each attribute Ai is of a primitive type

with a finite domain, the latter being denoted by domðAiÞ.
In our setting, we assume each event schema to comprise at

least two distinguished attributes: Attribute id captures a

unique identifier per event, while timestamp denotes the

occurrence time of the respective event. Both attributes can

be assumed to have the domain N. Given an event schema,

an event is an instance of the schema, denoted by

e ¼ ða1; . . .anÞ, with ai being the value of the respective

attribute Ai.

An event log E is a set of events, as defined above. A

case is induced by an attribute, or a combination thereof.

That is, all events carrying the same value for the

attribute(s) form a single case. For the example of a

treatment process in a hospital, Table 1 illustrates an event

schema and a log comprising respective events that was

adopted from Mans et al. (2013). This event log describes

the diagnosis, trajectory and the operation of a patient with

acute pancreas. Several doctors and departments are

involved in the diagnosis, trajectory and operation. Each

line describes a service that has been delivered to a patient.

The second line shows that the hemoglobin was determined

(column ‘‘description operation’’) by the doctor Van (col-

umn ‘‘executing doctor’’) from the hematological lab

(column ‘‘description department’’) on October 13th 2017

(column ‘‘start operation’’). Note, that for this event data

only the day is known on which the service has been

delivered. In a hospital context, for instance, an event may

indicate that a particular treatment step has been completed

for a specific patient.

Here, in addition to id and timestamp, the schema

comprises attributes such as day of birth and # operations,

being of domains date and integer, respectively. Moreover,

different notions of a case may be considered for this

example. For the analysis, one may assume the perspective

of a patient (the cases are induced by attribute patient

identifier) or the work cycle of the doctor (the cases are

induced by attribute execution doctor).

Regardless of how a case is defined, we note that the

events of a case are ordered by their timestamps. In many

application scenarios, this order is even total – in our

example, a patient may only get a single treatment at a

specific time point, or a doctor may finish a treatment step

only for a single patient. We denote the sequence of events

recorded for a single case as trace and the set of all traces

induced by specific attributes C � A over an event log E as

Table 1 Excerpt of event data of an emergency department adopted from Mans et al. (2013)

Patient

identifier

Day of

birth

Sex Address Executing

doctor

Requesting

depart.

Execution

depart.

Descr. depart. Operation Descr. operation

999999 7-5-1970 Man Berlin Van PINT RHMA Lab Surgery 676700 Corpuscular

radiation

999999 7-5-1970 Man Berlin Van PINT RHMA Lab Surgery 370407D Radia. foto

999999 7-5-1970 Man Berlin Van PINT RHMA Lab Surgery 370712B Radia. analysis

999999 7-5-1970 Man Berlin Van PINT RHMA Lab Surgery 370715A Tromb. count

999999 7-5-1970 Man Berlin LKC PINT LCHE Lab Gastro-

Enterology

370423 Hemogl. foto

999999 7-5-1970 Man Berlin LKC PINT LCHE Lab Gastro-

Enterology

370442 Leuko count

Patient

identifier

Start operation Trajectory

identifier

Trajectory

code

Start trajectory Diagnosis

descr.

# operations Depart.

identifier

999999 13-10-2017 0000001 1345632 13-02-2018 Acute pancreas 1 LHMA

999999 13-10-2017 0000001 1345632 13-02-2018 Acute pancreas 1 LHMA

999999 13-10-2017 0000001 1345632 13-02-2018 Acute pancreas 1 LHMAB

999999 13-10-2017 0000001 1345632 13-02-2018 Acute pancreas 1 LHMA

999999 13-10-2017 0000001 1345632 13-02-2018 Acute pancreas 1 LCHE

999999 13-10-2017 0000001 1345632 13-02-2018 Acute pancreas 1 LCHE
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LE;C � E�. The order within a trace is captured by a rela-

tion � � E � E, such that for two events e; e0 2 r of a

single case r � LE;C, it holds that e � e0, if and only if,

e:timestamp\e0:timestamp.
The ordering of events within a trace is important for

many process mining methods. Assuming that a notion of a

trace has been defined and that an attribute (or an attribute

combination) has been selected to signal the activities of

interest, i.e., the atomic units of a work, a process model

may be discovered from the ordering of the events that

represents these activities. Common process discovery

algorithms, see Augusto et al. (2017) for a recent survey

and comparative evaluation, generalize the observed

ordering of events to extract the causal dependencies

between the activities in a process. Adopting the attribute

patient identifier as a notion of a case, Fig. 2 shows an

example: a process model in Petri net notation derived for

the event data of the schema illustrated in Table 1. Tran-

sitions, depicted as rectangles, represent activities and

places, depicted as circles, are used to model the possible

states of the process. The unnamed black transitions, also

denoted as invisible transitions, are mined for routing

purposes and do not represent actual activities. Together

with formal execution semantics [(see e.g. in van der Aalst

(2016)] the model describes all the possible process

behavior.

By discovering several process models and slightly

varying the filtering condition it is possible to identify

patients and staff. An example would be an attempt to

check for the existence of patients with rare diseases,

which are likely to follow a unique sequence of activities.

Together with background knowledge, it may be possible

to identify the patient, for which the events were recorded

and the staff who was involved in the treatment. To a

certain degree process mining methods already abstract

from (sensitive) details by deriving a process model that

reveals only the observed sequences of activity execution.

However, often occurrence frequencies, performance

Fig. 2 The patient process before operation relying on the event schema in Table 1 and adopted from Mans et al. (2013). The black Petri net

transitions are invisible transitions. They have no labels, are not recorded events and are used for routing purposes
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information, and decision rules are discovered in addition

to the basic control-flow of the process (Rozinat and van

der Aalst 2006; van der Aalst et al. 2012), which may leak

additional information from the event log. Process mining

is often an iterative process in which multiple process

models for different subsets of the event log, filtered

according to conditions of interest, are discovered and

compared (van Eck et al. 2015). Eventually, event data and

particularly healthcare processes have a high demand for

privacy preserving process mining. The next section stud-

ies potential privacy leakages and means to protect some-

one from them in the context of hospital health processes.

3 Privacy Issues for Process Mining of Healthcare

Processes

Regarding the domain of healthcare processes in hospitals,

we will show how the aforementioned privacy design

strategies (see Sect. 2.1) become relevant in order to avoid

the disclosure of personally identifiable records in event

logs. To this end, we discuss privacy checkpoints for

healthcare processes.

With respect to RQ 1 (At which stage of data paths is a

protection model for event log privacy required?) we apply

the privacy checkpoint diagram from Mannhardt et al.

(2018) to the event schema of healthcare processes shown

in Table 1. According to this privacy checkpoint diagram,

data passes six stages within healthcare processes, which

are visualized in Fig. 3. These stages are in line with

common data life-cycle models (Yu and Wen 2010),

especially with those that are aligned with privacy con-

siderations (see for a reference D’Acquisto et al.

2015b, p.26).

Specifically, the checkpoint diagram builds upon the

following phases:

• data source Given our use case, the sources of data

originate from medical staff, administrative staff and

patients. We refer to this data as personal data.

• data capture Data from these data sources is captured

when devices and systems log tasks of medical staff,

administrative staff and patients, or when recognizing

the identity or requesting actions. Since this stage

tracks who does what, when and where with data,

anonymization techniques should be used here protect-

ing disclosure of sensitive events.

• primary use The hospital determines the purposes for

which and the means by which the captured data is

processed. For instance, the captured data can be used

to support the work of medical and administrative staff

for the diagnosis or treatment of patients.

• data storage personal data and events of medical staff,

administrative staff and patients are stored in a database

or event logs. The data might be processed by data

mining approaches aiming to address performance

indicators such as the number of pancreas operations,

the length of waiting lists or the success rate of

surgeons.

• data (re)use At this stage, data from event logs is used

for process mining aiming to determine the main paths

medical staff

administra�ve staff

pa�ent

Privacy 
Checkpoint 1

Diagnosis

Trajectory

Opera�on

Healthcare 
Processes:

data source data capture primary use

use of data 
for diagnosis 
or  treatment 
of pa�ents

Privacy 
Checkpoint 2

Privacy 
Checkpoint 3

Privacy 
Checkpoint 4

Privacy 
Checkpoint 5

data storage data (re)use data removal

process mining:
- What are the main 
paths that are 
followed by 
pa�ents in the 
process?

re
m

ov
al

personal data 
is shared with 
third-party 
sources.Admission

Fig. 3 Identification of data

passes and privacy checkpoints

for hospital health processes

adapted from the privacy

checkpoint model proposed by

Mannhardt et al. (2018).

Privacy checkpoint 4 is

considered as a privacy leakage

for process mining
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that are followed by patients or medical staff in the

process. Such an analysis demands privacy techniques

to protect personally identifiable records in event logs.

Personal data might also be retrieved from third-party

sources such as public databases or other hospitals,

which obviously triggers a GDPR requirement (i.e.,

demonstration that the data was retrieved in compliance

with GDPR regulations). Compliance is a central

concern in the context of hospital processes (Mans

et al. 2013). At this stage, data from several sources is

required, which increases the number of leakages.

• data removal Raw data is permanently deleted.

With regard to RQ 1, we consider the privacy checkpoint 4

and the stage data (re)use as points of privacy leakage for

process mining. Although event log protection becomes

relevant at the data (re)use stage, several privacy concerns

must be addressed before. Data should not be captured in

unauthorized ways (see stage data capture). Particularly,

requirements for event data must be met in a way that

information on cases, timestamps, and activities have been

authorized to be captured. Also, data should not be pro-

cessed for unapproved purposes (see stage primary use). To

ensure GDPR-compliant process mining and, thus, to take

into account all privacy checkpoints, requires organiza-

tional and technological privacy and data security mea-

sures, which we consider as future work. According to the

value chain of data paths suggested in D’Acquisto et al.

(2015b), the stage of data (re)use addresses the abstract

privacy design pattern (see Sect. 2.1). Thus, the protection

model as presented in the next section focuses only on the

abstract privacy challenge, particularly for data (re)use, as

explained before allowing ‘‘to release aggregate informa-

tion about the data, without leaking individual information

about participants’’. Please note that while we use a hos-

pital use case to illustrate our protection model for event

logs, there are a many similar situations in which organi-

zations have centralised control over an event log and want

to protect the privacy of individuals for which cases are

processed [(e.g., public administration process as the one in

de Leoni and Mannhardt (2015)]. The next section presents

the privacy protection model for events logs providing

differential privacy.

4 Protection Model for Event Logs Based

on Differential Privacy

Several privacy frameworks have been proposed in the

literature. Such frameworks have been suggested to a large

extent for data mining (Aldeen et al. 2015; Mendes and

Vilela 2017) and aim to find the best suitable privacy

preserving technique for the data. Several notions to

measure the level of privacy guaranteed by algorithms have

been proposed, such as k-anonymity, l-diversity, and dif-

ferential privacy. In this work, we focus on differential

privacy, as it is known to provide a strong privacy model.

We first summarize the underlying ideas before incorpo-

rating it into a protection model for event logs.

4.1 Introduction to Differential Privacy

The strongest privacy model available to date which pro-

vides provable privacy guarantees is differential privacy

(Dwork 2008). Therefore, the protection model presented

in this paper relies on differential privacy and it supports

the abstract design privacy patterns (see Sect. 2.1). Dif-

ferential privacy establishes a theoretical limit on the

influence of a single row on a dataset (e.g., individual’s

data), thus limiting an attacker’s ability to infer such a

membership. Typically, noise is added proportionally to

the sensitivity of the output. Sensitivity measures the

maximum change of the output due to the inclusion of a

single data instance.

Definition 1 [Differential Privacy (Dwork 2008)] A

randomized mechanism K provides ð�; dÞ-differential pri-
vacy if for any two neighboring database D1 and D2 that

differ in only a single entry, 8S � RangeðKÞ,1

PrðKðD1Þ 2 SÞ� e� PrðKÞðD2Þ 2 SÞ þ d ð1Þ

If d ¼ 0, K is said to be �-differential privacy. In Defi-

nition 1, a larger � results in less privacy, while a smaller �

results in more privacy. However, as the noise which is

typically added to fulfill Definition 1 increases, the accu-

racy or utility of the results diminish. Two popular mech-

anisms for achieving differential privacy are the Laplacian

and Gaussian mechanisms (Dwork et al. 2014).

The Laplacian mechanism is used to provide differential

privacy for counting the number of records in a database.

Before releasing the number of records, Laplacian noise is

added to the original count kDk of records in a database D:

KðDÞ ¼ jDj þ Laplace 0;
1

�

� �

The Laplace distribution is chosen, since, due to the sym-

metric exponential nature of the distribution, therefore the

result is likely be close to the correct one while ensuring

the differential privacy property (McSherry 2010). Fig-

ure 4 illustrates this property of the Laplace distribution for

example database counts. Note that restricting the type of

queries to counting the number of records might seem

1 Here, RangeðKÞ denotes the set of possible outputs of K and Pr

denotes probability.
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limiting, but we will show later that this is sufficient for

many process mining applications. Furthermore, other

mechanisms exist to extend this to other aggregation

queries like averages and median as well as to partition

queries (McSherry 2010).

Multiple kinds of differential privacy have been pro-

posed in the literature. In particular, a distinction can be

made based on where a differential privacy mechanism can

be run. In the first case, an entity can be trusted to cope

with a differential private mechanism. In the second case,

data owners hide their information, and hence add noise

locally before sharing their data (Blum et al. 2005). In the

latter case, the amount of noise injected into query results

is higher to keep the privacy guarantees, which makes it

more difficult to obtain high accuracy.

Additionally, event-driven differential privacy approa-

ches have been proposed for cases where continuous

observations are produced (Dwork et al. 2010). In these

scenarios, data needs to be anonymized differently given

that there is no concept of creating a table. As will be

explained later, we model the problem in a way that a

table can be constructed and standard differential privacy

methods for static databases can be applied.

4.2 Privacy Protection Model for Event Logs

Given the fact that in the use case at hand hospitals already

have access to the patient’s and hospital records, we

assume a centralized privacy approach to realize the ab-

stract privacy design strategy to protect the data (re)use of

event data for process mining using differential privacy.

Please note that this centralized approach to handling pri-

vacy would also be possible in many other scenarios with a

centralized data management, e.g. in public administration.

Figure 5 shows a schematic illustration of the envi-

sioned protection model. The environment is divided into a

trusted environment, in which data is processed to provide

the primary services of the hospital (primary use) in

accordance with the consent of patients and staff (data

sources). Additionally, the captured sensitive data is stored

as an event log in a protected data storage for later analysis

with process mining methods. Up to the data storage stage

Fig. 4 Adding random noise to the result of a counting query using

the Laplace distribution as illustrated in McSherry (2010). This

transformation ensures differential privacy while keeping the noisy

result close to the original value

Data Source(s)

Medical Staff
Administrative Staff

Patient

Data Capture

Health-care Processes
ERP Systems
HIS Systems

Data Storage

Event Database

Privacy Engine

Noise Generation
Privacy Budget
Data Partition

Secondary Use

Process Discovery
Conformance Checking

Process Analyst

Trusted Environment

Primary Use

Treatment
Documentation

Billing

Data Flow

Request

Consent

Personal 
Data

Sensitive
Event
Log

Untrusted Environment

Sensitive
Event Log

Periodic Query

Privacy-preserved
Query Result

Query

Analysis
Request

Process
Model

Fig. 5 Schematic illustration of the privacy protection model for event logs in reference to the stages introduced by Mannhardt et al. (2018)
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we rely on organizational and technological measures (e.g.,

access control, encryption) to fully protect the privacy of

stakeholders.

However, the (re)use of data may not be covered by the

initial consent for using the data. Indeed, process mining is

commonly applied to historical data in an exploratory

fashion without a clear analysis question in mind. For such

usage it is difficult to obtain consent and, thus, it is difficult

to access the data for process mining directly inside the

trusted environment. Many patients could choose to opt out

of such secondary use of their data if we cannot ensure

their privacy to be respected in all cases.

The main idea of the envisioned protection model is to

guarantee differential privacy (cf. Definition 1) for the data

providers. We introduce a privacy engine, which acts as the

single point of access for process mining algorithms. All

data required by the algorithms needs to be queried

according to a set of restricted query operations. This pri-

vacy engine resides in the trusted environment and intro-

duces noise to each query result in order to maintain

differential privacy guarantees at all times. Thus, from the

point of view of the data provider there is no difference (in

a statistical sense) between the data used by the process

mining algorithm regardless of whether data is included or

not. This enables to safely reuse the collected data for

process mining without jeopardizing the privacy of

stakeholders.

With regard to RQ 2 (How can event log privacy be

ensured with a minimum loss of utility for process min-

ing?) we will ensure privacy versus utility by varying the �

parameter.

5 Differential Privacy for Event Log Queries

First, we discuss the kind of queries required by typical

process mining algorithms (Sect. 5.1) and the associated

threats to the privacy of both patients and staff (Sect. 5.2).

Then, in Sect. 5.3 we present strategies to provide differ-

ential privacy guarantees and discuss the implications for

data providers and the process mining result.

5.1 Event Log Queries

Whereas an event log as shown in Table 1 is sufficient

input for all process mining algorithms, there are varying

requirements for the information absolutely necessary

depending on the kind of algorithm. Generally, there are

two types of input requirements for process discovery

algorithms:

1. those that only require successor and predecessor

relations of activities and their frequency (directly-

follows frequencies) and

2. those that require full sequences of activity occur-

rences and their frequency.

To illustrate the information required, we use the sim-

plified event log in Table 2 and assume a fixed case notion

in which the patient identifier induces cases. Table 3

illustrates the difference between the input requirements

for this log. There is less information available when using

only the directly-follows frequencies since the case context

in which activity executions were recorded is missing.

Therefore, using only directly-follows frequencies prevents

certain types of analysis such as replay animation and

alignment-based conformance checking (van der Aalst

et al. 2012). Based on these information requirements, we

Table 2 A simplified event log to illustrate the privacy threats and

protection model

Patient Activity Time Staff Further attributes

P1 A 0 S1 . . .

P1 B 5 S2 . . .

P1 C 5 S3 . . .

P2 A 15 S2 . . .

P2 B 7 S3 . . .

P2 C 10 S2 . . .

P3 A 15 S2 . . .

P3 B 7 S3 . . .

P4 A 10 S1 . . .

P4 D 10 S3 . . .

P5 A 0 S4 . . .

Potential sensitive information from both patients and staff may

contained in the execution of activities and their timing

Table 3 Activity sequences or trace variants (left) and directly-fol-

lows relations (right) are possible input requirement of process dis-

covery algorithms

Sequence Frequency Relation Frequency

hA;B;Ci 2 ð�;AÞ 4

hA;Bi 1 (A, B) 3

hA;Di 2 (A, D) 1

hAi 2 (B, C) 2

(B, C) 2

ðA;�Þ 1

ðB;�Þ 1

ðC;�Þ 2

ðD;�Þ 1

We use - to denote no predecessor or successor activity
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can identify two queries specific to process mining that the

privacy engine needs to support.

Both queries require a totally ordered set of traces LE;C
based on the event log E and with a fixed case notion C and

a single attribute Aact 2 A signaling the activity of interest

as input.2 We define N ¼ domðAactÞ as a short-hand nota-

tion for the set of all possible activity names. Furthermore,

in addition to the queries, the proposed privacy engine

should support filtering the event log E based on standard

relational algebra operations to provide sub logs, e.g.,

through the WHERE construct of SQL. Such filtering is

also enabled on sensitive information contained in the

event log and orthogonal to the two queries.

Definition 2 (Query 1 – directly-follows relation fre-

quencies) The first query dfrL : N � N ! N retrieves the

frequency with which we observe an activity a 2 N to be

followed by an activity b 2 N in the event log:

dfrLða; bÞ ¼ fðea; ebÞ 2 E � E j he1; . . .; ea; eb; . . .enij
2 L ^ a ¼ ea:act ^ b ¼ eb:actgj

Query 1 provides the most basic information required by

process discovery algorithms to construct a process model.

Typically, an algorithm would query the directly-follows

frequencies for any combination of activities a and b, as

well as introduce artificial start- and end activities for each

trace. For n activities this results in a matrix of maximum

size n2 as shown on the right side in Table 3.

Definition 3 (Query 2 – trace variant frequencies) The

second query seqL : N
� ! N takes a sequence of activities

ha1; . . .; ani as input and returns their observed frequency:

seqLðha1; . . .; aniÞ ¼ fðe1; . . .; enÞ 2 L j 81� i� nðai ¼ ei:actÞgj j

Query 2 avoids loosing information in the trace context

in which an event occurred. Note that the sequence of

activities ignores all other event attributes that are not

relevant to discover the control-flow of the process. Dif-

ferent from Query 1, the set of all possible trace variants is

infinite and cannot be fixed based on the finite set of

activities known for a specific process at hand. In practice,

the process might contain looping behavior or parallelism

leading to a high number of trace variants. Therefore, the

set of trace variants that should be queried is needed. We

will provide a concrete method to overcome this issue later

in Sect. 5.3. First, we discuss the privacy threats that we

aim to counter as well as assumptions made by our method.

5.2 Privacy Threats

At first glance, it may seem that restricting the access to the

event log to the two queries discussed in the previous

section already protects privacy of process participants. In

fact, no personal identifiers are returned. However, as

illustrated in the context of the healthcare process in

Sect. 3 when assuming that there are rarely visited trajec-

tories in the process, e.g., a patient with a rare disease, it

would be possible to identify the information on individ-

uals by repeatedly querying of the event log.

In the context of our process mining use case in

healthcare, we can distinguish privacy threats from a pa-

tient perspective and from a staff perspective. Typically, as

in the example event logs in Tables 1 and 2, a case is

associated with a single patient and each event of a case is

associated to some hospital staff member. Thus, each trace

(activity sequence) of the event log can be seen as personal

data of the patient and the sets of events associated with

staff members as their personal data. Whereas the privacy

protection for hospital staff is an important issue, our pri-

mary goal in this work is to protect the privacy of patients

and analyze the privacy threats to them according to the

differential privacy framework. That is, we want to quan-

tify the privacy risk of an individual contributing their data

to the event log and have bound it to the value of the �

parameter, which may be chosen according to organiza-

tional or societal agreements.

Choosing epsilon for differential privacy is not-trivial.

The choice of � is essentially a social question and a too

high value of � might lead to unwanted disclosure. Usually,

� is a small value close to zero [(0.01, 0.1 or in some cases

ln(2) or ln(3)], which implies that e� is a value close to 1. If

the probability that some bad event will occur is very

small, it might be tolerable to increase it by factors like 2 or

3, while if the probability is already felt to be close to

unacceptable, then an increase by a factor of e0:01 	 1:01

might be tolerable, while an increase of e0:1 would be

intolerable. However, the smaller epsilon is chosen the

more noise is added when using the Laplacian mechanism.

For example, when choosing an � of 0.01, the added

Laplacian noise Laplaceð0; bÞ with parameter b ¼ 1
0:01 ¼

100 may cause to vanish the ‘‘real’’ values in many cases as

the variation incurred by adding noise is larger than that the

natural variation of the frequencies in the event log. The

added variation decreases with an increase of � and the real

values become more visible.

The selection of the � value might also depend on the

interests of the involved parties. Hsu et al. (2014) suggest

2 In the case of a combination of multiple attributes signalling the

activity, we can always create a single attribute by concatenation of

the multiple attributes.
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an economic method for the right choice of the � value

assuming two individuals with conflicting use of the data.

They recommend to use a privacy budget �max for each

individual (in our case the patient and the medical staff)

that corresponds to the maximum loss of privacy that the

individuals are willing to accept. The cost of each query is

deducted from the budget until it is exhausted.

5.3 Privacy-Aware Queries Providing Differential

Privacy

To safeguard the privacy of patients, we need to add an

appropriate amount of noise to the results reported by both

queries. As shown in Fig. 5, the privacy engine splits the

available event data into disjoint event logs that can be

partitioned by time through a periodic update. For each

query received, it retrieves the answer from a pre-processed

unprotected event log, adds noise to the result, and reduces

the pre-configured privacy budget for the selected event log

partition according to the chosen � parameter. The smaller

the value of �, the smaller the amount is that will be

removed from the privacy budget. When the privacy bud-

get for an event log is depleted, no further access is allowed

to avoid the risk of identification.

5.3.1 PINQ Framework

We employed the PINQ framework (McSherry 2010) to

implement the privacy engine of our privacy protection

model.3 PINQ is a platform that provides a small number of

standard declarative data queries which provide differential

privacy and can be combined with each other. We show

that it is possible to transform each of our queries to a

composition of the queries supported by PINQ. This

demonstrates that our protection model provides differen-

tial privacy guarantees. Additionally, the usage of PINQ

avoids the introduction of unnecessary notation and ensures

implementation correctness. In fact, we only make use of

three operations: Partition, NoisyCount, and

Where.

The Partition operation provides us with a privacy

efficient method to apply an operation on disjoint subsets

of the data based on a set of user-defined keys4 according

to which the data is split. It is important to note that if one

would sequentially query information from the same data

source, the privacy budget is reduced by the sum of the

individual � parameters. With each additional query the

likelihood of a privacy breach increases. However, it can

be shown that by applying the same query in each disjoint

subset in parallel, only the maximum of the individual �

values needs to be paid (McSherry 2010). The Noisy-

Count operation uses the standard Laplacian mechanism

on the original data (cf. Sect. 2) to add symmetric expo-

nential noise to the result of a counting query. The Where

operation fulfills the filtering requirement as it can be used

to filter data with predicates similar to the SQL WHERE

statement over the unprotected event log.

5.3.2 Assumptions

To simplify the discussion, we make three assumptions

about the content of the event log and the purpose of the

process mining analysis.

• First, we assume that there is only one case per patient

in the event log with at most c events per event log. The

assumption may seem problematic when considering,

for example, chronic patients in the dataset. However,

our protection model assumes that separate event logs

are created periodically (Fig. 5), which reduces the

likelihood of subsequent visits being part of the same

event log. Even when including multiple visits it is

possible to quantify the dilution of the privacy guar-

antee provided when including multiple cases per

patient. The privacy bound would decrease by at most

expð� � gÞ, where g is the number of rows in which a

patient participates in the dataset (Dwork 2008).

• Second, we assume that the set of possible process

activities N is publicly known and that we can establish

an upper bound for the length of traces of the event log.

Both assumptions do not limit our approach in practice.

In most cases, the activity names would be known as

part of the process documentation. Process executions

are bounded in practice and an estimate for the

maximum trace length can often be obtained through

domain knowledge. For example, in our hospital setting

the length could be estimated based on the typical

duration of a stay. Overestimation of the maximum

trace length would affect the computation time nega-

tively, whereas underestimation would impair the

accuracy of the discovered process model as long

execution may not be represented correctly.

• Third, we assume that the purpose of process mining is

to discover aggregated information about large groups

of patients.

Next, we propose strategies to provide differential privacy

for both queries.

3 The source code of the privacy engine based on PINQ is available

as C# application at: https://github.com/fmannhardt/pddp/.
4 The keys for the partitioning operation need to be user-defined

since we do not want to leak information on which keys are present in

the unprotected event log.
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5.3.3 Query 1: Laplacian Mechanism

We employ a transformation method TransformDFG

that pre-processes the set of all traces LE;C of an event log

E with activities N to the format shown in Table 4. Note

that this pre-processed table is only available to the privacy

engine. Let REL ¼ ðN [ f>;?gÞ � ðN [ f>;?gÞ be the

set of all possible binary activity relations. Instead of

providing the results of Query 1 for each individual pair of

activities ða; bÞ 2 N � N, we obtain the full set of directly-

follows count DFRpublic � REL�N at once. This allows

us to avoid repeated querying and combine the retrieval of

the following single PINQ query:

DFRpublic ¼ TransformDFGðLÞ:WhereðPredÞ

:PartitionðRELÞ

:NoisyCountð�Þ

In the resulting set DFRpublic the necessary level of noise is

added to the frequency for each possible directly-follows

relation. We implement Query 1 by looking up the fre-

quency for any directly-follows relation in DFRpublic:

dfrLða; bÞ ¼ n with ðða; bÞ; nÞ 2 DFRpublic

Note that some of the frequencies might be negative, these

can be disregarded, and that non-existent directly-follows

relations in the original data may be added to the query

result. However, process discovery algorithms typically

disregard such infrequent behavior as noise.

5.3.4 Query 2: Prefix-Tree Based Counting

Similar to our method for the first query, we define a

transformation method TransformTraces that pre-

processes the event log to the format shown in Table 5,

which is suitable for the application of PINQ queries. Here,

we treat each trace as a sequence of identifiers and add a ?
identifier to the end of each one. However, since the set of

possible activity sequences is theoretically infinite, we

cannot follow the same procedures as for Query 1 and issue

a Partition query for all possible sequences. We solve

this problem by adopting a scheme similar to the one

proposed by McSherry and Mahajan (2011), in which the

frequency of k-length strings is counted, as well as the

method proposed by Bonomi and Xiong (2013), in which

sequential pattern mining with differential privacy guar-

antees is described.

Definition 4 (Set of activity sequences of length n) We

define pref ðnÞ : N ! N� to return the set of all possible

activity sequences of length n:

pref ðnÞ ¼ fr 2 ðN [ f?gÞ� j r ¼ ha1; . . .; ani
^ 81� j�ðn�1Þðaj 6¼ ?Þg:

Activity sequences returned by pref(n) are either prefixes

of complete sequences without the symbol ? or complete

sequences, which end with ?.

We iteratively query prefix sequences SEQi � N� �N

using the following PINQ operation:

SEQi ¼ TransformTracesðLÞ:WhereðPredÞ

:Partitionðpref ðiÞÞ

:NoisyCountð�Þ

to build the result set SEQpublic ¼
S

1� i� k SEQi. Based on

SEQpublic, we can implement Query 2 as:

seqLðha1; . . .; aniÞ ¼ n with ðha1; . . .; ani; nÞ 2 SEQpublic

To avoid that an larger amount of Nj jk subsets are queried

than can be dealt with, we extend this method by using a

second user-defined parameter p that is applied to prune

Table 4 Pre-processed input data for the application of PINQ to

Query 1

Patient Source Target Further attributes

P1 > A . . .

P1 A B . . .

P1 B C . . .

P1 C ? . . .

P2 > A . . .

P2 A B . . .

P2 B C . . .

P2 C ? . . .

P3 > A . . .

P3 A B . . .

P3 B ? . . .

P4 > A . . .

P4 A D . . .

P4 D ? . . .

P5 > A . . .

P5 A ? . . .

Table 5 Pre-processed input data for the application of PINQ to

Query 2

Patient Sequence Further attributes

P1 hA;B;C;?i . . .

P2 hA;B;C;?i . . .

P3 hA;B;?i . . .

P4 hA;D;?i . . .

P5 hA;?i . . .
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low-frequency prefixes. The occurrence frequency of pre-

fixes is equal to or higher than the frequency of complete

sequences – a prefix needs to be at least as frequent by

definition. Therefore, we can reduce the number of prefixes

queried in each iteration by pruning the prefix tree to only

contain activity sequences with prefixes that occur more

often than p-times. Having obtained the frequencies for the

considered prefix tree, we only retain complete activity

sequences in the result SEQpublic, i.e., only sequences

ending with ?. In total, this method uses at most k queries

as described above and, thus, reduces the privacy budget by

k � �.

5.4 Limitations

We acknowledge that there are limitations to our proposed

method. Since Query 1 is formulated by means of a data

table in which each row corresponds to a single event

instead of to a single case, the privacy guarantee for

patients is diluted by at most expð� � gÞ as described in the

assumptions. Furthermore, the prefix-tree based method for

Query 2 is only computationally feasible for a relatively

short maximum trace length parameter k or aggressive

pruning parameter values p. Furthermore, The likelihood

that traces which are not in the original event log are added

to the result grows for a larger k parameter value.

6 Evaluation

We evaluated the proposed privacy protection model by

testing the impact of our method on the quality of dis-

covered process models compared to a ground truth. As

ground truth we use process models discovered in the

original, unprotected event log without any privacy pro-

tection. We compare both quantitatively based on the

standard evaluation measures fitness and precision as well

as qualitatively by discussing the differences. First, we

discuss our experimental set-up.

6.1 Experimental Set-Up

As process discovery algorithm, we use Inductive Miner5

infrequent (Leemans et al. 2013) in its variant supporting

directly-follows relations as input (Leemans et al. 2018)

with standard parameters and discover models for varying �

values. This shows how the � parameter influences the

trade-off between privacy and accuracy (see RQ 2) and

gives an indication which � values are feasible.

We replicate a typical scenario for process discovery

and attempt to discover a model representing the main

process behaviour by first removing infrequent behaviour

by applying the filtering plug-in ‘Filter directly follows

graph’ for Query 1 or the plug-in ‘Filter Out Low-Fre-

quency Traces’ for Query 2, both with standard parameters.

The same filters and the same discovery approach is used

on the unprotected event log without added noise. Then, we

measure the difference between the discovered process

models based on the F1-score calculated with the projected

recall and precision measure proposed by Leemans et al.

(2018). Since the results returned by our privacy protection

method are subject to random noise, we repeat the dis-

covery process 10 times for each parameter setting.

As dataset, we use two publicly available event logs

from the IEEE task force on process mining repository:6

Sepsis Cases (Mannhardt 2016) and Road Traffic Fine

Management (de Leoni and Mannhardt 2015). These two

event logs represent two different prototypes of event logs

for which we expect differences in the performance of our

protection model. The sepsis log is typical for the health-

care domain and has many infrequent variants. The road

fines log is more structured and only few trace variants

exist. We use it as example for a simpler process that is to a

large degree standardised and exhibits less infrequent

variants.

Sepsis Cases This is a hospital event log with approxi-

mately 1000 cases for trajectories of patients who are

suspected to have a life-threatening sepsis condition, from

the emergency room of a hospital until discharge. It is a

challenging dataset for our method since out of the total

1050 traces, there are 846 unique trace variants. The

maximum trace length is 185 and on average traces contain

14.5 events. The main source for the large number of trace

variants are three activities regarding the collection of

laboratory results (Mannhardt and Blinde 2017), which

occur in parallel to the remainder of the process. We use a

maximum sequence length of k ¼ 15 and a pruning

parameter p ¼ 30. We base these parameters on the aver-

age trace length and feasibility of computation. Only when

using � ¼ 0:01 did we need to increase the pruning

parameter to p ¼ 350 to keep the computation time within

a few seconds.

Road Traffic Fines Road Traffic Fine Management (de

Leoni and Mannhardt 2015), is an event log obtained for

the process of handling road traffic fines in a local Italian

police. We use a random sub-sample of 10,000 cases from5 We chose the Inductive Miner since it is the only process discovery

algorithm available in the open-source framework ProM 6.8 that

allows to use both directly-follows relations and trace variants as

input. 6 https://data.4tu.nl/repository/collection:event_logs_real.
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the event log. In contrast to the Sepsis Cases log, the Road

Fines event log is very structured. In the sample of 10,000

traces there are only 69 distinct trace variants. Furthermore,

the maximum length of a trace is 10 and the average length

is 3.7. Adding noise should affect the process discovery

result from this log less. Here we use a maximum sequence

length of k ¼ 10 and pruning parameter p ¼ 200 to keep

the computation time within a few seconds.

6.2 Results and Discussion

The computed F1 score indicating the difference between

the process models discovered in the original unprotected

event log without the usage of our protection model, i.e.,

without privacy guarantees, and the models discovered

when using the proposed privacy protection model are

shown in Fig. 6. For each combination of query and event

log a box plot indicates the effect of our method and the

value of � on the discovery result.

The results show clear differences between both event

logs and between the kind of query used. For the proposed

directly-follows querying approach (Query 1), there is only

little difference between the event logs used, and changes

in � have relatively little impact on the quality of the dis-

covered model. This indicates that the noise added to the

directly-follows relation frequencies can, largely, be fil-

tered by the noise filtering capabilities of the Inductive

Miner discovery algorithm. In fact, there are only small

changes between the models7 in Fig. 7 in which the best

process models discovered for � ¼ 0:1 and � ¼ 1:0 using

Query 1 are compared with the process model discovered

for the unprotected directly-follows relations from the

Sepsis Cases event log. For an � value of 0.01 a difference

begins to appear between Road Traffic Fines log and Sepsis

Cases. Whereas the quality of the discovered Sepsis Cases

process model decreases, there is still little change for the

Road Traffic Fines model.

Regarding the RQ 2 (How can event log privacy be

ensured with a minimum loss of utility for process min-

ing?) we varied the � parameter. When using the proposed

sequence querying approach (Query 2), there are larger

differences both when reducing � and between the two

event logs. The result for the Road Traffic Fines event log

is much better and also very stable across repetitions,

which indicates that the noise added by our proposed

method has only little influence on the quality of the dis-

covered process model. In the case of the Sepsis Cases

event log it can be observed that our technique produces

relatively high error rates, i.e., a low F1 score when com-

paring to the ground truth model. This is not surprising,

since the Sepsis Cases log represents a flexible process

Query 1 Query 2

R
oad Traffic Fines

S
epsis C

ases

0.01 0.1 1 0.01 0.1 1

0.4

0.6

0.8

1.0

0.4
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0.8

1.0

Epsilon

F1
 s
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Fig. 6 F1 score based on the projected recall and precision measures when comparing the process model discovered on the unprotected data

without our protection method and on the privacy-protected event log for both processes. Each box plot is based on 10 repetitions

7 The Petri net models are visualized using the compact Inductive

Visual Miner notation as described in Leemans et al. (2014).
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(a) Unprotected Data (b) ε = 0.1

Fig. 7 Process models discovered in the unprotected sepsis event log

and the privacy-protected log using Query 1 for � ¼ 0:1

(a) Unprotected Data (b) ε = 1.0

Fig. 8 Process models discovered in the unprotected sepsis data and

the privacy-protected data using Query 2 with � ¼ 1:0
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(a) Unprotected Data (b) ε = 0.01

Fig. 9 Process models discovered in the unprotected road fines log and the privacy-protected log using Query 2 for � ¼ 0:01
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with many parallel branches. To mine process models from

such event logs is already a challenge for existing process

mining algorithms without added noise. When using � ¼
0:01 many sequences not originally in the unprotected

event log are generated and we need to increase the pruning

threshold p to 350 for performance reasons. This hides

many of the actual traces, i.e., only trace variants occurring

more than 350 times would be retained. Figure 8 shows the

results obtained for the Sepsis Cases log based on Query 2

for � ¼ 0:1. Infrequent trace variants and some infrequently

occurring activities are hidden by the injected noise; still,

parts of the main process flow remain intact. For example,

in both process models the execution can start with the

sequence of ER Registration, ER Triage, and ER Sepsis

Triage. However, when using our protection model, the

discharge activities Release A and Release B are no longer

of the 80% most frequent trace variants.

In contrast, Fig. 9 shows that the error caused by Query

2 on the Road Traffic Fine log is small. It is noteworthy

that by using Query 2 with an � value of 0.1 we often obtain

the exact same result as when using the unprotected event

log. In this case, the F1 score is consistently 1.0 indicating

that our approach can be used to protect the privacy of

individual participants while still discovering the correct

main process behavior for very structured processes with a

small number of variants. When lowering the � further to

0.01 as shown in Fig. 9, differences appear due to the

added noise by our protection approach. In particular, some

of the less frequent activities connected to the appeals part

of the Road Traffic Fines process, for example Notify

Result Appeal to Offender and Receive Result Appeal From

Prefecture, appear in the discovered process model. Some

of the noise added by our privacy protection method cannot

longer be distinguished from the regular process behavior.

Still, other parts of the frequent process behavior are left

intact. For example, the process model starts with Create

Fine and may end with either Payment or Send for Credit

Collection as in the model discovered on the unprotected

log.

7 Related Work

The paper proposes the first privacy-preserving process

mining approach. Privacy-preserving data mining tech-

niques (PPDM) have been considered to a large extent in

the literature and have been accompanied by several

experimental implementations (Zhiqiang and Longjun

2018) and platforms. Different evaluation parameters for

PPDM algorithms can be found in literature. According to

Verykios et al. (2004) the evaluation parameters are per-

formance required to secure data, data utility, uncertainty

level for the prediction of hidden data, and resistance in

terms of tolerance against the data mining algorithms.

Bertino et al. (2008) extend this list of evaluation criteria

by hiding failure, which is ‘‘the portion of sensitive

information that is not hidden by the application of a pri-

vacy preservation technique’’. Algorithms for PPDM either

adopt distributed frameworks or add random noise to the

data (Bhowmick et al. 2006) in order to prevent the loss of

user’s privacy before publishing data. To randomize data

by adding noise either a known statistical distribution is

used (Agrawal and Srikant 2000) or noise is multiplied

with a known statistical distribution (Kim et al. 2003).

There is also a vast amount of literature on privacy in

databases. In this area, several efforts were made in the last

decade to integrate privacy when designing databases by

using multi-level security (Macedo et al. 2017) or role-

based access control (Colombo and Ferrari 2015)

approaches.

Since this paper applies the notion of differential privacy

for event logs, we studied the respective domain of interest.

Approaches relying on differential privacy can be found for

health data (Dankar and El Emam 2013), location-based

services (ElSalamouny and Gambs 2016) and smart meters

(Zhang et al. 2017), which are domains with high demand

for data protection. This paper uses a hospital event log for

the evaluation of our approach.

Related to event log data and process mining, a large

body of research exists for security-oriented analysis. The

tool of Stocker and Accorsi (2014) enables the configura-

tion of security concerns (i.e., authentication, binding of

duty and separation of duties) when generating synthetic

event logs. A different event log configuration according to

security concerns is suggested in Fazzinga et al. (2018)

who use security risk as criterion to filter related traces. To

support decision making in security audits, Accorsi et al.

(2013) suggest to mine the control- and the data-flow since

only both perspectives make it possible to analyze security

requirements. The application domain of security-oriented

analysis of event logs is intrusion detection (Myers et al.

2017) or smart metering (Eibl et al. 2017). While a large

body of research exists for security-oriented analysis, pri-

vacy concerns have been scarcely considered for process

mining. Only the work of Mannhardt et al. (2018) dis-

cusses privacy challenges for process mining, however,

without suggesting any approach for event log protection.

A privacy-preserving system design for process mining has

been suggested in Michael et al. (2019), which allows to

specify who does what, when, why, where and how with

personal data during process mining. Our approach could

be integrated into the privacy-preserving system design as

a privacy engineering technique to protect the event logs.

To sum up, privacy-preserving techniques for process

mining have received little attention and the approach

presented in this paper is the first one so far.
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8 Conclusion

An increasing amount of data is continuously collected and

stored by organizations and poses security and privacy

challenges. While methods for knowledge extraction from

data which preserve privacy have been widely considered

for data mining (Mendes and Vilela 2017), privacy-pre-

serving process mining is still in its infancy.

Contribution This paper contributes a privacy-preserving

technique for process mining and an approach to protect

event logs. In this way, we address technological chal-

lenges of privacy-preserving process mining. To show

which privacy leakages exist while conducting process

mining, we use a hospital health process use case. Clearly,

this domain has a high demand for privacy protection. We

have applied the concept of privacy checkpoints on an

event schema of hospital health processes and identified six

stages of data paths. The privacy checkpoint between data

storage and data (re)use can be considered as possible

privacy leakages while conducting process mining. We

map the stages of data passes to the data value chain

suggested in D’Acquisto et al. (2015b) and identify the

abstract privacy design patterns as possible candidates

where protection is essential. This provides an answer to

RQ 1 (At which stage of data paths is a protection model

for event log privacy required?).

We present a protection model including a trusted

environment for primary use purposes and an untrusted

environment using a differential privacy approach, which is

the strongest privacy model available to date which pro-

vides provable privacy guarantees. Here historical data

may be used in an exploratory fashion without clear anal-

ysis question. Thus, it is difficult to attain consent for it

afterward. We suggest to introduce a privacy engine as

single access point between the two environments. This

engine introduces noise to each query result according to

the differential privacy framework which safeguards the

privacy of patients. With this approach, it is possible to

safely reuse the collected data for process mining purposes.

For evaluation purposes, we have applied our method to

two publicly available real-life event logs and applied the

Inductive Miner algorithm to both of them. The evaluation

shows that our method can be used to discover the frequent

behavior of a process while providing privacy for indi-

vidual participants. For event logs from highly structured

processes with few trace variants the error introduced is

small, whereas for event logs with a large number of

infrequent behavior leading to many trace variants the

introduced noise affects the utility of the discovered pro-

cess model. With regard to RQ 2 (How can event log pri-

vacy be ensured with a minimum loss of utility for process

mining?) we can conclude that the choice of the � value and

the structure of the event log affect the trade-off between

utility and privacy.

Future work There are several avenues for future work.

More accuracy may be achieved when integrating a process

discovery algorithm into the differential privacy framework

by placing the process mining engine in the trusted envi-

ronment depicted in Fig. 5. This could help reducing the

amount of noise that needs to be injected by means of

exploiting properties of particular process discovery algo-

rithms. There are several examples for such tailored

approaches in the data mining domain, e.g., k-means (Blum

et al. 2005) and sequential pattern mining (Bonomi and

Xiong 2013) with differential privacy guarantees. Also, we

plan to investigate more closely the relationship between the

parameters of our method: �, k, and p in the accuracy-pri-

vacy trade-off in the resulting process model. So far, we

have only considered differential privacy for discovering the

control-flow perspective of processes from event logs.Many

useful applications of process mining rely on other per-

spectives such as performance information or data values. It

would be possible to extend our method towards these

perspectives to provide differential privacy for aggregated

information, e.g., the average time between activities.

Another interesting aspect is to focus also on other

privacy design strategies. Privacy models could be used to

generate an information platform by means of MDA

(Adam et al. 2018) that enables end users to either (a) de-

fine privacy policies, in order to determine more precisely

who can do what with which data (guided consent process)

and (b) monitor compliance with them, in order to allow

them to see which privacy mechanisms are provided for

which process stages regarding the process mining of their

data. The domain specific concepts for such a privacy

model can be easily extracted from event logs to be used in

conceptual models, considering relevant contexts (Michael

and Steinberger 2017), as event logs include data with

regard to several concepts in a condensed way. This

approach would support the privacy design strategies

control and enforce (cf. Sect. 2.1).

To sum up, this paper presents a first technical contri-

bution for privacy-preserving process mining using a dif-

ferential privacy approach and outlines a roadmap for

future research on that field.
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