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Abstract

Models are the primary development artifacts in model-driven software engineering making
model change management crucial for developers. In our work, we investigate if semantic
differencing improves the developers’ understandings of differences between model ver-
sions. Current research in this field focuses on pure syntactic differences between models
which might not reveal the impact of the syntactic change to the real world. Thus, the
semantic difference of models is an open field to investigate. We propose differencing
operators for model comparison for four different modeling languages (Class Diagrams,
Activity Diagrams, Statecharts and Feature Diagrams). This technical report describes
the main fundamentals of the semantic differencing operators for the four modeling lan-
guages and the results of a pre-study on the usefulness of the differencing operators for
software engineers. In the study, we were asking how well aspects such as syntactic dif-
ferences, semantic differences, a combination of syntactic and semantic differences, and
the abstraction as well as the summarization of semantic differences helped to understand
the differences between shown models in each of the four modeling languages. The pre-
study has shown that a combination of the syntactic and semantic difference is the most
suitable alternative to providing intuitive explanations that take semantic differences into
consideration. However, a larger study with real-size models is needed for obtaining more
meaningful results.
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Chapter 1

Introduction and Motivation

Since models are the primary development artifacts in model-driven software engineer-
ing (MDSE) [Sel03, Sch06, FR07, BCW17, KRR18], managing model changes is an im-
portant task [BKL+12] to support developers. Implementing effective change manage-
ment is still a major and not yet fully addressed challenge in software engineering in
general and in MDSE in particular and has attracted significant research attention in
recent years, e.g., [OWK03, AP03, MGH05, OMW05, EPK06, XS07, MD08, ASW09,
MRR11a, MRR11f, MRR12, GKLE13, GKLE13, KKT13, TELW14, TELW14, MR15,
BKRW17, MR18, KR18b, KR18a, DKMR19, BKRW19, DEKR19]. Models continuously
evolve during their design, development, and maintenance due to iterative development
methodologies, changing requirements, and bug fixes. Thus, detecting and understanding
the differences between model versions is crucial for developers.

Fundamental building blocks for the detection of model differences are differencing oper-
ators applicable for model comparisons [MRR11a]. Many works have investigated vari-
ous kinds of model comparisons. Most of them present syntactic differencing operators
focusing on comparing the syntactic elements of two models. A syntactic differencing
operator takes two models as input and outputs a representation of syntactic model el-
ements that must be removed, added, or changed in the one model to obtain the other
model [AP03, EPK06, ASW09, XS07, GKLE13, BKL+12, KKT13, TELW14]. However,
such syntactic differences might not reveal the essence of the differences: A truly refactored
model exhibits syntactic differences to a previous version of the model, however, its mean-
ing has not changed due to the syntactic transformation. Vice versa, two syntactically
similar models may have very different semantics. Therefore, we have developed seman-
tic differencing operators [KMRR17, BKRW17, KR18b, DKMR19, BKRW19, DEKR19]
within the DFG-supported project SemanticDiff 1. A semantic differencing operator takes
two models as input and returns instances of the one model that are not instances of the
other model [MRR11a]. These instances are diff witnesses that reveal those changes that
cannot be detected by syntactic differencing operators.

Semantic differencing enables to display unintentional changes to a model’s semantics, i.e.,
the introduction of bugs. However, the way semantic (and also syntactic) differences are
displayed to the developer has a strong influence on her understanding of the differences.

1Project ’A Semantic Approach to Evolution Analysis in Model-Based Software Development (Se-
manticDiff)’, 2015-2019, this research is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project no. 250902306. - Geschäftszeichen: RU 1431/9-1
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Often, developers conduct model differencing to find out whether a changed model still
fulfills a certain property. If this is not the case, the pure semantic difference might not
explain why the model does not fulfill the property intuitively. Techniques that identify the
syntactic elements or syntactic changes that cause a semantic difference [KR18a] enable
the developer to understand the relation between syntactic elements or syntactic changes
and the semantic differences. Other presentation techniques summarize similar witnesses
for semantic differences in order to present a more condensed and therefore understandable
set of differences to the user [MRR11e].

To investigate how well semantic differencing techniques represent differences and help
developers understand differences between model versions, we conducted a survey among
software engineers and students. The survey investigates the effects of the representa-
tions of model differences on the comprehensibility of differences between model versions.
Particularly, we have investigated the comprehensibility of five representations of differ-
ences between models of four different modeling languages, namely Class Diagrams (CDs),
Activity Diagrams (ADs), Statecharts (SCs) and Feature Diagrams (FDs).

This technical report is structured as follows: The next chapter describes model differenc-
ing and especially introduces language-specific semantic differencing operators. Chapter 3
explains the design of our study in detail. Chapter 4 presents the results of the study
and our main findings. Chapter 5 discusses related work. The last chapter concludes.
Appendix A presents the questionnaire of the study.



Chapter 2

Model Differencing

Research on model differencing divides into syntactic differencing, semantic differencing,
and approaches that combine syntactic with semantic differencing [MR15, MR18, KR18a].
Syntactic differencing operators focus on comparing the differences between syntactic ele-
ments of two models. Thereby, the focus lies on detecting those syntactic model elements
that differentiate two model versions. A syntactic differencing operator takes two models
as input and returns a set of syntactic changes, i.e., the syntactic difference. A syntactic
change could be the addition, removal or other manipulation, e.g., renaming, of one or
more model elements. The syntactic difference, thereby, encodes those syntactic changes
that transform the one input model to the other [AP03, EPK06, ASW09, XS07, GKLE13,
BKL+12, KKT13, TELW14]. Syntactic differencing is not concerned with the semantics
of models. Since syntactic differences do not imply semantic differences, syntactic differ-
encing operators do not reveal the semantic differences between the two input models, i.e.,
the instances of the one model that are not instances of the other. These usually represent
the bugs fixed in a model or the features added to a model. To understand the semantic
differences of models, developers have to interpret the syntactic differences which, without
semantic differencing operators, is a manual task.
Semantic differencing operators focus on comparing the semantic differences of two mod-
els [MRR11a, MRR12, MR18, KR18b]. A semantic differencing operator takes two models
as input and returns a finite set of diff witnesses [MRR11a, MRR11f, MRR12, MR15,
MR18, KR18a]. A diff witness can be interpreted as an instance of the one model that
is not an instance of the other model. Therefore, each diff witness is a concrete proof
for the existence of a difference between the semantics of the input models. As semantic
differencing abstracts from the syntactic differences, it may not provide an understandable
representation of model differences that relates the syntax of the models to their seman-
tics. To understand which syntactic differences cause a semantic difference, developers
have to interpret the latter, which, without syntactic differencing, is a manual task.
Approaches combining syntactic and semantic differencing focus on relating the semantic
differences to syntactic model elements causing their existence [MR15, MR18, KR18a].
The approach presented in [KR18a], detects syntactic changes that can be applied to a
model in order to obtain a model that has no semantic differences compared to the other
model [KR18a]. The approach interprets the model elements that are affected by the
syntactic changes to cause the existence of the semantic differences. The computed syn-
tactic changes can be directly applied to transform a model in case the semantic difference
represents a bug.
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Semantic differencing operators can be combined with abstraction techniques and with
summarization techniques [MRR11f]. Abstraction techniques facilitate users in execut-
ing semantic differencing while abstracting from semantic differences caused by selected
model elements. Summarization techniques condensate the information presented to de-
velopers by semantic differencing operators. Summarization techniques summarize similar
diff witnesses and present only a single witness of multiple similar witnesses to developers.

In the following, Section 2.1 presents a formal framework for model differencing that
is the basis of our survey. The framework formalizes the notion of modeling language,
syntactic differencing, semantic differencing, summarization, abstraction, and presents a
language-independent combination of syntactic with semantic differencing. Subsequently,
Section 2.2 presents the instantiations of the framework with the modeling languages.

2.1 A Formal Framework for Model Differencing

The basis for all model evolution analyses is a precise definition of the modeling lan-
guage [Rum98, HR00, HR04, CGR09, Grö10, GR11].

Definition 1 A modeling language is a tuple (M,S, sem) where

• M is a countable set of models,

• S is a set called semantic domain, and

• sem : M → ℘(S) is a semantic mapping.

In the following, let L = (M,S, sem) be an arbitrary but fixed modeling language. Unless
stated otherwise, the following notions are defined relative to L.

The set M contains all models that are syntactically correct with respect to some syn-
tax definition. The definition of modeling language abstracts from the technology used
to define the syntactic representation of models. The semantic domain S is a set of
well-understood (mathematical) constructs. The elements of the semantic domain are in-
terpreted as possible realizations of the modeled circumstances. The semantic mapping
sem maps each model m ∈ M to its meaning sem(m). The set-based semantic mapping
reflects that models are often highly underspecified in the sense that they permit multiple
possible realizations. For example, the semantic domain for a CD modeling language can
be defined as the set of all possible object structures. Then, the semantic mapping of the
CD language maps each CD to the set of all object structures permitted by the CD.

2.1.1 Syntactic Differencing

The definition of modeling language captures the set of all models and the semantics of
models but does not formalize changes to a model. Change operations are an adequate
formalism to specify the possible syntactic transformations applicable to models in the
language [MR15, MR18, KR18a].

Definition 1 A change operation for L is a partial function o : M ⇀M .



Change operations are partial functions because not every change applied to any well-
formed model yields a syntactically correct model [KKT13, TELW14, GKLE13, MR15,
MR18, KR18a]. An evolution step consists of applying multiple change operations to a
model. A countable set O of change operations for L is called a change operation suite
for L [KR18a]. Change sequences are sequences of change operations and e.g., describe
the histories of model versions or steps for systematically changing a model. A finite
sequence of change operations is called a change sequence [KR18a]. For a set of change
operations O, the set of all possible change sequences is denoted O∗ and the length of a
change sequence t ∈ O∗, i.e., the number of change operations in t, is denoted |t|.

The operator B: M × O∗ ⇀ M is the point-wise extension of the application of change
operations to the application of sequences of change operations. The extension is naturally
defined by (1) m B ε = m, (2) m B o : t = o(m) B t, if o is defined on m, (3) m B o : t is
undefined, if o is undefined on m. By means of a change operation suite for a language L,
the language formally occupies a set of possible syntactic model transformations. Syntactic
differencing requires the ability to change every model in M to every other model in M :
A change operation suite O for L is said to be complete iff ∀m,m′ ∈ M : ∃t ∈ O∗ : m B
t = m′ [KR18a]. By [MR15, MR18, KR18a], a change sequence t is called a syntactic
difference from a model m ∈ M to a model m′ ∈ M iff m B t = m′. In the following, O
denotes an arbitrary but fixed complete change operation suite for L.

Syntactic differencing research focuses on (automatically) deriving complete change oper-
ation suites and on computing syntactic differences between models. A syntactic differ-
encing operator is a function ∆ : M ×M → O∗ such that ∀m,m′ ∈: m B ∆(m,m′) = m′.
Thus, a syntactic differencing operator takes two models as input and outputs a change
sequence such that applying the sequence to the first model yields the second model.
Syntactic differencing operators are, in general, not unique. Often, syntactic differencing
operators are required to compute short(est) syntactic differences for the input models.

2.1.2 Semantic Differencing

The semantic domain S represents all possible realizations of the models in M . The
semantic mapping sem maps each model to its set of possible realizations. This interpre-
tation of the semantic domain and the set-based semantic mapping enable to easily define
a refinement relation on models: Intuitively, a model is a refinement of another model iff
every realization of the former is also a realization of the latter. Formally, this relation is
established via set inclusion over the models’ semantics [HKR+07].

Definition 2 A model m ∈M is a refinement of a model m′ ∈M iff sem(m) ⊆ sem(m′).

Thus, if every realization of a model is correct with respect to some requirements on the
semantics of the model, then every realization of every refinement of the model is also
correct with respect to these requirements. However, in most cases, a model does not
refine another model. Then, the semantic difference [MRR11a] from the former model to
the latter model is not empty.

Definition 3 The semantic difference from a model m ∈M to a model m′ ∈M is defined
as the set δ(m,m′) = sem(m) \ sem(m′).



The elements in the semantic difference δ(m,m′) are called diff witnesses (for the semantic
difference from m ∈M to m′ ∈M) [MRR11a]. Every diff witness represents a realization
of the model m that is not a possible realization of the model m′. By definition, a model
m ∈ M is a refinement of a model m′ ∈ M iff the semantic difference from m to m′ is
empty, i.e., δ(m,m′) = ∅.

A semantic differencing operator [MRR11a] is an automatic procedure that takes two
models m,m′ ∈M as input and returns a finite set of diff witnesses W ⊆ δ(m,m′) that are
contained in the semantic difference from m to m′. Developers can survey the output of a
semantic differencing operator to increase their understandings of the semantic differences
between the two input models. A semantic differencing operator diff : M ×M → ℘(S)
is applicable for automatic refinement checking if for all models m,m′ ∈M , it holds that
diff(m,m′) = ∅ iff δ(m,m′) = ∅. Research on semantic differencing focuses on developing
language-specific semantic differencing operators.

2.1.3 Summarization in Semantic Differencing

Summarization techniques [MRR11f] condensate the information presented to developers
by summarizing similar witnesses. Multiple witnesses might represent similar information
concerning the semantic difference between two models. The idea of summarization tech-
niques is to partition diff witnesses into equivalence classes. Each equivalence class should
be chosen such that it contains witnesses that represent similar information concerning
the semantic difference of the models. The underlying assumption is that presenting mul-
tiple witnesses from the same equivalence class does not provide more information to a
developer than presenting one witness of the equivalence class.

Definition 4 Let ∼ be an equivalence relation on S. A summary of the semantic dif-
ference from m ∈ M to m′ ∈ M concerning ∼ is a set Sum ⊆ δ(m,m′) such that
∀w,w′ ∈ Sum : w 6= w′ ⇒ w 6∼ w′.

Independent of the used equivalence relation, if a semantic difference is not empty, there
exists a non-empty summarization of the difference concerning the equivalence relation.
For a set of diff witnesses contained in the semantic difference from a model to another
model, Algorithm 1 computes a summary of the semantic difference that is a subset
of the set of witnesses. An elementary operation of the algorithm is to check whether
two witnesses are equivalent with respect to the equivalence relation ∼. The algorithm
initializes the variable Sum as the empty set (l. 1). Then, the algorithm iterates over all
witnesses contained in the set W (l. 2-6). For each of these witnesses w, the algorithm
checks whether the set Sum already contains another witness that is equivalent to the
witness w (l. 3). If this is not the case, then the algorithm adds the witness w to the set
Sum (l. 4). Finally, the algorithm returns the computed summary (l. 7).

2.1.4 Abstraction in Semantic Differencing

Abstraction techniques perform semantic differencing on different levels of abstraction.
The idea is to execute the semantic differencing operator while abstracting from selected
syntactic model elements. Thereby, abstraction techniques support developers in detecting
the syntactic model elements that are responsible for the existence of semantic differences.



Algorithm 1 Computing a summarization of a set of witnesses concerning an equivalence
relation ∼ on S.
Input: A set of witnesses W ⊆ S.
Output: A summary of W concerning ∼.

1: define Sum← ∅ set of S
2: for all w ∈W do
3: if ∀w′ ∈ Sum : w 6∼ w′ then
4: Sum← Sum ∪ {w}
5: end if
6: end for
7: return Sum

For the application of an abstraction technique we assume that a set of model elementsM
is given and that each model m ∈ M can be considered as a finite set of model elements
m ⊆ M. For instance, for a CD modeling language, adequate modeling elements are
classes, enumerations, associations, cardinalities, etc.

A semantic differencing operator that supports abstraction takes two models m,m′ ∈ M
and a set of model elements E ⊆ M as input. If m \ E ∈ M and m′ \ E ∈ M are
well-formed models of the language, then the operator returns the result from applying
the ordinary semantic differencing operator to m \E and m′ \E. Otherwise, the semantic
differencing operator is not applicable to the models and the abstraction. Developers can
use abstraction techniques to identify a required abstraction for refinement:

Definition 5 A required abstraction over a set A ⊆M such that a model m ∈M refines
a model m′ ∈ M is a smallest set E ⊆ A satisfying m \ E ∈ M , m′ \ E ∈ M , and
sem(m \ E) ⊆ sem(m′ \ E).

In Def. 5, the set A contains the model elements to abstract from. The model elements
contained in a required abstraction are considered responsible for the existence of semantic
differences from m to m′ because abstracting from the model elements yields models
where the semantic difference is empty. Thus, abstraction techniques detect the syntactic
model elements responsible for the existence of semantic differences. Usually, required
abstractions are not unique and not guaranteed to exist because not every subset of M
must be a well-formed model. If a required abstraction exists, then it is finite and a subset
of the finite set m ∪m′ because m \ (m ∪m′) = ∅ = m′ \ (m ∪m′).

Algorithm 2 can be used for computing a required abstraction over A ⊆ M such that a
model m ∈M refines a model m′ ∈M . The algorithm takes the set of model elements A
and the two models m,m′ as input. It outputs a required abstraction over A such that
m refines m′ if such a required abstraction exists. Otherwise, the algorithm returns the
special value nil. Elementary operations of the algorithm test whether a set of model
elements is contained in the set A and check whether a model is a refinement of another
model. The algorithm iterates over all sets of modeling elements E contained in m or m′
in increasing size (ll. 1-5). If E is a subset of A and abstracting from E in m and m′ yields
models such that m \E is a refinement of m′ \E (l. 2), then the algorithm returns the set
E (l. 3). As the algorithm iterates over the sets containing modeling elements of m and m′
in increasing sizes, the first set E satisfying the condition is a required abstraction. If no
subset of the modeling elements satisfies the condition above, then no required abstraction
over A exists. In this case, the algorithm returns the special value nil (l. 6).



Algorithm 2 Computing a required abstraction over A ⊆M such that a model m ∈M
refines a model m′ ∈M .
Input: A set of model elements A ⊆M and two models m,m′ ∈M .
Output: A required abstraction over A such that m refines m′ if such a required abstrac-

tion exists. Otherwise, nil.
1: for all E ⊆ m ∪m′ in increasing sizes do
2: if E ⊆ A ∧ sem(m \ E) ⊆ sem(m′ \ E) then
3: return E
4: end if
5: end for
6: return nil

2.1.5 Change Sequences for Repairing Refinement

Approaches that combine syntactic and semantic differencing aim at supporting developers
in detecting the syntactic model elements that are responsible for the existence of semantic
differences [MR15, MR18, KR18a].

Developers can use semantic differencing operators to detect whether a model is a refine-
ment of another model. If the one model is no refinement of the other model, semantic
differencing operators usually provide diff witnesses or another model summarizing the
semantic difference [FLW11]. Analyzing diff witnesses to identify the syntactic model ele-
ments of the one model that cause the existence of semantic differences can be automated
by computing shortest repairing sequences [KR18a]. Intuitively, a change sequence repairs
a model towards refining another model if it is guaranteed to transform the one model to
a refinement of the other model. A change sequence is a shortest change sequence that
repairs a model towards refining another model if it repairs the model towards refining the
other model and there does not exist any shorter change sequence that repairs the model
towards refining the other model.

Definition 6 A change sequence t ∈ O∗ repairs a model m ∈M towards refining a model
m′ ∈M iff m B t ∈M and ∅ 6= sem(m B t) ⊆ sem(m′).

A change sequence t ∈ O∗ is a shortest change sequence that repairs a model m ∈ M
towards refining a model m′ ∈M iff t repairs m towards refining m′ and ∀u ∈ O∗ : (m B
u ∈M ∧ ∅ 6= sem(m B u) ⊆ sem(m′))⇒ |t| ≤ |u|.

The syntactic model elements affected by a shortest repairing change sequence can be
interpreted to cause the existence of the semantic differences. The approach presented
in [KR18a] for computing shortest repairing change sequences relies on partitioning the
change operations applicable to models into finitely many equivalence classes. Each equiv-
alence class contains change operations that induce an equally quick repair of the models
obtained from applying the operations [KR18a]. Intuitively, two change operations o, p
induce an equally quick repair of a model m iff each shortest change sequence that repairs
o(m) has the same length as each shortest change sequence that repairs p(m). In general,
partitioning the change operations into equivalence classes is not trivial as the set of mod-
els M is typically infinite and usually infinitely many change operations are applicable to
each model.



2.2 Instantiations of the Framework

This section presents four instantiations of the framework presented in Section 2.1 for
existing modeling languages with semantic differencing operators. The CD modeling lan-
guage and a semantic differencing operator have been introduced in [MRR11d, KMRR17].
The AD modeling language and a semantic differencing operator have been presented
in [KR18b]. The SC modeling language and a semantic differencing operator have been
introduced in [DEKR19]. The FD modeling language and a semantic differencing operator
have been presented in [DKMR19].

2.2.1 Class Diagram Instantiation

The set of models of the CD modeling language [MRR11d, KMRR17] is the set of all well-
formed CDs by the definition of well-formedness given in [KMRR17]. The semantic domain
is the set of all possible object structures. The semantic mapping assigns a (possibly
infinite) set of object structures to every CD. This set represents the possible data states
of the system prescribed by the CD.

The semantic differencing operator takes two CDs as input and returns a finite set of object
structures that are instances of the first CD and not of the second CD. The implementation
is based on a reduction to Alloy1 [Jac06] as introduced in [MRR11c, KMRR17].

For the summarization of witnesses (see Section 2.1.3), two object structures are consid-
ered equivalent if their objects instantiate the same classes [MRR11f]. The abstraction
technique considered for CDs allows to abstract from the existence of attributes, classes,
enumerations, associations, generalizations, and enumeration fields. The combination of
syntactic and semantic differencing as introduced in Section 2.1.5, requires to define a set
of syntactic change operations. Similar to [MR15, MR18], the framework-instantiation
for CDs therefore offers addition, deletion, and modification of classes, associations, and
enumerations. Only existing classes, associations, and enumerations may be modified or
deleted and for repairing sequences, we assume that there are finitely many different cardi-
nalities. When computing shortest repairing change sequences, change operations adding
classes (roles name or enumeration fields, respectively) not existing in the input CDs are
considered to induce an equally quick repair of the one input CD towards refining the
other CD.

For example, Figure 2.1 depicts the two CDs cd.v1 and cd.v2. The change sequence
chngCardEmployee,Task,0..2, AddGenManager,Employee, addEnumFieldPositionKind,external

is a syntactic difference from cd.v1 to the cd.v2. The first operation in the sequence
changes the cardinality of the association between the classes Employee and Task on
the end of the class Task to 0..2. The second change operation adds the generalization
relation between the classes Manager and Employee. The third change operation adds
the field external to the enumeration PositionKind.

Applying the semantic differencing operator to compute diff witnesses for the semantic
difference from cd.v2 to cd.v1 yields, among others, the six diff witnesses presented
in Figure 2.2. The object structures os1 and os5 are no elements of the semantics of
cd.v1 because there does not exist an association from Manager to Task in cd.v1.
The object structures os2 and os3 are no elements of the semantics of cd.v1 because

1http://alloy.mit.edu/

http://alloy.mit.edu/
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Figure 2.1: Two simple CDs used as examples in the survey that are taken from [MRR11c].

the enumeration field external of the enumeration Position is not defined in cd.v1.
The object structures os4 and os6 are no elements of the semantics of cdc.v1 because
Manager objects can only be linked to Employee objects via the role managedBy in the
CD cd.v1.

Considering two object structures that instantiate the same classes as equivalent yields
the set {os2,os5} as a summary of the set of witnesses {os1,os2,os5}.

The set {Gen(Manager, Employee),EnumField(PositionKind,external)} is a
required abstraction over the set of model elements used in the CDs such that cd.v2 re-
fines cd.v1, by Def. 5. The abstraction applies to the generalization relation between the
classes Manger and Employee and the enumeration field external of PositionKind.

Similarly, the change sequence containing two change operations that delete the general-
ization relation between the classes Manager and Employee and the enumeration field
external of PositionKind is a shortest change sequence for repairing cd.v2 towards
refining cd.v1.

2.2.2 Activity Diagram Instantiation

The set of models of the AD modeling language is the set of all well-formed ADs [KR18b].
The semantic domain is the set of all possible finite execution traces over actions. The se-
mantic mapping assigns a (possibly infinite) set of execution traces to each AD, containing
only actions that are explicitly modeled in the AD.

The semantic differencing operator takes two ADs as input and returns a finite set of
execution traces that are modeled in the one AD not modeled in the other AD. In [KR18a],
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Figure 2.2: Six object structures contained in the semantic difference from the CD cd.v1
to the CD cd.v2 (cf. Figure 2.1).

the semantics of ADs is based on a translation to finite automata [HMU06], which reduces
semantic differencing of ADs to language inclusion checking between finite automata.
The implementation of the semantic differencing operator uses the automaton language
inclusion checking tool RABIT2.

For the summarization of witnesses, two execution traces are considered equivalent if
the sets of actions appearing in the traces are equal to each other [MRR11f]. For the
study, we use an abstraction technique that abstracts from the existence of actions, xor-
fragments, and-fragments, cyclic-fragments, and transitions. The abstraction from actions
or fragments connects the control flow from the action’s or fragment’s predecessor node to
the respective successor node accordingly if it is not abstracted from the transitions. We
use syntactic change operations inspired by [MR15, MR18, KR18a], i.e., insertion, deletion
of actions and fragments as well as type-conversion for fragments. The partitioning of
the change operations and the algorithm for the computation of repairing sequences are
described in [KR18a].

For example, Figure 2.3 depicts the two ADs ad.v1 and ad.v2. An example of a syntactic
difference from ad.v1 to ad.v2 is the change sequence that contains change operations
to execute the following changes:

1. delete the action labeled Check Claim,

2. insert a cyclic-fragment between the nodes Record Claim and the following deci-
sion node,

3. add an action labeled Check Claim to the cyclic-fragment between the merge and
the decision node,

4. add an action labeled Retrieve Add. Data to the cyclic fragment between the
decision node and the merge node,

2http://www.languageinclusion.org/

http://www.languageinclusion.org/
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Figure 2.3: Two simple ADs used as examples in the survey that are inspired by similar
ADs from [MR15, MR18, KR18a].

5. convert the and-fragment containing the actions labeled Send Declinature and
Update Cost. Record to an xor-fragment,

6. delete the action labeled Update Cost. Record,

7. add the action labeled Call Costumer to the xor-fragment containing the action
labeled Send Declinature, and

8. delete the action labeled Close Claim.

Applying the semantic differencing operator to compute diff witnesses for the semantic
difference from ad.v2 to ad.v1 yields, among others, the five diff witnesses presented in
Figure 2.4. Each of the execution traces is modeled in ad.v2 and not modeled in ad.v1.

With the summarization equivalence relation on the set of execution traces as described
above, summarizing execution traces whose sets of actions are equal yields the set of
witnesses containing exactly the first, the second, the fourth, and the fifth execution
traces depicted in Figure 2.4. The first execution trace is equivalent to the third execution
trace. The other execution traces are pairwise not equivalent.

The set containing the syntactic elements for the nodes labeled Retrieve Add. Data,
Update Cost. Record, Call Costumer, and Close Claim (and the transitions of
the nodes labeled Retrieve Add. Data, Call Costumer, and Close Claim) is a
required abstraction over the set of model elements used in the ADs such that ad.v2
refines ad.v1.

A shortest change sequence that repairs ad.v2 towards refining ad.v1 is one that contains
the change operations that prescribe the following transformations:



1. Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Settle Claim, 

Send Letter, Calculate Loss Amount, Recalc. Cost. Contr., Payout

2. Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Reject Claim, 

Send Declinature

3. Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Settle Claim, 

Calculate Loss Amount, Recalc. Cost. Contr., Send Letter, Payout

4. Record Claim, Check Claim, Reject Claim, Call Costumer

5. Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Reject Claim, 

Call Costumer

Figure 2.4: Five diff witnesses contained in the semantic difference from ad.v2 to ad.v1.

1. delete the action node labeled Retrieve Add. Data,

2. delete the action node labeled Call Costumer,

3. add an action node labeled Close Claim after the action node labeled Send
Declinature and reconnect the control flow accordingly,

4. add an action node labeled Update Cost. Record after the action node labeled
Send Declinature and reconnect the control flow accordingly.

2.2.3 Statechart Instantiation

The set of models of the SC modeling language [DEKR19] is the set of all well-formed
SCs by the definition of well-formedness given in [DEKR19]. The semantic domain is the
set of all possible finite stimulus/reaction traces. The semantic mapping maps each SC to
the (usually infinite) set of all stimulus/reaction traces that it describes.

The semantic differencing operator takes two SCs as input and outputs a set of stimu-
lus/reaction traces that are possible in the one SC and not in the other SC. Semantic differ-
encing of SCs can be reduced to language inclusion checking for finite automata [DEKR19,
HMU06]. This enables an implementation based on RABIT.

For the summarization of witnesses, two traces are considered equivalent if the sets of
stimulus/reaction pairs used in the traces are equal. We use an abstraction technique that
allows to abstract from the existence of events in the reactions of transitions [DEKR19].
For combining syntactic and semantic differencing, we consider change operations for
adding and deleting states and transitions and changing the initial state. The partitioning
of the change operations is similar to the partitioning of the change operations for the
time-synchronous port automaton [BKRW17, BKRW19] modeling language described in
[KR18a]. Operations for adding states that add states not used in the SCs are pairwise
equivalent and change operations for adding possible input and output events that add
events not used in the SCs are pairwise equivalent.

For example, Figure 2.5 depicts the two SCs sc.v1 and sc.v2. A syntactic difference
from sc.v1 to sc.v2 is, for example, given by a change sequence that contains two
change operations that prescribe the following transformations:
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Figure 2.5: Two simple SCs used as examples in the survey. The SCs are taken
from [DEKR19].

1. add a transition from the state Completed to the state Completed with the stim-
ulus cancelOrder() and the reaction sendIllegalCancelNotice().

2. delete the transition from the state Completed to the state Completed with the
stimulus cancelOrder() and the reaction sendCancelRequest().

Applying the semantic differencing operator to compute diff witnesses for the semantic
difference from sc.v2 to sc.v1 yields, among others, the diff witnesses t1, t2, t3 presented
in Figure 2.6. The traces t1, t2 and t3 are no traces in the semantics of sc.v1 because
there are no executions of sc.v1 that produce the traces. The bottom of Figure 2.6
depicts the execution e1 of sc.v2 producing the trace t1.

With the summarization equivalence relation on the set of stimulus/reaction traces as
described above, summarizing the traces with equal stimulus/reaction pairs, yields the set
of witnesses {t1, t2}. The traces t2 and t3 are equivalent.

The set containing the syntactic model elements causing the existence of the actions
sendIllegalCancelNotice() and sendCancelRequest() in the reactions of the
transitions of the SCs looping in the state Completed with the stimulus cancelOrder()
is an abstraction over the set of actions used in the reactions of the transitions of the SCs
such that sc.v2 refines sc.v1. If the actions sendIllegalCancelNotice() and
sendCancelRequest() did not exist in the reactions of the transitions of the SCs, then
the SC sc.v2 would be a refinement of the SC sc.v1. It is also possible to apply event
matching for detecting the syntactic SC model elements causing that the one SC is no
refinement of the other SC [DEKR19]. For the example SCs depicted in Figure 2.5, re-
placing all occurrences of the event sendIllegalCancelNotice() in the SCs with the
event sendCancelRequest() yields two modified SCs such that the semantic difference
from the modification of sc.v2 to the modification of sc.v1 is empty.

The change sequence containing a change operation for deleting the transition (Completed,
cancelOrder()/sendIllegalCancelNotice(),Completed) is a shortest change
sequence that repairs sc.v2 towards refining sc.v1.



�� = placeOrder() / requestPayment(price),

tryShipping() / shipOrder(items, customer),

placeOrder() / requestPayment(price),

cancelOrder() / sendCancellationRequest(),

cancelOrder() / SendIllegalCancelNotice(),

cancelOrder() / SendIllegalCancelNotice()

�� = placeOrder() / requestPayment(price),

tryShipping() / shipOrder(items, customer),

cancelOrder() / SendIllegalCancelNotice()

�� = placeOrder() / requestPayment(price), 

placeOrder() / requestPayment(price), 

tryShipping() / shipOrder(items, customer),

cancelOrder() / SendIllegalCancelNotice(),

tryShipping() / shipOrder(items, customer)

�� = (Created, placeOrder() / requestPayment(price), Placed),

(Placed, tryShipping() / shipOrder(items, customer), Completed),

(Completed, placeOrder() / requestPayment(price), Placed),

(Placed, cancelOrder() / sendCancellationRequest(), Completed),

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed),

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed)

Figure 2.6: Three diff witnesses t1, t2, t3 contained in the semantic difference from sc.v2
to sc.v1 and an execution e1 of sc.v2 producing the trace t1.

2.2.4 Feature Diagram Instantiation

The set of models of the FD modeling language [DKMR19] is the set of all well-formed FDs.
The semantic domain is the set of all possible configurations (finite sets of features). The
semantic mapping maps each FD to the set of all configurations that are valid in the FD
and solely contain features used in the FD. The semantic mapping represents the closed-
world semantics in [DKMR19]. The closed-world semantics requires configurations of an
FD to solely contain features of the FD. In contrast, the open-world semantics [DKMR19]
allows configurations of an FD to contain features that are not contained in the FD, as
long as the configuration satisfies all constraints imposed by the FD.

The semantic differencing operator takes two FDs as input and returns a finite set of
configurations that are valid in the one FD not valid in the other FD. It is possible to
provide an implementation based on the Boolean satisfiability problem for propositional
logic [DKMR19]. This enables, for instance, an implementation based on Alloy [Jac06].

For the summarization of witnesses, two configurations are considered equivalent if they
have the same cardinality. We use an abstraction technique that enables to abstract from
the existence of subtrees of the FDs and from cross-tree constraints. The syntactic change
operations we consider for syntactic differencing and for combining syntactic with semantic
differencing are inspired by [MR15, MR18, KR18a]. We use change operations for creating
and deleting features without children and cross tree constraints, changing the types of
groups, making optional features mandatory, making mandatory features optional, and
creating groups with features. The partitioning of the change operations is similar to the
partitioning described in [KR18a].

For example, Figure 2.7 depicts the two FDs fd.v1 and fd.v2. A syntactic difference
from fd.v1 to fd.v2 is, e.g., a change sequence that contains change operations that
prescribe the following transformations:
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Figure 2.7: Two simple FDs used as examples in the survey. The FDs are taken
from [MR15, MR18, KR18a].

�� ={car, engine, electric, gas, locking, keyless}

�� ={car, engine, electric, gas, locking, phone}

�� ={car, engine, electric, gas}

�� ={car, engine, electric, gas, locking, fingerprint}

�� ={car, engine, gas, locking, fingerprint}

Figure 2.8: Five diff witnesses contained in the semantic difference from fd.v2 to fd.v1.

1. convert the group with the parent feature engine containing the features electric,
gas, hybrid to an or-group,

2. delete the feature hybrid from the group with the parent feature engine containing
the features electric, gas, hybrid,

3. delete the feature fingerprint,

4. convert the group with the parent feature locking containing the features keyless
and phone to an xor-group,

5. add the feature fingerprint to the group with the parent feature locking con-
taining the features keyless and phone.

Applying the semantic differencing operator to compute diff witnesses for the semantic
difference from fd.v2 to fd.v1 yields, among others, the diff witnesses presented in
Figure 2.8. The configurations C1, C2, C3, and C4 are not valid in fd.v1 , e.g., because
the FD models that the features electric and gas must not be chosen simultaneously.
The configuration C5 is not valid in fd.v1 because the FD requires to also choose the
feature phone if the feature fingerprint is chosen.



By considering the configurations of equal cardinality as equivalent, a summary of the set
of witnesses is the set containing the configurations C3, C4, and C5 depicted in Figure 2.4.

The set containing the syntactic model elements causing the existence of the features
fingerprint and gas is a required abstraction over the set of model elements used
in the FDs such that fd.v2 refines fd.v1. If the features fingerprint and gas
did not exist in the FDs, then the FD fd.v2 would be a refinement of the FD fd.v1.
Similarly, the set containing the syntactic model elements causing the existence of the
features fingerprint and electric is also a required abstraction over the set of
model elements used in the FDs such that fd.v2 refines fd.v1.

The change sequence containing two change operations for performing the following changes
is a shortest change sequence that repairs fd.v2 towards refining fd.v1:

1. delete the feature fingerprint,

2. convert the group with the parent feature engine containing the features electric
and gas to an xor-group.





Chapter 3

Study Design

We have created a questionnaire including several examples for the syntactic and semantic
differencing of models of the four modeling languages under investigation (cf. Appendix A).
We did a pre-test and adjusted the questionnaires’ examples for better understandability.

Hypotheses. Based on our research results, we state the following hypothesis including its
sub-parts: Using semantic differencing improves the understandability between differences
of model versions.

H1 Using syntactic differencing improves the understandability between differences of
model versions.

H2 Using semantic differencing helps more than syntactic differencing.

H3 Using syntactic and semantic differencing in combination helps more than syntactic
and/or semantic differencing alone.

H4 Using the abstracted version of semantic differencing helps more than syntactic dif-
ferencing and/or the full version of semantic differencing.

H5 Using the summarized version of semantic differencing helps more than syntactic
differencing and/or the full version of semantic differencing.

H6 There exists a variety of use cases where the difference between models could be
used by software engineers in practice.

These aspects together constitute the hypothesis and, therefore, are used for the evaluation
of the hypothesis. The questions for the modeling languages under investigation are based
on these aspects.

Structure of the Questionnaire. The questionnaire included six parts: (A) Introduction
questions, (B) Class Diagrams, (C) Activity Diagrams, (D) Statecharts, (E) Feature Dia-
grams and (F) final remarks. The questionnaire language was German, as all participants
were speaking German. For a better understanding, we have translated the main aspects
of the questionnaire to English for the descriptions in this report.

Part (A) included a question about the expertise of the participants regarding each of the
four investigated modeling languages on a four aspect scale (very good, good, low, very
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low) as well as one question about how long they are modeling (0 years, >0 to <=5 years,
>5 to <=10 years, >10 years).

Parts (B) - (E) had the same structure and set of questions for all four modeling languages:

1. Introductory text

2. Text explaining the use case and two model versions

3. Textual explanation of the syntactic differences

4. Graphical explanation of the syntactic differences

5. Textual explanation providing witnesses of the semantic differences (not for CD)

6. Graphical examples of the semantic diff witnesses

7. Textual explanation of the combination between syntactic and semantic differences

8. Explanation of the semantic differences using an example for abstraction

9. Explanation of the semantic differences using summarization

10. Five questions about these examples

The questionnaire starts with an introductory text about the differences between two
models in this modeling language, whereas the model labeled with v2 is the successor of
the one labeled with v1. In Figure 2.3, section 2.2.2 such an example for ADs was already
shown. These models are accompanied by a short explanation about the specific use case.

Afterwards, the syntactic difference between these models is explained in textual as well
as in graphical form. Figure 3.1 shows the graphical representation of the differences for
the ADs. Elements marked in red and surrounded by a box in v1 were deleted or changed,
elements marked in green and surrounded by a box in v2 were added or changed.

Then, the semantic difference from model v2 to model v1 is explained in textual as well
as in graphical form. The textual form shows examples/instances which are possible in
v2 but not possible in v1, e.g, for ADs traces which are possible in v2 but not in v1.
Figure 3.2 and Figure 3.3 depict execution traces for the ADs in a graphical form, as also
presented in the questionnaire.

The next part shows the combination of syntactic and semantic differences by providing
a step-by-step instruction of changes (model repair) to be made on v2 to obtain a model
that is a refinement of v1.

For an explanation of the abstraction of semantic differences only the main elements of
the modeling languages are considered. The individual modeling elements for the specific
modeling languages are described in Section 2.2.

Using summarization is the last mentioned aspect to investigate the semantic differences
between models. Thus, the elements of a subset of the examples/instances shown in the
textual description of the semantic differences were checked for equivalence and only one
of the equivalent examples/instances was presented. e.g., for ADs only three out of five
execution traces were presented.
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Figure 3.1: The syntactic differences marked within the two versions of the AD.

The last page of parts (B) - (E) included a set of questions which were related to these
examples and had to be answered using a four point scale (very good, good, little, very
little). We were asking how well the following aspects helped to understand the differences
between the models:

Q B-E.1: Syntactic differences

Q B-E.2: Semantic differences

Q B-E.3: Combination of syntactic and semantic differences

Q B-E.4: Abstraction of semantic differences

Q B-E.5: Summarization of semantic differences

As the questionnaire did already include many questions, we did not further differentiate
on the textual and graphical representation of the syntactic and semantic differences within
the questions but used both representations.

Part (F) included one open question about use cases where such syntactic and semantic
differencing operators could help software developers.

Pre-Test. In a pre-test the examples and questions were shown to two software engineers.
Using their feedback, we have slightly revised the examples for better understandability.

Study Participants. Participants in the study were 18 software engineers and students from
RWTH Aachen University with mixed experiences using models in the four investigated
languages. As the number of participants is too small to make further differences regarding
their modeling experiences in the languages as well as in the duration how long they are
modeling, we did not split the group further in our evaluation.
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Figure 3.2: Diff witnesses in the semantic difference from ad.v2 to ad.v1 highlighted in
the AD ad.v2.

Setting. The participants received the questionnaire on paper (34 pages, see Appendix A)
and had two days to answer the questions.
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Chapter 4

Study Results

This section presents the results of the survey in terms of the percentages of how often
the answers were chosen by the participants. In total, we received answers from 18 partic-
ipants. We included the first question regarding the modeling experience to interpret our
results with respect to the experiences of the participants. Questions 1-5 of parts B-E aim
to confirm or falsify hypotheses H1 to H5 presented in the previous section. Therefore,
we draw a short conclusion regarding each hypotheses after presenting the results to the
respective questions. To interpret the results, we used the following likert scale:

• very good → 1,
• good → 2,
• little → 3,
• very little → 4.

4.1 Modeling Experience

To interpret the results of the modeling experience, we used a likert scale from one to four,
mapping the years of experience to numbers as follows:

• 0 years → 1,
• > 0 to <= 5 years → 2,
• > 5 to <= 10 years → 3,
• > 10→ 4.

Figure 4.1 shows the results of how experienced our participants were when conducting the
survey: Out of all participants, 72% have between zero and five years, 17% have between
five and ten years, and 6% have more than ten years of general modeling experience.

Figure 4.2 depicts the results of how experienced the participants were in using the re-
garded modeling languages. Half of the participants had no experience (0 years) (50%),
6% had more than ten years of experience, and 44% had between zero and five years of
experience in modeling with CDs. Of all participants, 17% had no modeling experience
with ADs, 72% had zero to five years of experience, 5% had five to ten years, and 6% had
more than ten years of experience. For SCs, 17% of the participants had no experience
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Figure 4.1: General modeling experience among participants (Q A.2).
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Figure 4.3: Percentage of the answers to Q B.1-E.1 about the helpfulness of syntactic
differences for understanding model differences.

with SCs, 50% had between zero and five years of experience, 28% had between five and
ten years, and 5% had more than ten years of experience. Of all participants, 22% had no
FD-experience, 34% had zero to five years of experience, 33% had between five and ten
years of experience, and 11% had more than ten years of experience.

Conclusion According to the question regarding general modeling experience, we con-
clude that the participants were mostly inexperienced or low-experienced, with zero to at
most five years of modeling experience. The low standard deviation indicates also that
most of our participants were equally (low) experienced. The results regarding the ex-
perience utilizing the targeted modeling languages were anticipated by the results of the
general modeling experience. However, for FDs, the spectrum of modeling experience was
broader (higher standard deviation) and included also quite experienced users as indicated
by the quite high mean value.



4.2 Syntactic Differences

Figure 4.3 shows the results to questions B.1-E.1 about the helpfulness of syntactic dif-
ferences for understanding model differences for each language. For CDs, 67% found the
syntactic difference very helpful (very good) to understand the model differences, while
33% found them to be helpful (good) (cf. diagram at the top left of Figure 4.3). For ADs,
41% of the participants found the syntactic difference to be very helpful, 53% helpful, and
6% answered that the syntactic difference helped little (little) to understand the model
differences (cf. diagram at the top right of Figure 4.3). In case of SCs, the syntactic dif-
ference was considered very helpful by 71% of the participants, helpful by 23%, and little
helpful by 6% of the participants as the diagram at the bottom left of Figure 4.3 shows.
Lastly, 88% considered the syntactic difference helpful for understanding differences be-
tween the two FDs, while only 6% considered them helpful or little helpful, respectively
(cf. diagram at the bottom right of Figure 4.3).

Conclusion: The results hint at hypothesis H1 being correct, since for all considered
languages more than 90% of the participants considered the syntactic difference very
helpful or helpful to understand the model differences. All mean values are close to one,
meaning the syntactic differences are very helpful for understanding the model differences
for all modeling languages. For ADs and SCs, the standard deviation is relatively high,
however, the answers mostly range between very good and good.

4.3 Semantic Differences

The top left of Figure 4.4 shows that for CDs, 28% of the participants either found the
semantic difference very helpful or little helpful, respectively. At the same time, 33%
considered them helpful, and for 11% the semantic difference helped only very little to
understand the CD differences (very little).

The results are similar for ADs, which Figure 4.4 shows in the diagram at the top right.
Again, the same percentage, i.e., 35%, of the participants considered the semantic dif-
ference either very helpful or little helpful. At the same time, 18% found the semantic
difference helpful and 12% found it to help very little in understanding the AD differences.

Figure 4.4 shows the results for SCs at the bottom left. In this case, only 17% of the
participants considered the semantic SC difference to be very helpful and only 11% found
it helpful. The semantic difference was considered a little helpful to understand model
differences by 44% and very little by 28%.

For FDs, the result resembles that of CDs and ADs: Of the participants, 35% considered
the semantic FD difference very helpful, 30% considered it helpful, 29% a little helpful,
and 6% very little helpful to understand the FD differences.

Conclusion These results show that the helpfulness of semantic differences to under-
stand model differences is perceived more diversely, which is also reflected by the relatively
high standard deviations (approximately one for all languages). Looking at the absolute
results for CDs, ADs and FDs, the perception of the participants was controversial, as
they considered the semantic difference either very helpful or little helpful. This indicates
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Figure 4.4: Percentages of the answers to Q B.2-E.2 about the helpfulness of semantic
differences for understanding model differences.



that the helpfulness of the semantic difference to understand model differences between
CDs, ADs, and FDs is subjective or dependent on other aspects than considered in this
study. In case of SCs, the semantic difference does not seem to be useful as 72% of the
participants found it to only be little or even very little helpful in understanding the dif-
ferences. The standard deviation is high (1.04), however the high mean of 2.8 shows that
the answers vary between little and very little helpful. For SCs and FDs, our participants
were most experienced as 28% and 33%, respectively, stated they had 5 to ten years of
experience and 50% and 34%, respectively, stated zero to 5 years of experience with SCs
and FDs, respectively. Since participants are rather experienced in these languages, we
consider the answers for SCs and FDs to be more meaningful.

The results, therefore, pretty much falsify H2, since more than 90% considered the syn-
tactic difference very helpful or helpful. For CDs, ADs, and FDs, more than half of the
participants considered the semantic difference very helpful or helpful. For SCs, the result
is even more striking, since 72% of all participants found the semantic difference little or
very little helpful.

4.4 Combination of Syntactic and Semantic Differences

Figure 4.5 depicts the results of our study. The diagram at the top left of Figure 4.5
shows the results for CDs: 28% of the participants considered the combination to be very
helpful to understand the CD differences, 33% considered it to be helpful or little helpful,
respectively, and 6% considered it to provide only very little help. For ADs, 22% found
the combination to be very helpful for understanding the AD differences, 45% found it
helpful, and 33% little helpful. The combined approach was considered very helpful for
understanding SC differences by 22%, and helpful by 28%. Half of the participants found
it little helpful. For FDs, 29% found the combination very helpful, 47% helpful, 18%
considered it little helpful, and 6% very little helpful to understand FD differences.

Conclusion The results indicate that hypothesis H3 is not correct for syntactic differ-
encing, since the syntactic difference was considered very helpful or helpful by a large
majority of the participants. When it comes to semantic difference, whether or not the
combination is more helpful than the semantic difference alone seems to be language de-
pendent. For CDs and FDs, the mean and standard deviation for the combination differ
marginally from those for the semantic difference. For these languages, the results indicate
that the combination is roughly equally well suited for explaining model differences as the
semantic difference by itself. For ADs, the mean values for combination and semantic
difference are very close, however the standard deviation for the combination is signifi-
cantly lower. The results indicate that, for ADs, the combination is a better explanation
for model differences, since none of the participants considered the combination very little
helpful and the number of participants who considered the combination at least helpful
is higher. Most of the participants considered the semantic difference alone little or very
little helpful for understanding SC differences, i.e., 72%. The combination, for SCs, seems
to improve the understanding of model differences, which becomes apparent by comparing
the mean values. In the majority of the cases, the combination of syntactic and semantic
differencing was considered to be at least helpful.
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Figure 4.6: Percentages of the answers to Q B.4-E.4 about the helpfulness of abstraction
for understanding model differences.

4.5 Abstraction

For CDs, 11% of the participants found the abstraction very helpful, 39% found it helpful,
44% little helpful, and 6% very little helpful to understand the CD differences (cf. top
left of Figure 4.6). Of all the participants, 11% found the abstraction to be very helpful
for understanding AD differences, 28% found it helpful, 33% found it little helpful, and
28% found it very little helpful (cf. top right of Figure 4.6). In case of SCs, 17% found
the abstraction very helpful, 44% found it helpful, and 39% found it little helpful, as the
diagram at the bottom left of Figure 4.6 shows. For FDs, 12% of the participants found
the abstraction very helpful, 18% found it helpful, 41% found it little helpful, and 29%
found it to help very little to understand FD differences (cf. bottom right of Figure 4.6).

Conclusion The results indicate that hypothesis H4 is incorrect regarding the syntactic
differences which were considered very helpful or helpful by more than 90% of the partici-
pants, while the percentages of the participants considering abstraction as very helpful or
helpful range from 30% for FDs to 61% for SCs.

For CDs, ADs, and FDs, the mean value for the abstraction is higher than the mean value
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Figure 4.7: Percentages of the answers to Q B.5-E.5 about the helpfulness of summariza-
tion for understanding model differences.

for the semantic difference. For ADs, CDs, and FDs, the numbers of participants who
considered the semantic difference very helpful was higher than the number of participants
who consider the abstraction very helpful. The results also indicate that abstraction, in
case of CDs, ADs, and FDs, is less helpful to provide explanations of model differences than
the combination. For SCs, however, the results indicate that the abstraction is slightly
more helpful to provide a helpful explanation of differences. Here, 61% of all participants
considered the abstraction at least helpful, whereas for the combination, it was only 50%.
Still, the mean values do not differ significantly.

4.6 Summarization of Semantic Differences

Figure 4.7 shows the answers to the question about how helpful the participants consider
a summarization of the semantic differences to understand model differences.

For CDs, 22% considered the summarization very helpful, 28% considered it helpful, 17%
considered it little helpful, and 33% found it very little helpful. The diagram at the top left
of Figure 4.7 shows these results. For ADs, 11% found the summarization very helpful, 22%
found it helpful, 34% considered it little helpful, and 33% of the participants considered



the summarization to help very little for understanding AD differences (cf. diagram at the
top left of Figure 4.7). To understand SC differences, 11% considered the summarization
very helpful, 17% considered it helpful, 44% little helpful, and 28% very little helpful,
which the diagram at the bottom left of Figure 4.7 shows. For FDs, the summarization
was considered very helpful by 18% of the participants, helpful by 35%, little helpful by
35%, and very little helpful by 12%.

Conclusion The results indicate that hypothesis H5 is incorrect regarding the syntactic
difference, as it was considered at least helpful by more than 90% of all participants
regardless of the modeling language.

Regarding the semantic difference, for CDs, ADs, and FDs, the semantic difference by itself
was considered more helpful than the summarization. The mean values are significantly
higher regarding the helpfulness of the summarization. For CDs and ADs, the mean
is close to three, meaning that, in average, participants found the summarization little
helpful. For FDs, the mean is close to two, therefore the summarization was, on average,
considered helpful by the participants, however, the number of participants who considered
the semantic FD difference very helpful (35%) is significantly lower for the summarization
(18%). For SCs, the results indicate that the summarization is roughly equally helpful than
the semantic difference. Comparing the results of the combination to the results of the
summarization, we conclude that the combination is better suited to provide explanations
for model differences regardless of the modeling language. For CDs the summarization
was considered less helpful than the abstraction since the number of participants who
found the summarization to be very little helpful has increased by 27% compared to the
abstraction. For ADs, the summarization and abstraction are roughly equally helpful
to provide explanations for model differences. For FDs, the number of participants who
considered the summarization at least helpful (53%) is much higher than that of those
who consider the abstraction at least helpful (30%). Therefore, the summarization is
better suited to provide explanations for FD differences. For SCs, the summarization is
considered much less helpful to explain differences than the abstraction, since 72% consider
the summarization little to very little helpful.

4.7 Use Cases for Model Differencing

The last question openly asked which use cases the participants could imagine for applying
the presented techniques for semantic and syntactic differences. Figure 4.8 visualizes the
39 answers as a word cloud. We categorized the results into four classes, i.e., analysis, bug
handling, change management, explanation, and testing. Figure 4.9 shows the absolute
numbers of answers belonging to each category. Since the participants were not restricted
at all in giving their answers, many participants gave more than one suggestion. Therefore,
the sample size is higher for this question. Clearly, most of the answers considered an ap-
plication of the techniques for syntactic and semantic differencing in change management,
closely followed by answers regarding explanations.

Change management Figure 4.10 shows a word cloud of the answers in the change
management category. In this category, thirteen answers were given in total. The answers



Figure 4.8: Word cloud of the answers to Q F.1 about possible use cases to apply techniques
for identifying syntactic and semantic differences.
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Figure 4.10: Word cloud of the answers in the change management category.



Figure 4.11: Word cloud of the answers in the explanation category.

Figure 4.12: Word cloud of the answers in the testing category.

often referenced semantic and syntactic differencing to be applicable in version control sys-
tems. Merging was often explicitly or implicitly regarded as extensible by the identification
of syntactic as well as semantic differences.

Explanation Figure 4.11 shows a word cloud of the answers in the explanation category,
comprising eleven answers. Many of our participants considered the techniques valuable
to provide detailed illustrations of models, differences, and model-updates. Participants
suggested to utilize the illustrations for documentation, illustration, or teaching purposes.
Especially in distributed development environments, differencing methods were regarded
helpful for understanding updates or differences between model versions and their impact
on the modeled system.

Testing Figure 4.12 shows a word cloud of the given answers in the testing category,
which comprised six answers in total. Surprisingly, testing was also regarded as a possible
area of application for semantic and syntactic differencing. The generation of test cases
or the adaptation of test cases by changing models was considered possible by utilizing



Figure 4.13: Word cloud of the answers in the analysis category.

Figure 4.14: Word cloud of the answers in the bug handling category.

syntactic and/or semantic model differences. Also the verification of requirements after
model changes was mentioned in two answers of this category.

Analysis Figure 4.13 shows a word cloud of the answers in the analysis category which
comprised five answers in total. Some of the participants considered the presented tech-
niques for semantic and syntactic differencing for application in, e.g., requirements or cost
analysis. Implicitly, the participants referred to automating the retrieval of certain infor-
mation from the models by utilizing semantic and/or syntactic differencing, e.g., which
processes or “constellations” were removed or added due to a change operation on a model.

Bug handling Figure 4.14 shows a word cloud of the answers in the bug handling
category which comprised four answers in total. A few of our participants considered
syntactic and/or semantic differencing useful for (automatic) bug fixing or error-correction.



It was considered particularly interesting to verify that an intended refactoring did not
change the semantics of the modeled system.

4.8 Conclusion

The participants consider the syntactic difference most helpful to provide an explanation
for model differences, regardless of the modeling language. The results contradict the hy-
pothesis H2, stating that the semantic difference provides more intuitive explanations for
model differences, regardless of the modeling language. A combination of syntactic and
semantic differencing seems to be the most suitable alternative to providing intuitive ex-
planations that take semantic differences into consideration. Regarding H6, the categories
into which we grouped the answers of the participants suggest that there were five areas
of application for syntactic and semantic differencing. Unsurprisingly, many participants
suggested to apply model differencing in version control systems.

4.9 Result Discussion and Threads to Validity

Generally, the number of participants who conducted the survey was too low to provide
statistically meaningful results. The low sample size also prevents a meaningful and sig-
nificant correlation analysis. Regarding the relatively low levels of modeling experience,
the results apply mainly for modelers with less than five years of experience and are not
significant for this group due to the low sample size. Since most of the participants were
working in the research domain, the results are also not applicable to modeling in the
industrial practice. The lengthy explanations could have fostered random answers by the
participants, which also threatens the validity of the study. Clearly, to work with models
on paper instead of screens has an influence on the quality of the evaluation, especially
if software engineers are used to work with models on screen, which again threatens the
validity of the study.

We cannot generally conclude from the results that the syntactic difference is always the
better choice, since we did not ask whether the syntactic difference would have provided
sufficient understanding of the actual differences to the user. Possibly, the participants
consider the semantic difference to accompany the syntactic difference in a way that pro-
vides a deeper understanding of the model differences. To test this, future studies should
include a question asking whether the participants find the semantic difference and the
syntactic difference to complement each other.

Furthermore, the example models are relatively small compared to real-world models.
With increasing model size, the syntactic difference can become much more confusing.
Moreover, the results reflect only one moment in time. In order to obtain more general
results, a long-term study with users, their everyday used modeling language, and larger
models would be necessary. To integrate the model differencing operators in version control
systems and to conduct the study accompanied in an online version could also help to get
more meaningful results.



Chapter 5

Related Work

This section presents related work on approaches for semantic differencing and on ap-
proaches for combining syntactic with semantic differencing. The related approaches can
be potentially used for future evaluations. We are not aware of other studies investigating
the usefulness of semantic differencing for developers.

Existing methods for semantic differencing can be categorized into enumerative and non-
enumerative approaches [LMK14]. An enumerative approach (e.g., [MRR11f, MRR11b,
BKRW17, KR18b, AHC+12]) takes two models as input. It outputs a finite set of diff wit-
nesses. This survey solely includes enumerative approaches. Non-enumerative approaches
(e.g., [FLW11, FALW14]) also take two models as input. Instead of returning witnesses,
an non-enumerative approach returns a model that summarizes semantic differences (not
necessarily all) from the one model to the other model.

This survey included enumerative semantic differencing approaches for CDs [MRR11d,
KMRR17], ADs [KR18b], SCs [DEKR19], and FDs [DKMR19].

Another enumerative semantic differencing operator for ADs is described in [MRR11b].
As in the approach included in this survey for AD differencing [KR18b], the set of models
in the approach presented in [MRR11b] is the set of all valid ADs, the semantic domain is
the set of all possible finite execution traces over actions labels, and the semantic mapping
maps each AD to the set of execution traces that it describes. The semantic differencing
operator of [MRR11b] is grounded in an algorithm executing a fixed point calculation
inspired by symbolic model-checking [BCM+92].

An enumerative semantic differencing operator for a feature model language is presented
in [AHC+12]. The semantic mapping is based on the closed-world feature model semantics
that is also used for the survey presented in this report. The semantics of a feature model
solely contains configurations containing features that are used in the feature model. The
semantic differencing operator uses a translation to the boolean satisfiability problem for
propositional logic.

Another approach to semantic feature model differencing is based on an open-world se-
mantics for feature models [DKMR19]. The set of models and the semantic domain are
the same as in the closed-world approaches. However, the configurations in the semantics
of a feature model are allowed to contain features that are not used in the feature model.
The features not used in a feature model are considered to be unconstrained regarding
their selection for valid configurations. This semantics is motivated by analyses in early
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development stages where potentially not all features are known a priori before developing
a feature model. An implementation of the open-world semantic differencing operator can
be achieved via a translation to the boolean satisfiability problem [DKMR19].

A semantic differencing operator for an automaton variant for modeling interactive reac-
tive systems is presented in [BKRW17]. The models are called finite time-synchronous
port automata (TSPAs). The semantic domain contains all possible behaviors. Each be-
havior models an infinite history of messages communicated via channels. The semantics
of a TSPA is the set of all behaviors modeled by the TSPA. The semantic differencing
operator translates the two input TSPAs to Büchi automata [Büc62, Far02, Saf88], before
it checks whether the language accepted by the one Büchi automaton resulting from the
translation is a subset of the language accepted by the other Büchi automaton result-
ing from the translation. Time-synchronous channel automata [BKRW19] are similar to
TSPAs. A semantic differencing operator for this automaton variant and a subclass for
which semantic differencing can be performed efficiently is described in [BKRW19].

A generic method to semantic differencing based on behavioral semantics specifications is
described in [LMK14]. The method is instantiated with an AD, a CD, and a Petri net
language. The method relies on executing models, capture execution traces, and compare
the captured traces.

A method for semantic differencing of combinatorial models of test designs is described
in [TBM17]. The models are combinatorial models. The semantic domain consists of tests.
Each test consists of parameter value assignments. Each combinatorial model consists of
constraints regarding the values that are assignable to parameters. Each element in the
semantic domain is called a test. The semantics of a combinatorial model contains all
tests assigning values to parameters such that the constraints of the model are satisfied.
The approach presents semantic differences in the form of strongest exclusions. Strongest
exclusion are (smallest) parameter value assignment combinations excluded by the con-
straints of a combinatorial model. The semantic difference could also be presented by
diff witnesses representing complete tests [TBM17]. However, as stated in [TBM17], this
representation may have semantic problems [TBM17].

Previous works applied non-enumerative semantic differencing approaches to feature mod-
els [FLW11], automata [FLW11], and CDs [FALW14]. With non-enumerative semantic
differencing approaches, semantic differences are represented by models and not by diff
witnesses.

The approaches presented in [FLW11, FALW14] rely on the existence of composition op-
erators satisfying special properties. A differencing result is a model such that composing
one of the input models with the differencing results yields a model that does not exhibit
any semantic differences to the other model.

The Diffuse framework [MR15, MR18] defines analyses that take two models, a diff wit-
ness, and syntactic changes that change the one model to the other model as input. One
analysis can be used to compute subsets of the syntactic changes such that the application
of the subset guarantees the existence of the diff witness. Another analysis can be used
to compute subsets of the syntactic changes such that the application of the subset to the
one model would not cause the existence of the witness. The analyses enabled by Dif-
fuse [MR15, MR18] consider a concrete changelog, whereas the framework for computing
repairing change sequences [KR18a] determines changes without considering a changelog.



Chapter 6

Conclusion

This technical report presented the results of a survey among software engineers and
students. The survey has been conducted for evaluating the ability of semantic differencing
techniques to explain and visualize differences between model versions to developers. The
survey investigated the usefulness of model differencing operator results with respect to
the comprehensibility of the differences between model versions. We have investigated the
comprehensibility of the results computed by differencing operators for Class Diagrams,
Activity Diagrams, Statecharts and Feature Diagrams.

Chapter 2 described a generic framework for model differencing and the instantiations
with the concrete modeling languages. Chapter 3 explained the design of the study in
detail. Chapter 4 presented the results of the study and our main findings. Chapter 5
discussed related work.

The study participants were mostly unexperienced, with zero to at most five years of
modeling experience. For all considered languages, more than 90% of the participants
considered the syntactic difference very helpful or helpful to understand the model differ-
ences. The participants mostly considered syntactic differencing results to be more helpful
than semantic differencing results. Whether techniques combining semantic and syntactic
differencing are more helpful than semantic differencing operators in isolation seems to be
language-dependent. The results from semantic differencing operators without applying
abstraction techniques seem to be mostly at least as helpful as the results computed by se-
mantic differencing operators while using abstractions. The results computed by semantic
differencing operators without the application of summarization techniques were consid-
ered to be more helpful than summarized results. However, the number of participants
who conducted the survey was too low to provide meaningful results and the low sample
size also prevents a meaningful and significant correlation analysis.

It cannot be generally concluded from the results of the survey that presenting syntactic
differences is always more beneficial than presenting semantic differences. The survey
did not include questions asking whether the syntactic difference would have provided a
sufficient understanding of the actual differences. It could be possible that the participants
considered the semantic difference to accompany the syntactic difference in a way that
provides a deeper understanding of the model differences. Furthermore, the example
models used as basis for the questions are all relatively small. For large models, the
syntactic difference is often more confusing than for small models. Then, understanding
the semantic model differences by solely examining the syntactic differences is usually
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complicated. In contrast, for small models, the syntactic difference is often small and easy
to understand. Then, it is relatively easy to understand the semantic model differences by
solely examining the syntactic differences. We conclude that further surveys with more
and larger models and more participants are necessary to obtain generalizable results.



Bibliography

[AHC+12] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe
Lahire, and Philippe Merle. Feature Model Differences. In Jolita Ralyté,
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 1 

Studie zum  

syntaktischen und semantischen Unterschied  

von Modellen 
 

 

Liebe Studienteilnehmerinnen und –teilnehmer, 

die Verwendung von modellbasierten Methoden im Entwicklungsprozess stellt 

die Entwicklerinnen und Entwickler vor die Herausforderung, dass Sie mit 

Änderungen in Modellen umgehen und diese verstehen müssen. Hierfür gibt es 

unterschiedliche Methoden, die die Unterschiede zwischen Modellversionen 

berechnen.  

Diese Studie beschäftigt sich mit Möglichkeiten zur Identifikation von 

syntaktischen und semantischen Unterschieden zwischen Modellen in vier 

Modellierungssprachen:  Klassendiagramme, Aktivitätsdiagramme, State Charts 

und Feature-Diagramme. 

Die Beantwortung dieser Fragen ermöglicht es uns Rückschlüsse auf das 
Verständnis der Ansätze ziehen zu können. Die Ergebnisse werden im Rahmen 
des DFG Projekts „A Semantic Approach to Evolution Analysis in Model-Based 
Software Development“ wissenschaftlich verwendet.  
 

Herzlichen Dank für Ihre Teilnahme!  

 

Imke Drave, Oliver Kautz und Judith Michael 
 

Software Engineering, RWTH Aachen 

{nachname}@se-rwth.de 



Block A: Allgemeine Fragen 
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Frage A.1: Wie hoch schätzen sie ihre Expertise mit den folgenden 

Modellierungssprachen ein?  

 
Klassendiagramme 

□    □    □    □ 
Sehr hoch  eher hoch  eher niedrig  sehr niedrig 

 

Aktivitätsdiagramme 

□    □    □    □ 
Sehr hoch  eher hoch  eher niedrig  sehr niedrig 

 

State Charts  

□    □    □    □ 
Sehr hoch  eher hoch  eher niedrig  sehr niedrig 

 

Feature-Diagramme 

□    □    □    □ 
Sehr hoch  eher hoch  eher niedrig  sehr niedrig 

 

 

Frage A.2: Wie lange modellieren sie schon? 

□    □    □     □ 
0 Jahre  >0 bis <= 5 Jahre  >5 bis <= 10 Jahre  > 10 Jahre 



Block B: UML/P Klassendiagramme 
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Unterschiede zwischen Klassendiagrammen  
Im Folgenden wird ein Scenario zur Evolutionsanalyse von Klassendiagrammen 

vorgestellt. Im Scenario werden zwei Klassendiagramme gezeigt. Das mit v2 

gekennzeichnete Klassendiagramm ist die Nachfolgerversion des mit v1 

gekennzeichneten Klassendiagramms. Es werden der syntaktische Unterschied 

und der semantische Unterschied des Klassendiagramms mit der Version v2 zum 

Klassendiagramm mit der Version v1 erläutert.  

Versuchen Sie bitte die erläuterten Unterschiede nachzuvollziehen. Bewerten 

Sie bitte jeweils anschließend auf dieser Grundlage inwiefern Ihnen die 

Erläuterungen beim Verständnis der Unterschiede von der Nachfolgerversion v2 

zur Version v1 geholfen haben. 



Block B: UML/P Klassendiagramme 
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Klassendiagramm Scenario  

Sie modellieren die Personal-Struktur eines Unternehmens, das Voll- und 

Teilzeitangestellte hat. Jeder Angestellte ist einem oder keinem Manager 

unterstellt. Jedem Angestellten können Aufgaben zugewiesen werden. Eine 

Aufgabe muss mit einem Startdatum gekennzeichnet werden. Manager können 

beliebig viele Angestellte managen. Sie erstellen das Klassendiagramms cd.v1.  

 

Die Struktur im Unternehmen wurde im Zuge von Maßnahmen zur Verbesserung 

der Work-Life-Balance und der allgemeinen Zufriedenheit verändert. Ein 

Arbeitskollege ändert daraufhin das Klassendiagramm cd.v1. 

Daraus entsteht das Klassendiagramm cd.v2. Sie möchten die Unterschiede vom 

neuen Klassendiagramm cd.v2 zum Klassendiagramm cd.v1 verstehen. 

 

 

 

 



Block B: UML/P Klassendiagramme 
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Syntaktische Unterschiede im Klassendiagramm Scenario (B1) 
Erläuterung des syntaktischen Unterschieds von cd.v2 zu cd.v1 in textueller 

Form: 

1. Am Assoziationsende bei der Klasse Task der Assoziation zwischen den 

Klassen Employee und Task wurde die Kardinalität von * auf 0..2 geändert. 

2. Es wurde eine Spezialisierungsbeziehung von der Klasse Manager zur 

Klasse Employee hinzugefügt. 

3. Es wurde der Wert external zur Enumeration PositionKind hinzugefügt. 

 

Erläuterung des syntaktischen Unterschieds in grafischer Form:  

Die im folgenden Bild im Klassendiagramm cd.v1 rot dargestellten und durch 

einen Kasten markierten Elemente wurden gelöscht oder geändert. Die im 

Klassendiagramm cd.v2 grün dargestellten und durch einen Kasten markierten 

Elemente wurden hinzugefügt oder geändert. 

 

 

 



Block B: UML/P Klassendiagramme 

 

 6 

Semantische Unterschiede im Klassendiagramm Scenario  
Erläuterung des semantischen Unterschieds (B2):  

Die folgenden Objektstrukturen os1, os2, os3, os4, os5 und os6 sind Instanzen 

des Klassendiagramms cd.v2 und keine Instanzen des Klassendiagramms cd.v1: 

1. Objectstruktur: 

 

2. Objektstruktur: 

 

3. Objektstruktur: 

 

4. Objektstruktur: 
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5. Objektstruktur: 

 

6. Objektstruktur: 

 

 

 

 

 

 

 

 

Erläuterung des Unterschieds durch eine Kombination der syntaktischen 

Unterschiede mit den semantischen Unterschieden (B3): 

Wenn die folgenden Änderungen am Klassendiagramm cd.v2 durchgeführt 

werden, dann erhält man ein Klassendiagramm, das ausschließlich Instanzen hat, 

die auch Instanzen des Klassendiagramm cd.v1 sind: 

1. Die Spezialisierungsbeziehung von der Klasse Manager zur Klasse 

Employee entfernen. 

2. Den Wert external von der Enumeration PositionKind entfernen. 

 

Erläuterungen des semantischen Unterschieds durch Beispielabstraktion (B4): 

1. Wenn von der Spezialisierungsbeziehung von der Klasse Manager zur 

Klasse Employee und von dem Wert external der Enumeration 

PositionKind abstrahiert würde, dann wäre jede Instanz des 

Klassendiagramms cd.v2 auch eine Instanz des Klassendiagramms cd.v1.  

 



Block B: UML/P Klassendiagramme 
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Erläuterung des semantischen Unterschieds durch Zusammenfassung (B5): 

Die folgende Liste von Objektstrukturen repräsentiert eine Menge von Instanzen 

von cd.v2, die keine Instanzen von cd.v1 sind. Die Mengen der Klassen der 

Objekte der Instanzen unterscheiden sich paarweise.  

 

1. Objektstruktur: 

 

2. Objektstruktur: 
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Frage B.1: Wie gut hat Ihnen die Angabe des syntaktischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage B.2: Wie gut hat Ihnen die Angabe des semantischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage B.3: Wie gut hat Ihnen die Erläuterung der Unterschiede durch eine 

Kombination der syntaktischen mit den semantischen Unterschieden beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage B.4: Wie gut hat Ihnen die Beispielabstraktion beim Verstehen der 

Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage B.5: Wie gut hat Ihnen die Zusammenfassung der semantischen 

Unterschiede beim Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 
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Unterschiede zwischen Aktivitätsdiagrammen  
Im Folgenden wird ein Scenario zur Evolutionsanalyse von Aktivitätsdiagrammen 

vorgestellt. Im Scenario werden zwei Aktivitätsdiagramme gezeigt. Das mit v2 

gekennzeichnete Aktivitätsdiagramm ist die Nachfolgerversion des mit v1 

gekennzeichneten Aktivitätsdiagramms. Es werden der syntaktische Unterschied 

und der semantische Unterschied des Aktivitätsdiagramms mit der Version v2 

zum Aktivitätsdiagramm mit der Version v1 erläutert.  

Versuchen Sie bitte die erläuterten Unterschiede nachzuvollziehen. Bewerten 

Sie bitte jeweils anschließend auf dieser Grundlage inwiefern Ihnen die 

Erläuterungen beim Verständnis der Unterschiede von der Nachfolgerversion v2 

zur Version v1 geholfen haben. 
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Aktivitätsdiagramm Scenario  

Stellen Sie sich vor, Sie seien Mitarbeiter eines Versicherungsunternehmens. Die 

folgenden Aktivitätsdiagramme beschreiben das Vorgehen des 

Versicherungsunternehmens bei eingehenden Schadensmeldungen. Initial 

wurde das Vorgehen mit dem Aktivitätsdiagramm ad.v1 modelliert. 
 

Nach einer Weile wird einem Ihrer Arbeitskollegen deutlich, dass das erste 

Aktivitätsdiagramm einige Sachverhalte nicht richtig abbildet. Ihr Arbeitskollege 

ändert daraufhin das Aktivitätsdiagramm. Daraus entsteht das 

Aktivitätsdiagramm ad.v2. Sie möchten die Unterschiede vom neuen 

Aktivitätsdiagramm ad.v2 zum Aktivitätsdiagramm ad.v1 verstehen. 
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Syntaktische Unterschiede im Aktivitätsdiagramm Scenario (C1) 
Erläuterung des syntaktischen Unterschieds von ad.v2 zu ad.v1 in textueller 

Form: 

1. Die Aktion mit der Beschriftung CheckClaim wurde gelöscht. 

2. Es wurde ein Zyklisches-Fragment zwischen dem Knoten mit der 

Beschriftung RecordClaim und dem darauffolgenden Decision Knoten 

hinzugefügt. 

3. Die Aktion mit der Beschriftung CheckClaim wurde dem zyklischen-

Fragment zwischen dem Merge und dem Decision Knoten hinzugefügt.  

4. Die Aktion mit der Beschriftung Retrieve Add. Data wurde dem zyklischen-

Fragment zwischen dem Decision und dem Merge Knoten hinzugefügt. 

5. Das And-Fragment, das die Knoten mit den Beschriftungen Send 

Declinature und Update Cost. Record enthält, wurde zu einem Xor-

Fragment umgewandelt. 

6. Die Aktion mit der Beschriftung Update Cost. Record wurde gelöscht. 

7. Die Aktion mit der Beschriftung Call Costumer wurde zum Xor-Fragment, 

das die Aktion mit der Beschriftung Send Declinature enthält, hinzugefügt. 

8. Die Aktion mit der Beschriftung Close Claim wurde gelöscht. 
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Erläuterung des syntaktischen Unterschieds in grafischer Form:  

Die im folgenden Bild im Aktivitätsdiagramm ad.v1 rot dargestellten und durch 

einen Kasten markierten Elemente wurden gelöscht oder geändert. Die im 

Aktivitätsdiagramm ad.v2 grün dargestellten und durch einen Kasten markierten 

Elemente wurden hinzugefügt oder geändert. 
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Semantische Unterschiede im Aktivitätsdiagramm Scenario  
Erläuterung des semantischen Unterschieds in textueller Form (C2): 

Die folgenden Abläufe sind im Aktivitätsdiagramm ad.v2 möglich und im 

Aktivitätsdiagramm ad.v1 nicht möglich: 

1. Ablauf 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Settle Claim, 

Send Letter, Calculate Loss Amount, Recalc. Cost. Contr., Payout. 

2. Ablauf 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Reject Claim, 

Send Declinature. 

3. Ablauf: 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Settle Claim, 

Calculate Loss Amount, Recalc. Cost. Contr., Send Letter, Payout. 

4. Ablauf 

Record Claim, Check Claim, Reject Claim, Call Costumer. 

5. Ablauf 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Reject Claim, 

Call Costumer. 
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Erläuterung des semantischen Unterschieds in grafischer Form (C2): 

Im den folgenden sechs Bildern werden die zuvor erläuterten Abläufe 1, 2, 3, 4, 

5, 6 im Aktivitätsdiagramm ad.v2 grafisch dargestellt: 

1. Ablauf: 

 

2. Ablauf: 

3. Ablauf: 
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4. Ablauf: 

5. Ablauf:  
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Erläuterung des Unterschieds durch eine Kombination der syntaktischen 

Unterschiede mit den semantischen Unterschieden (C3): 

Durch die Anwendung der folgenden Änderungen am Aktivitätsdiagramm ad.v2 

erhält man ein Aktivitätsdiagramm, das ausschließlich Abläufe modelliert, die 

auch im Aktivitätsdiagramm ad.v1 modelliert sind: 

1. Die Aktion mit der Beschriftung Retrieve Add. Data löschen. 

2. Die Aktion mit der Beschriftung Call Costumer löschen. 

3. Eine Aktion mit der Beschriftung Close Claim nach der Aktion mit der 

Beschriftung Send Declinature einfügen. 

4. Eine Aktion mit der Beschriftung Update Cost. Record nach der Aktion mit 

der Beschriftung Send Declinature einfügen. 

 

Erläuterungen des semantischen Unterschieds durch Beispielabstraktion (C4): 

1. Wenn die Aktionen Retrieve Add. Data, Update Cost. Record, Call 

Costumer und Close Claim sowie die mit den Aktionen verbundenen 

Transitionen in den Aktivitätsdiagrammen nicht existieren würden, dann 

wäre jeder Ablauf von ad.v2 auch ein Ablauf von ad.v1. 

 

Erläuterung des semantischen Unterschieds durch Zusammenfassung (C5): 

Die folgende Liste repräsentiert eine Menge von Abläufen, die in ad.v2 möglich 

und in ad.v1 nicht möglich sind. Die Mengen der Aktionen aller Abläufe 

unterscheiden sich paarweise.  

1. Ablauf 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Reject Claim, 

Send Declinature. 

2. Ablauf 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Reject Claim, 

Call Costumer. 

3. Ablauf 

Record Claim, Check Claim, Retrieve Add. Data, Check Claim, Settle Claim, 

Send Letter, Calculate Loss Amount, Recalc. Cost. Contr., Payout. 
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Frage C.1: Wie gut hat Ihnen die Angabe des syntaktischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage C.2: Wie gut hat Ihnen die Angabe des semantischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage C.3: Wie gut hat Ihnen die Erläuterung der Unterschiede durch eine 

Kombination der syntaktischen mit den semantischen Unterschieden beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage C.4: Wie gut hat Ihnen die Beispielabstraktion beim Verstehen der 

Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage C.5: Wie gut hat Ihnen die Zusammenfassung der semantischen 

Unterschiede beim Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 
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Unterschiede zwischen State Charts  
Im Folgenden wird ein Scenario zur Evolutionsanalyse von State Charts 

vorgestellt. Im Scenario werden zwei State Charts gezeigt. Das mit v2 

gekennzeichnete State Chart ist die Nachfolgerversion des mit v1 

gekennzeichneten State Charts. Es werden der syntaktische Unterschied und der 

semantische Unterschied des State Charts mit der Version v2 zum State Chart 

mit der Version v1 erläutert.  

Versuchen Sie bitte die erläuterten Unterschiede nachzuvollziehen. Bewerten 

Sie bitte jeweils anschließend auf dieser Grundlage inwiefern Ihnen die 

Erläuterungen beim Verständnis der Unterschiede von der Nachfolgerversion v2 

zur Version v1 geholfen haben. 
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State Chart Scenario  

Stellen Sie sich vor, Sie sind Entwickler eines Online-Shops. Der Kunde soll durch 

Befüllen eines virtuellen Einkaufskorbes die Artikel der Bestellung angeben 

können. Hat der Kunde dem Warenkorb alle gewünschten Artikel hinzugefügt 

und dies über einen Button-Klick bestätigt, soll der Kunde aus mehreren 

Zahlungsmethoden wählen oder den Abschluss der Bestellung vertagen können. 

Das System soll sicherstellen, dass nur gestellte und auch bezahlte Bestellungen 

in den Versand gehen können. Solange Bestellungen gestellt, aber noch nicht 

versandt sind, sollen die Kunden die Möglichkeit haben, die Bestellung zu 

stornieren. Gegebenenfalls können stornierte Bestellungen 

wiederaufgenommen und bezahlt werden, ohne dass der Einkaufskorb erneut 

gefüllt werden muss. Bezahlte Bestellungen müssen immer versandt werden. Sie 

modellieren das unten gezeigte State Chart sc.v1.  
 

Dem Besitzer des Online-Shops fällt nun noch eine weitere Anforderung ein. 

Ein Arbeitskollege ändert daraufhin das State Chart sc.v1. Daraus entsteht das 

State Chart sc.v2. Sie möchten die Unterschiede vom neuen State Chart sc.v2 

zum State Chart sc.v1 verstehen. 
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Syntaktische Unterschiede im State Chart Scenario (D1) 
Erläuterung des syntaktischen Unterschieds von sc1.v2 zu sc1.v1 in textueller 

Form: 

1. Die Transition vom Zustand Completed zum Zustand Completed mit dem 

Stimulus cancelOrder() und der Aktion sendIllegalCancelNotice() wurde 

hinzugefügt. 

2. Die Transition vom Zustand Completed zum Zustand Completed mit dem 

Stimulus cancelOrder() und der Aktion sendCancelRequest() wurde 

gelöscht. 

 

Erläuterung des syntaktischen Unterschieds in grafischer Form:  

Die im folgenden Bild im State Chart sc1.v1 rot dargestellten und durch einen 

Kasten markierten Elemente wurden gelöscht oder geändert. Die im State Chart 

sc2.v2 grün dargestellten und durch einen Kasten markierten Elemente wurden 

hinzugefügt oder geändert. 
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Semantische Unterschiede im State Chart Scenario  
Erläuterung des semantischen Unterschieds in textueller Form (D2): 

Die folgenden Abläufe sind im Statechart sc1.v2 möglich und im Statechart 

sc1.v1 nicht möglich: 

1. Ablauf 

(Created, placeOrder() / requestPayment(price), Placed), 

(Placed, tryShipping() / shipOrder(items, customer), Completed), 

(Completed, placeOrder() / requestPayment(price), Placed), 

(Placed, cancelOrder() / sendCancellationRequest(), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed) 

2. Ablauf: 

(Created, placeOrder() / requestPayment(price), Placed), 

(Placed, tryShipping() / shipOrder(items, customer), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed) 

3. Ablauf 

(Created, placeOrder() / requestPayment(price), Placed), 

(Placed, placeOrder() / requestPayment(price), Placed), 

(Placed, tryShipping() / shipOrder(items, customer), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed), 

(Completed, tryShipping() / shipOrder(items, customer), Completed) 

 

 

  



Block D: State Charts 

 

 23 

Erläuterung des semantischen Unterschieds in grafischer Form (D2): 

In den folgenden drei Bildern werden die zuvor erläuterten Abläufe 1, 2 und 3 

im State Chart sc.v2 grafisch dargestellt: 

1. Ablauf: 

 

2. Ablauf: 
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3. Ablauf: 

 

 

 

 

 

 

 

 

 

 

 

 

Erläuterung des Unterschieds durch eine Kombination der syntaktischen 

Unterschiede mit den semantischen Unterschieden (D3): 

Durch die Anwendung der folgenden Änderungen am State Chart sc1.v2 erhält 

man ein State Chart, das ausschließlich Abläufe modelliert, die auch im State 

Chart sc1.v1 modelliert sind: 

1. Die Transition vom Zustand Completed zum Zustand Completed mit dem 

Stimulus cancelOrder() und der Aktion sendIllegalCancelNotice() löschen. 

 

Erläuterungen des semantischen Unterschieds durch Beispielabstraktion (D4): 

1. Wenn die Events sendIllegalCancelNotice() und sendCancelRequest() in 

den Aktionen beider Statecharts gelöscht werden würden, dann wäre 

jeder Ablauf von sc1.v2 auch ein Ablauf von sc1.v1. 

2. Wenn das Event sendIllegalCancelNotice() im State Chart sc1.v2 durch das 

Event sendCancelRequest() ersetzt werden würde, dann wäre jeder Ablauf 

von sc1.v2 auch ein Ablauf von sc1.v1. 
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Erläuterung des semantischen Unterschieds durch Zusammenfassung (D5): 

Die folgende Liste repräsentiert eine Menge von Abläufen, die in sc1.v2 möglich 

und im State Chart sc1.v1 nicht möglich sind. Die Mengen der Stimulus/Reaktion 

Paare aller Abläufe unterscheiden sich paarweise.  

1. Ablauf 

(Created, placeOrder() / requestPayment(price), Placed), 

(Placed, tryShipping() / shipOrder(items, customer), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed) 

2. Ablauf 

(Created, placeOrder() / requestPayment(price), Placed), 

(Placed, tryShipping() / shipOrder(items, customer), Completed), 

(Completed, placeOrder() / requestPayment(price), Placed), 

(Placed, cancelOrder() / sendCancellationRequest(), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed), 

(Completed, cancelOrder() / SendIllegalCancelNotice(), Completed) 
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Frage D.1: Wie gut hat Ihnen die Angabe des syntaktischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage D.2: Wie gut hat Ihnen die Angabe des semantischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage D.3: Wie gut hat Ihnen die Erläuterung der Unterschiede durch eine 

Kombination der syntaktischen mit den semantischen Unterschieden beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage D.4: Wie gut haben Ihnen die Beispielabstraktionen beim Verstehen der 

Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage D.5: Wie gut hat Ihnen die Zusammenfassung der semantischen 

Unterschiede beim Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 
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Unterschiede zwischen Feature Diagrammen 
Im Folgenden wird ein Scenario zur Evolutionsanalyse von Feature Diagrammen 

vorgestellt. Im Scenario werden zwei Feature Diagramme gezeigt. Das mit v2 

gekennzeichnete Feature Diagramm ist die Nachfolgerversion des mit v1 

gekennzeichneten Feature Diagramms. Es werden der syntaktische Unterschied 

und der semantische Unterschied des Feature Diagramms mit der Version v2 

zum Feature Diagramm mit der Version v1 erläutert.  

Versuchen Sie bitte die erläuterten Unterschiede nachzuvollziehen. Bewerten 

Sie bitte jeweils anschließend auf dieser Grundlage inwiefern Ihnen die 

Erläuterungen beim Verständnis der Unterschiede von der Nachfolgerversion v2 

zur Version v1 geholfen haben. 
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Feature Diagramm Scenario  
In diesem Beispiel sind Sie Entwickler einer Automobil-Produktlinie. Der 

Hersteller entwickelt Fahrzeuge mit Elektrischem-, Gas- oder Hybrid-Antrieb. 

Das Alleinstellungsmerkmal des Herstellers sind die innovativen Verriegelungen, 

die der Kunde auf Wunsch erwerben kann. Zum einen bietet der Hersteller eine 

schlüssellose Verriegelung an. Die andere Möglichkeit ist eine Verriegelung, die 

per Smartphone und optional sogar über den im Smartphone integrierten 

Fingerabdruck-Sensor bedient werden kann. Wahlweise kann der Kunde beide 

Verriegelungssysteme in sein Fahrzeug verbauen lassen. Sie modellieren dazu 

das Feature Diagramm fd.v1.  

Es hat sich nach Absprache mit den Händler eine Änderung ergegeben. Ein 

Arbeitskollege ändert daraufhin das Feature Diagramm fd.v1. Daraus entsteht 

das Feature Diagramm fd.v2. Sie möchten die Unterschiede vom neuen Feature 

Diagramm fd.v2 zum Feature Diagramm fd.v1 verstehen. 
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Syntaktische Unterschiede im Feature Diagramm Scenario (E1) 
Erläuterung des syntaktischen Unterschieds von fd.v2 zu fd.v1 in textueller 

Form: 

1. Die Gruppe des Features engine mit den Features electric, gas und hybrid 

wurde zu einer Or-Gruppe konvertiert. 

2. Das Feature hybrid wurde von der Gruppe des Features engine mit den 

Features electric, gas und hybrid entfernt. 

3. Das Feature fingerprint wurde entfernt. 

4. Die Gruppe des Features locking mit den Features keyless und phone 

wurde zu einer Xor-Gruppe konvertiert. 

5. Der Gruppe des Features locking mit den Features keyless und phone 

wurde das Feature fingerprint hinzugefügt. 

Erläuterung des syntaktischen Unterschieds in grafischer Form:  

Die im folgenden Bild im Feature Diagramm fd.v1 rot dargestellten und durch 

einen Kasten markierten Elemente wurden gelöscht oder geändert. Die im 

Feature Diagramm fd.v2 grün dargestellten und durch einen Kasten markierten 

Elemente wurden hinzugefügt oder geändert. 
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Semantische Unterschiede im Klassendiagramm Scenario  
Erläuterung des semantischen Unterschieds in textueller Form (E2): 

Die folgenden Konfigurationen sind im Feature Diagramm fd.v2 valide und im 

Feature Diagramm fd.v1 nicht valide: 

1. Konfiguration: 

{car, engine, electric, gas, locking, keyless} 

2. Konfiguration: 

{car, engine, electric, gas, locking, phone} 

3. Konfiguration: 

{car, engine, electric, gas} 

4. Konfiguration: 

{car, engine, electric, gas, locking, fingerprint} 

5. Konfiguration: 

{car, engine, electric, gas, locking, phone} 

6. Konfiguration: 

{car, engine, gas, locking, fingerprint} 

Erläuterung des semantischen Unterschieds in grafischer Form: 

Im den folgenden sechs Bildern werden die zuvor gezeigten Konfigurationen 1, 

2, 3, 4, 5 und 6 im Feature Diagramm fd.v2 grafisch dargestellt: 

1. Konfiguration: 

 
 

 

2. Konfiguration: 
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3. Konfiguration: 

 
 

4. Konfiguration: 

 
 

5. Konfiguration: 

 
 

6. Konfiguration: 
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Erläuterung des Unterschieds durch eine Kombination der syntaktischen 

Unterschiede mit den semantischen Unterschieden (E3): 

Wenn die folgenden Änderungen am Feature Diagramm fd.v2 durchgeführt 

werden, dann erhält man ein Feature Diagramm, das ausschließlich valide 

Konfigurationen hat, die auch valide Konfigurationen des Feature Diagramms 

fd.v1 sind: 

1. Das Feature fingerprint entfernen. 

2. Die Gruppe des Features engine mit den Features electric und gas zu einer 

Xor-Gruppe konvertieren. 

 

Erläuterungen des semantischen Unterschieds durch Beispielabstraktion (E4): 

1. Wenn man von der Existenz der Features fingerprint und gas in den 

Feature Diagrammen abstrahieren würde, dann wäre jede valide 

Konfiguration von fd.v2 auch eine valide Konfiguration von fd.v1. 

2. Wenn man von der Existenz der Features fingerprint und electric in den 

Feature Diagrammen abstrahieren würde, dann wäre jede valide 

Konfiguration von fd.v2 auch eine valide Konfiguration von fd.v1. 

  

Erläuterung des semantischen Unterschieds durch Zusammenfassung (E5): 

Die folgende Liste von Konfigurationen repräsentiert eine Menge von validen 

Konfigurationen von fd.v2, die keine validen Konfigurationen von fd.v1 sind. Die 

Anzahl der Elemente der Konfigurationen unterscheiden sich paarweise.  

1. Konfiguration: 

{car, engine, electric, gas} 

2. Konfiguration: 

{car, engine, electric, gas, locking, fingerprint} 
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Frage E.1: Wie gut hat Ihnen die Angabe des syntaktischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage E.2: Wie gut hat Ihnen die Angabe des semantischen Unterschieds beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage E.3: Wie gut hat Ihnen die Erläuterung der Unterschiede durch eine 

Kombination der syntaktischen mit den semantischen Unterschieden beim 

Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage E.4: Wie gut haben Ihnen die Beispielabstraktionen beim Verstehen der 

Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 

 

Frage E.5: Wie gut hat Ihnen die Zusammenfassung der semantischen 

Unterschiede beim Verstehen der Unterschiede der Modelle geholfen? 

□    □    □    □ 
Sehr gut  eher gut  eher wenig  sehr wenig 
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Sie haben jetzt unterschiedliche Möglichkeiten zur Identifikation von 

syntaktischen und semantischen Unterschieden zwischen Modellen in vier 

unterschiedlichen Modellierungssprachen kennengelernt. 

 

Frage F.1: Welche Anwendungsfälle können sie sich für diese Möglichkeiten der 

Identifikation von syntaktischen und semantischen Unterschieden vorstellen? 

 

 

 

 

 

 

 

 

 

 

 

Vielen Dank für die Beantwortung! 
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