
Orchestration of Global Software Engineering Projects
- Position Paper -

Christian Bartelt1, Manfred Broy2, Christoph Herrmann4, Eric Knauss3,
Marco Kuhrmann2, Andreas Rausch1, Bernhard Rumpe4, Kurt Schneider3

1Technische Universität Clausthal, Software Systems Engineering
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

{bartelt | rausch}@tu-clausthal.de
2Techniche Universität München, Institut für Informatik – I4

Boltzmannstr. 3, 85748 Garching, Germany
{kuhrmann | broy}@in.tum.de

3Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
{kurt.schneider | eric.knauss}@inf.uni-hannover.de

4RWTH Aachen, Lehrstuhl Informatik 3 (Softwaretechnik)
Ahornstr. 55, 52074 Aachen, Germany

{rumpe | herrmann}@se-rwth.de

Abstract

Global software engineering has become a fact in

many companies due to real necessity in practice. In
contrast to co-located projects global projects face a
number of additional software engineering challenges.
Among them quality management has become much
more difficult and schedule and budget overruns can
be observed more often. Compared to co-located pro-
jects global software engineering is even more chal-
lenging due to the need for integration of different cul-
tures, different languages, and different time zones –
across companies, and across countries. The diversity
of development locations on several levels seriously
endangers an effective and goal-oriented progress of
projects. In this position paper we discuss reasons for
global development, sketch settings for distribution
and views of orchestration of dislocated companies in
a global project that can be seen as a “virtual project
environment”. We also present a collection of ques-
tions, which we consider relevant for global software
engineering. The questions motivate further discussion
to derive a research agenda in global software engi-
neering.

1. Introduction

Today’s IT and Software industries are pretty glob-

ally distributed. Globally distributed projects are rap-
idly becoming the norm for the development of large
software systems. It is no longer unusual for a large

project to have teams in more than one location, often
on more than one continent. Therefore software engi-
neering has to cope with distributed execution and lo-
cal management but integrated, global project solu-
tions.

1.1 Promises of Global Software Engineering

Global software engineering (GloSE) is a conse-

quence of a variety of current trends and profane ne-
cessities. These reasons for global software engineer-
ing can all be reduced to the following three main sig-
nificant forces that have pushed global software engi-
neering as a fact in our daily work:
• Economically: Those reasons include e.g. cost

concerns, like significant differences in personnel
costs, if for example the development in Asia is
dramatically cheaper than in Europe. Other sam-
ples for economic reasons are the increasingly
global networks of companies to develop increas-
ingly complex software under (time and budget)
pressure and in competition to each other. Glob-
ally distributed development promises chances for
being better than the competitors.

• Organizationally: Organizational reasons can be
motivated by the structure of globally acting com-
panies. If a company is spread over the whole
world, distributed development is the natural style
of project organization as development resources
are already located multi-sited. Another typical
organizational reason is the need to tap global

[BBH+09] C. Bartelt, M. Broy, C. Herrmann, E. Knauss, M. Kuhrmann, A. Rausch, B. Rumpe, K. Schneider
Orchestration of Global Software Engineering Projects
In: Proceedings of the Third International Workshop on Tool Support Development and Management in Distributed Software Projects,
collocated with the Fourth IEEE International Conference on Global Software Engineering ICGSE 2009, July 13-16 2009, Limerick, Ireland
www.se-rwth.de/publications

pools to acquire highly skilled resources and find-
ing an appropriate mix of expertise for a project.

• Strategically: Another face is given by strategic
reasons for distributed development. If a globally
acting software vendor like SAP, Siemens, or Mi-
crosoft produces localized software, the location
of developers close to the customers could have
advantages: Culture is known, time to market can
be optimized, e.g. for localized patches, updates
etc. or psychological/political aspects are taken
into account due to local employees. Satisfying in-
vestment requirements imposed by governments in
foreign markets, mergers, and acquisitions are also
examples for strategic reasons for global software
engineering.

1.2 Applying GloSE in Practice

Despite the stated reasons there are numerous ways

of applying global software engineering in practice.
They reach from simple buyer-supplier relationships to
sophisticated peer development in specialized areas.
Each distribution setting has consequences especially
related to project organization/coordination and col-
laboration. A distribution setting can be motivated ac-
cording the above stated reasons, where a mixture of
those reasons is also possible. On the one hand the
economic driver can locate “simple” development
tasks at Asia while formidable (expensive) tasks like
requirements engineering or architectural design stay
in Europe. On the other hand design and development
can be distributed among partners by assigning sub-
tasks. These two settings have completely different
implications.

Such differences in distribution settings have strong
impacts on a particular project or even on the whole
organization. Referring to cost-driven phase-based task
distribution, the following setting is usual: Develop-
ment teams grew up, as sub-projects in the outsourcing
countries also need some organization and so on. Be-
side the pure development, management overhead oc-
curs. Looking at the second setting distributed and col-
laborative work within one discipline (e.g. architectural
design), infrastructure requirements (e.g. for “virtual
white boards”) may increase. Corresponding to the
concrete setting, a variety of organizational measures
have to be prepared – with consequences to the project,
its organization, coordination etc.

1.3 Results of GloSE in Practice

Independent from the co-located software engineer-

ing approach, global software engineering is becoming
the predominant way of software engineering. It has

also numerous additional risks to classical software
engineering, like the variability of the project settings,
distances between participants and resulting profes-
sional and social issues.

Because of widely spread projects, spanning several
countries and cultures, projects became “multi-
cultural”. This challenge is independent of the concrete
reason of distribution. A similar challenge is distance
in time and space, a major problem, although it may
seem minor at first glance. Different time zones ham-
per synchronous communication and delay coordina-
tion in a project. The inability of face-to-face meetings
has decreased communication richness [1].

Originally, global development was intended to re-
duce costs. But the result was that many projects
showed the same symptoms related to quality or com-
munication-lacks as one-site projects [7]. In fact the
consequences were even worse: Each communication-
issue, each under-specified component caused in-
creased effort, leading even to increased costs. Espe-
cially if the driver was not organizational nor strategic
but economic, the (economic) success of the project is
jeopardized independent from the quality of the deliv-
eries. Tasks in global software development projects
often take much longer than in co-located environ-
ments [3] and suffer from a wide range of problems 
[6]. 
 

1.4 What is GloSE All About?

Apart from the forces that push global software en-

gineering and from the obvious problems and draw-
backs, there is little reason to expect global software
engineering to be diminished in the future. Rather, it
appears that we face increasing globalization of mar-
kets and production, increasing the pressure to distrib-
ute projects globally and thus broaden the appearance
of global software engineering.

Our Notion of Global Software Engineering:

We want to apply the concepts of software engi-

neering to the benefit of global projects. However,
there seem to be specific obstacles. A key question is:
What is the difference between classical software engi-
neering and global software engineering?

In global software engineering work is allocated to
people at distributed sites with different software en-
gineering cultures.

This notion of global software engineering also pro-

vides the explanation for the problems that appear in
applying global software engineering in practice:

In software development projects the tasks cannot
be seen as isolated activities. There exist complex de-
pendencies between particular tasks. Thus, people have
to communicate with each other to fulfill their tasks. If
tasks are carried out at distributed sites, people at any
given site have to communicate with each other. But in
a global environment communication suffers [6].

In a traditional, co-located project, teams usually
have naturally built up a number of ways of coordinat-
ing their work. They have a shared view of how the
work will proceed, either because of a shared, defined
process or just by acquiring a common set of habits
and vocabulary over time. The difference in global
software engineering is that many of the mechanisms
for coordinating the work in a co-located setting are
absent or disrupted. In global software engineering
people with different software engineering cultures
work together. This generates a higher demand to co-
ordinate the different tasks with each other. Even
worse, in a global environment such coordination is
more difficult than in a co-located setting [8].

The Main Challenge in GloSE:  
 
Thus,  the key  challenge of  global  software engi‐

neering  is  to  establish  appropriate  communica­
tion  and  coordination  habits  in  a  global  project 
environment (see also [9]). 
 

1.4 Scope and Claim of our Approach

Communication and coordination in global software

engineering can be investigated from two different
views: From social aspects and professional aspects. In
this paper we focus on the professional aspects of glob-
al software engineering.

Our Approach for Successful GloSE:

To be successful in global software engineering one

has to (re-)orchestrate the existing communication
and coordination cultures of all parties participating
in the global software engineering project.
 

This (re-)orchestration has to be established on
three levels: Project set-up and management, processes
and information flows and artifacts and product mod-
els. On each level the organizational, e.g. establishing
specific handshake tasks between people working to-
gether but having different software engineering cul-
tures in mind, as well as the technical aspects, e.g. pro-
viding communication infrastructures for a global pro-
ject environment, have to be improved. The three lev-

els will be more detailed discussed in the following
section.

2. A General Approach for Orchestration
of Global Software Engineering Projects

As there are manifold reasons to establish distrib-

uted development, the main problems on the profes-
sional level are an unclear and undefined coupling be-
tween the distributed organizations and locations and
in consequence missing knowledge and practice for the
global project as a whole. One reason therefore is a
vague understanding of interfaces (e.g. data dependen-
cies, process connections) between the distributed loca-
tions. We consider the lack of explicit interfaces a
critical issue; it resides on the levels of integration
mentioned above (project set-up, processes, and arti-
facts). We consider the re-orchestration of these three
layers – including organizational as well as technical
questions – a fundamental challenge. We propose an
approach covering communication, process, and tech-
nology. In detail:

- Tracing and consistency controlling of multi-sited
dependencies of data and information

- Constitution of a multi-site GloSE process by in-
tegration of organization-specific processes

- Constitution of a multi-sited GloSE project orga-
nization with respect to organization-specific
structures

2.1 Example and Discussion

Figure 1 provides a sample of globally acting com-
panies and their cooperation. We consider two compa-
nies Organization A and Organization B, who work
together in a Virtual Project.

Both have existing project teams, processes and
data storage structures. Due to a distributed project,
sub-sets of personnel and data structures have to be
combined as well as the development processes. Those
elements become visible in the global context. As
shown in Figure 1 (left column) the virtual team is
built of selected members of both companies. Both
have also “internal” supporting staff that is not visible
in the virtual context. Also shown is the orchestration
of the development processes. So each individual proc-
ess may contain steps not available in the other proc-
esses to be considered. As shown in Figure 1 (middle
column) several steps are unique for one site, so proc-
esses are orchestrated. On the other hand, particular
steps may also be integrated (e.g. A.5 and B.5 to an
integrated 5 on the virtual project’s level). Third the

data storages are connected in the virtual project. Each
site has its own storage, processes, and team-structure.

On top the virtual project provides several concep-
tual / virtual views on the site-specific artifact-, proc-
ess-, and organizational-models. The site-specific
views remain, because they allow specialized teams to
work in their ideal environment. The combined views
are necessary for the project, because a common un-
derstanding of the shared concepts is needed. The ele-
ments for the shared views are collected from (all) par-
ticipating sites and integrated to task-specific views,
e.g. several codes for a specific task and the specifica-
tions the code belongs to for reviewing tasks. Other
examples include so-called Dashboards for project
management [5] that collect and provide information of
the distributed project to the managers. For GloSE this
is not enough as not only the collection and presenta-
tion of data is the matter but also the collaborative
creation of and work on shared artifacts.

2.2 Views in GloSE

As projects in a global context are considered loose-

ly coupled, the proposed virtual project on the one
hand realizes (technical) orchestration and integration
aspects. On the other hand, views are provided. A view
is a site-independent, task-driven and role-specific
snapshot of the project.

A view is site-independent as selected items are part
of the view independently of their “location”. Refer-
ring to Figure 1 development artifacts can be the mat-
ters, which are provided by several sites (e.g. specifica-
tions from Organization A and corresponding source
codes from Organization B). They together build a part
of the virtual project’s artifact structure.

A view is task-driven as selected items are collected
and presented according to the current task. A devel-
oper, who shall implement a particular requirement,
will only see code and corresponding specifications
(requirements, tests etc.). Non-development artifacts or
artifacts not relevant for that very task are out of scope.

A view is role-specific as elements are selected re-
specting the needs of being informed according to a
role and its tasks or responsibilities in the project. A
project manager for instance would be interested in all
status information of the virtual project. The required
information in that view is presented respecting the
current virtual development process and all relevant
artifacts from all sites.

Thus views are a fundamental concept for virtual
projects in global software engineering, definition of
views is a challenging task. As a first step, we start to
identify, orchestrate and integrate typical subjects rele-
vant for (distributed) development. Relevant subjects
are processes and organization structure, information
flows, and artifacts (also refer to Figure 1).

Figure 1 Example: Virtual Project setting for orchestration and integration in GloSE

2.2.1 Considering Processes

A fundamental challenge is the handling of distrib-

uted and heterogeneous development processes. Each
organization taking part in a distributed project usually
has its own accepted development process. Those
processes either need to be harmonized (especially
accompanying ones) or coupled in some way. It can be
even more demanding to identify differences in the
first place. This is, however, a precondition to commu-
nicate and agree on interfaces on each level. In the
above example A and B have different communication
practices [2]. If developers at A and B are not made
aware of those differences, they will not understand
and accept a modification to their way of working.

Accompanying processes mainly target organiza-
tional matters. So on the one hand process interfaces
provide the specifications how to couple organizations.
On the other hand interfaces have to be considered
together with organizational questions related to the
whole (global) project.

The challenging task is to identify the integration
options, appropriate process-interfaces or to define
some kind of common development process. The har-
monization of processes is necessary to build a com-
mon understanding of the whole global project. Under-
standing means a common vocabulary (terminology,
ontology), a common set of milestones, deliverables,
common strategies for coordinating the distributed
(sub-)projects and knowledge of the requirements re-
lated to process-relevant artifacts

2.2.2 Considering Artifacts

Another challenge in distributed development is the

management of development artifacts. Those artifacts
are distributed by the nature of the project setting. In
fact all artifacts in a project are interdependent in sev-
eral ways. For example, certain architecture specifica-
tions motivate the creation of particular software com-
ponents. This way a dependency between the compo-
nents (the code) and the specification exists.

The questions concerning artifacts are: Who owns
what artifact? Are the artifacts consistent with each
other? Are there redundancies e.g. because of the spe-
cification is mirrored at the developers’ location? And
if so, are both copies of the specification consistent?

An important requirement is the transparency of
those artifacts to make sure that the development work
matches first the specification and second the project’s
goals.

2.2.3 Considering Project Organization

The third challenge we want to outline is the orga-

nization structure of sub-projects in distributed set-
tings. A communication net, where everybody talks to
everybody else is inefficient and will not work in dis-
tributed settings. Furthermore it is necessary to deter-
mine existing organization structures and to identify a
suitable integration structure of sub- or sub-sub-
projects into the whole distributed setting.

Questions to be answered are: What are the respon-
sibilities in the particular projects? What are the com-
munication paths? Is there a correlation between
communication and responsibility? Is there some kind
of “virtual super project”?

2.2.4 Consequences

 The questions sketched above shortly outline the

main problems that can be found when combining or-
ganizations within a distributed development project.
In fact those issues may result in serious problems,
beginning at misunderstandings related to requirements
up to permanent communication lacks if different cul-
tures are disobeyed. Those gaps lead to quality and
efficiency issues with increased costs in consequence.
The fragmentation of artifacts, processes and project
organization in distributed projects are project risks.
We also started to discuss questions related to issues
that go beyond “pure” integration. The scope was not a
set of particular sub-projects but the whole distributed
(“virtual”) project. Questions refer namely to coordina-
tion and responsibilities. Nevertheless orchestration
and integration on different levels are in our opinion an
adequate way to realize risk-oriented project manage-
ment for selected settings.

3. Conclusion and Further Issues

In this discussion paper we have identified the rea-
sons for the main challenges of global software engi-
neering. We have identified typical problems on three
levels and an initial set of core questions for outlining
problems and matters to be considered. This provides a
baseline for discussing typical problems of global soft-
ware engineering. In the following we state some
additional questions that need further research:

- Are there further relevant critical problems in
GloSE projects, besides the identified integration
problems?

- Does our form of intended orchestration of pro-
jects cover all relevant aspects and which addi-
tional problems will be encountered?

- Do the three mentioned levels (see sec. 2) cover
the whole area of orchestrations/integration capa-
bilities in global software engineering?

- What is the best resp. most efficient way for the
realization of the GloSE infrastructure (related to
3.1) in practice?

- With respect to the three levels: Can we address
integration issues of each of the three levels sepa-
rately, or do we need to integrate on all three areas
in parallel?

- Are there further and resilient experiences in “in-
tegrating” technical and non-technical issues, such
as communication habits? And what are resulting
views?

- What are appropriate techniques for identifying
individual practices on each level – without inter-
rupting development work?

- How can the inherit dynamics of a multi-site pro-
ject be accommodated by our approach – what are
the modes of change for an interface?

Those questions aim at the problem of organizing
and coordinating a distributed project. We assume that
integration not only solves problems, but also will pos-
sibly create new ones. Furthermore not all aspects of
all sub-projects are suitable or even necessary for inte-
gration. So the optimal amount of elements has to be
determined. Beyond integration, the definition of views
is necessary – so: what are the views relevant for each
project? Can we find common and therefore standardi-
zable patterns of views?

Also to be considered in this context is the question,
if there exist processes or artifacts in the global project
that span all (or almost all) sub-projects. If so, what are
adequate instruments to extract those elements from
single projects and handle them on the global level?
The possible range for solutions is from (lazy) simple
mappings to (strict) contract-based integration. The
same question is valid for the tool viewpoint: If con-

nected organizations each have individual tools, what
does a GloSE infrastructure looks like? Simple tool-
supported features like task management have to be
revised in that context [4]. Another question is for the
optimal way of enabling organizations for being dis-
tributed players. Is it enough simply to change the way
of storing artifacts or introduce new processes? As we
know from process improvement, investments in only
one dimension usually do not have the expected im-
pacts. So is it the same for making organizations
GloSE-ready? Or is a weighted strategy incorporating
several aspects and dimensions of advantage?

5. References

[1] Cockburn, A.: Agile Software Development. Addison

Wesley, 2002.
[2] Schneider, K., K. Stapel, et al.: Beyond Documents:

Visualizing Informal Communication. Third Interna-
tional Workshop on Requirements Engineering Visuali-
zation (REV 08), Barcelona, Spain, 2008.

[3] Herbsleb,  J.D.  and Mockus, A.: An Empirical  Study of 
Speed  and  Communication  in  Globally­Distributed 
Software  Development.  IEEE  Transactions  on  Soft‐
ware Engineering, 29, 3 (2003), p. 1‐14.

[4] Kuhrmann, M., Kalus, G. and Chroust. G.: Tool-Support
for Software Development Processes. In Enterprise In-
formation Systems for Business Integration in SMEs:
Technological, Organizational and Social Dimensions,
to appear 2009.

[5] Münch, J. and Heidrich, J.: Software project control
centers: concepts and approaches. Journal of Systems
and Software 70(1-2), p. 3-19, (2004.

[6] Olson, G.M. and Olson, J.S., Distance Matters. Human‐
Computer Interaction, 15, (2000), p. 139‐178.

[7] The Standish Group: Chaos Report. 2006.
[8] Whitehead,  J.:  Collaboration  in  Software  Engineer­

ing:A  Roadmap,  in  Future  of  Software  Engineering 
2007, L.Briand and A. Wolf, Editors. 2007.

[9] Herbsleb,  J. D.: Global Software Engineering: The Fu­
ture of Socio­technical Coordination. 2007.

