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Open-World Loose Semantics of Class Diagrams as Basis for
Semantic Differences
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Abstract: Class Diagrams (CDs) model data structures in object-oriented systems and evolve
throughout the course of the development process. Analyzing the semantic differences between
consecutive versions of a CD is crucial to detect unintended changes of the modeled structures
and involves comparing the sets of valid object models of both CDs. Established definitions of
CD-semantics employ a closed-world assumption for the validity of object structures, which may not
fit all stages of the development process. In this paper, we provide different definitions of CD-semantics
and discuss their validity, relationship and limitations in the context of semantic evolution analysis.
We show that the closed-world semantics of a CD is a subset of its open-world semantics and how this
can be used for analyzing model-evolution. We also consider objects both as simple datastructures, as
well as instances of (super-)classes and interfaces, and analyze how these approaches affect refinement
and refactoring.
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1 Introduction

Class Diagrams (CDs) are the most widely used Unified Modeling Language (UML)-
Models in industry and research [DP06, La14, Hu11]. A CD describes the structure of an
object-oriented system by means of classes, attributes and associations. In Model-Driven
Engineering (MDE) CDs are used to generate code in general programming languages such
as Java or C# [SN11]. Often CDs are used in combination with other UML models such as
Statecharts or Sequence Diagrams [PSB11, SKM07, SS19, Sw12]. Furthermore, CDs can
be used to generate graphical interfaces [Ge21].

As CDs are one of the primary artifacts in the development process, they are also frequently
modified. Syntactic changes are made due to changing requirements, bug fixes, or when
moving to a next design level. Effective change management is a major concern in MDE
and not yet fully addressed. Nowadays, only syntactic differencing operators are widely
established [AP03, KKT11, T.13, KGE09, Kü08, Ta14, TK09].

However, they do not show the impact on the model’s semantics, i. e. its meaning [HR04].
The UML-Definition [Ma15] contains a syntactical description of CDs, but is vague on
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the meaning of the diagrams. The semantics of a CD is the set of all object structures
representing legal instances of the CD [MRR11a]. A semantic difference of two CDs is the
set of all object structures representing a legal instance of the first and no legal instance of
the second CD [MRR10, MRR11a]. The absence of such object structures implies that the
first CD refines the latter [MRR10].

The closed-world assumption [Re78] requires legal instances to only instantiate classes
and associations introduced in the CD (e. g. [BM13, MRR11a]). This becomes problematic
during the analysis of systems, when the CDs are underspecified, as not all information is
captured. Following analysis steps can add new classes or associations, which where not
part of the initial analysis. In the closed-world semantics, this is not a refinement and leads
to a semantic difference.

In contrast, the open-world assumption allows, whatever is not explicitly forbidden, i. e.
legal instances may instantiate classes or associations not used in the CD as long as all
CD constraints are satisfied. Adding new information (e. g. an additional class) leads to a
refinement in open-world semantics.

Furthermore, in addition to the distinction between open-world and closed-world approaches,
CD-semantics definitions may differ in their semantic domain, e. g., in [MRR11a], objects
within an object structure are viewed simply as data structures and only instantiate a single
class each. The superclasses and implemented interfaces of this instantiated class impact
the semantics only indirectly via inherited attributes and associations. This definition of
semantics is valid and useful, especially under a closed-world assumption, as it permits
meaningful syntactical changes that do not change the semantics of a CD, as we will show in
the following section. However, this approach becomes problematic when we consider the
use of objects as method arguments. There, the instantiated superclasses and interfaces are
relevant for type checking. In this situation, a semantic domain where objects are instances
of multiple classes and interfaces is more appropriate.

This paper presents and compares open- and closed-worlds semantics definition for CDs
with both single-instance objects, as well as multi-instance objects. We give examples that
show the limitations of a closed-world approach and the utility of open-world CD-semantics
for system-analysis in early developments stages.

In the remainder, Sect. 2 presents motivating examples, which demonstrate the limitations of
closed-world semantics and motivates inheritance information in object structures. Sect. 3
introduces the abstract syntax of CDs, which is used in Sect. 4 to define multiple semantic
mappings. These different semantics are compared in Sect. 5 and Sect. 6 debates related
work. Finally, we conclude in Sect. 7.
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2 Motivating Examples

Consider the CD 𝑐𝑑1 in Fig. 1, it consists of the classes Professor, Lecture and
Student. Professors hold at least one Lecture and each Lecture is held by exactly
one Professor. A Lecture may be attended by multiple Students and a Student may
attend multiple Lectures. We modify the CD by adding another class Room. Each Lecture
is now required to take place in at least one 𝑅𝑜𝑜𝑚 and each Room can host multiple
𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑠. In early development this new CD 𝑐𝑑2 would be understood as a refinement
of 𝑐𝑑1, since adding new elements simply adds new requirements on top of the already
existing requirements regarding valid object structures. We would therefore consider the
semantics of 𝑐𝑑2 a subset of the semantics of 𝑐𝑑1. This is the case under an open-world
assumption. However, under a closed-world assumption the semantics of 𝑐𝑑1 prohibits
instances of any class not explicitly modeled in the CD. Thus, 𝑜𝑚1 is in the closed-world
semantics of 𝑐𝑑1 but not 𝑐𝑑2, and 𝑜𝑚2 is in the closed-world semantics of 𝑐𝑑2 but not 𝑐𝑑1.
We therefore say that the closed-world semantics of 𝑐𝑑1 and 𝑐𝑑2 are incomparable.

Now, consider the CDs 𝑐𝑑3.1 and 𝑐𝑑3.2 in Figure 2. If we view objects simply as data-
structures that instantiate a single class, these two CDs would be semantically equivalent
under a closed-world assumption. 𝑐𝑑3.1 would be considered a refactoring of 𝑐𝑑3.2 and
vice-versa. If instead we consider a semantics definition that views objects as instances of
multiple classes, we would find 𝑐𝑑3.1 and 𝑐𝑑3.2 to have incomparable semantics under a
closed-world assumption, as 𝑜𝑚3.1 would be in the closed-world semantics of 𝑐𝑑3.1 but not
𝑐𝑑3.2 and 𝑜𝑚3.2 would be in the closed-world semantics of 𝑐𝑑3.2 but not 𝑐𝑑3.1. However,
under an open-world assumption 𝑐𝑑3.1 would be considered a strict refinement of 𝑐𝑑3.2, as
the open-world semantics of 𝑐𝑑3.1 does not restrict instances of the class 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒.
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Fig. 1: Running examples of CDs and object structures

3 Class Diagrams and Object Structures

In the following, we use a variant of CDs which describes object structures in terms
of classes, associations, roles, extends relations, and multiplicity constraints. An object
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Fig. 2: Examples of CDs. Object structures include inheritance information

structure represents a possible data state of a system by means of objects and links between
them [Ru16]. Those object structures that satisfy all constraints prescribed by a CD, are the
elements of the CD’s semantics.

Notation. Let 𝐴 be a set. Then, |𝐴| denotes the cardinality of the set 𝐴. Further, ℘2 (𝐴)
denotes the set of two-element subsets of 𝐴 and ℘fin (𝐴) denotes the set containing all
non-empty finite subsets of 𝐴. We denote the set of natural numbers including 0 by N0, and
the set of natural numbers including 0 and the infinity symbol by N∞. The relation ≤ is
the natural total ordering on this set. Given a binary relation 𝑅, we denote the reflexive
transitive hull of that relation by 𝑅∗.

3.1 An Abstract Syntax for Class Diagrams

From now on, let C𝑈 be a universe of class names, R𝑈 be a universe of role names,
and A𝑈 be a universe of association names. The following function assigns two roles
to every association. We assume that associations describe exactly two roles. Roles are
not shared among different associations. To this effect, 𝑟𝑙𝑠 : A𝑈 → ℘2 (R𝑈) maps each
association to its roles. Since roles are not shared, we require 𝑟𝑙𝑠(𝑎1) ∩ 𝑟𝑙𝑠(𝑎2) = ∅
for every two associations 𝑎1, 𝑎2 ∈ A𝑈 with 𝑎1 ≠ 𝑎2. The assumption that role names
are not shared does not imply a loss of generality, as, e. g. prepending the association’s
name to every role name of the association yields the required property. For example,
consider the CD 𝑐𝑑3.1 in Figure 2 and its association do ∈ A𝑈 . The two roles of do are
𝑟𝑙𝑠(do) = {assignedTo, worksOn}. A CD consists of a finite set of classes, a finite set
of associations with multiplicity constraints on both association ends, and a finite set of
extends relations between the classes. The CD assigns the roles of each associations a unique
class. We need not consider attributes, as they can be simulated by corresponding 1-to-1
associations. Similarly, interfaces are not explicitly regarded, as they would be semantically
equivalent to abstract classes in our semantics definitions. Finally, our syntax and semantics
definitions omit methods, since they require behavioural analysis, and we are primarily
concerned with object structures.
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Definition 3.1 (Class Diagram) A class diagram is a tuple 𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H),
where (1) C ⊆ C𝑈 is a finite set of classes, (2) A𝑏𝑠 ⊆ C is a set of abstract classes,
(3) A ⊆ A𝑈 is a finite set of associations, (4) the function 𝑐𝑙𝑠 : 𝑟𝑙𝑠(A) → C assigns
each role of each association a unique class, (5) C contains all classes of all roles of
all associations, i. e. for all associations 𝑎 ∈ A and all roles 𝑟 ∈ 𝑟𝑙𝑠(𝑎) of a, it holds
that 𝑐𝑙𝑠(𝑟) ∈ C, (6) M = {𝑚𝑖𝑛𝑐𝑑𝑎 , 𝑚𝑎𝑥𝑐𝑑𝑎 | 𝑎 ∈ A} is a finite set containing a minimum
multiplicity constraint 𝑚𝑖𝑛𝑐𝑑𝑎 : 𝑟𝑙𝑠(𝑎) → N0 and a maximum multiplicity constraint
𝑚𝑎𝑥𝑐𝑑𝑎 : 𝑟𝑙𝑠(𝑎) → N∞ for each association 𝑎 ∈ A, (7) H ⊆ {𝑐1 ≼ 𝑐2 | 𝑐1, 𝑐2 ∈ C} is a
finite set of extends relations between the classes in C such that (8) H ∗ is a partial ordering
on C, (9) and for any 𝑐1 ≼ 𝑐2 ∈ H , it holds that 𝑐1 ∈ A𝑏𝑠 =⇒ 𝑐2 ∈ A𝑏𝑠.

In a CD 𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H), for each association 𝑎 ∈ A, and each role 𝑟 ∈ 𝑟𝑙𝑠(𝑎)
of the association, 𝑚𝑖𝑛𝑐𝑑𝑎 (𝑟) ∈ N0 defines the minimum multiplicity of the class 𝑐𝑙𝑠(𝑟)
with role 𝑟 required by association 𝑎 in the CD 𝑐𝑑. Similarly, 𝑚𝑎𝑥𝑐𝑑𝑎 (𝑟) ∈ N∞ defines the
maximum multiplicity of the class 𝑐𝑙𝑠(𝑟) with role 𝑟 required by the association 𝑎 in the CD
𝑐𝑑. For instance, the abstract syntax of the CD 𝑐𝑑3.1 depicted in Figure 2 can be formalized
as 𝑐𝑑3.1 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H), where C = {Employe, Task, Researcher}, A𝑏𝑠 =

{𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒}, A = {do}, 𝑐𝑙𝑠 = {assignedTo ↦→ Employee, worksOn ↦→ Task},M =

{𝑚𝑖𝑛𝑐𝑑3.1
do , 𝑚𝑎𝑥𝑐𝑑3.1

do }, andH = {Researcher ≼ Employee}. The multiplicity constraints
inM are given by the functions 𝑚𝑖𝑛𝑐𝑑1

do = {assignedTo ↦→ 1, worksOn ↦→ 1}, 𝑚𝑎𝑥𝑐𝑑1
do =

{assignedTo ↦→ 1, worksOn ↦→ ∞}.

3.2 Strict Expansion of CDs

We now define the notion of a strict expansion of a class diagram that will serve as the
basis for an open-world semantic definition in Sect. 4.2. Under an open-world assumption,
CDs are considered underspecified. Adding a new class, association or extends relation
to a CD should therefore be considered a refinement, since we are specifying previously
underspecified parts of the CD. This should also be the case for moving an association to a
superclass and changing a non-abstract class into an abstract class.

Definition 3.2 We say that a class diagram 𝑐𝑑 ′ = (C′,A𝑏𝑠′,A ′, 𝑐𝑙𝑠′,M ′,H ′) is a
strict expansion of another class diagram 𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H) iff (1) C ⊆ C′,
A𝑏𝑠 ⊆ A𝑏𝑠′, A ⊆ A ′, M ⊆ M ′, H ⊆ H ′ and (2) for all 𝑎 ∈ A and 𝑟 ∈ 𝑟𝑙𝑠(𝑎), we find
that 𝑐𝑙𝑠(𝑟) ≼ 𝑐𝑙𝑠′(𝑟) ∈ (H ′)∗ Furthermore, we use 𝐸𝑋𝑃(𝑐𝑑) to denote the set of all strict
expansions of 𝑐𝑑.

3.3 Semantic Domain

Similar to [MRR11a], we define the semantics of a CD as the set of object structures,
which contains all object structures permitted by the CD. The abstract syntax of object
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structures comprises objects and links between them. Unlike [MRR11a], we consider
both a semantic domain based on single-instance objects, as well as one consisting of
multi-instance objects. To this effect, let O𝑈 denote a universe of objects. A link of type
𝑎 ∈ A𝑈 connects two objects via the roles 𝑟𝑙𝑠(𝑎). For example, consider the object structure
𝑜𝑚3.2 depicted in Figure 2. Formally, the link connecting the Researcher-object r2 to
the Task-object t2 is represented by the tuples (r2, worksOn, do, t2, assignedTo) and
(t2, assignedTo, do, r2, worksOn). The two are necessary to obtain undirected links.

Definition 3.3 (Object Structure) An object structure is a tuple 𝑜𝑚 = (O, class,L), where
(1) O ⊆ O𝑈 is a finite set of objects, (2) type : O → ℘fin (C𝑈) is a function that assigns
a finite set of classes to each object. (3) L ⊆ O × R𝑈 × A𝑈 × O × R𝑈 is a finite set of
links such that for all (𝑜, 𝑟, 𝑎, 𝑜′, 𝑟 ′) ∈ L it holds that a) 𝑟, 𝑟 ′ ∈ 𝑟𝑙𝑠(𝑎) and 𝑟 ≠ 𝑟 ′, and
b) (𝑜′, 𝑟 ′, 𝑎, 𝑜, 𝑟) ∈ L.

The constraint (a) assures that the roles used by a link that instantiates an association 𝑎 ∈ A𝑈 ,
correspond to the roles of the association. The constraint (b) assures undirectedness by
requiring both link directions to be included in the set of links. For instance, the abstract
syntax of the object structure 𝑜𝑚3.1 depicted in Figure 2 is given by 𝑜𝑚3.1 = (O, class,L)
where O = {r1, t1}, type = {r1 ↦→ {Researcher, Employee}, t1 ↦→ {Task}, },
L = {(r1, worksOn, do, t1, assignedTo), (t1, assignedTo, do, r1, worksOn)}

Multiplicity constraints affiliated with an association restrict, for every object, the number of
outgoing links of this association type. In an object structure 𝑜𝑚, the auxiliary function L𝑜𝑚

captures these links: L𝑜𝑚 (𝑜, 𝑎, 𝑟) def= {(𝑜, 𝑟, 𝑎, 𝑜′, 𝑟 ′) ∈ L | 𝑜′ ∈ O ∧ 𝑟 ′ ∈ 𝑟𝑙𝑠(𝑎) \ {𝑟}}.

Consider the object structure 𝑜𝑚1 in Figure 1. The set of links of associa-
tion type holding connecting the object l via role heldBy to Professor-
objects is L𝑜𝑚2 (l, holding, holds) = {(l, heldBy, holding, p, holds)}. The set
of attending-links connecting the object l to Student-objects is the empty set:
L𝑜𝑚2 (l, attending, attends) = 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡.

A simple object structure 𝑜𝑚 = (O, class,L) is an object structure with |𝑐𝑙𝑎𝑠𝑠(𝑜) | = 1 for
all 𝑜 ∈ 𝑂. We may use simple object structure as the semantic domain of a CD-semantics
definition that does not consider the superclasses instantiated by an object. The term “simple”
is in reference to simple graphs from graph theory.

4 Semantics of Class Diagrams

The semantics of a CD 𝑐𝑑, denoted by J𝑐𝑑K, is the set of all valid object structures. A
constraint-based approach to semantics considers an object structure as valid with respect
to a CD iff the object structure satisfies the constraints prescribed by the CD. The semantic
mapping involves a definition of which constraints a CD prescribes and how an element
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of the semantic domain satisfies a constraint. Depending on the interpretation of what the
elements of the semantic domain represent, these definitions may differ, which impacts the
outcome of a semantic differencing operator, i. e. the set of valid instances of one CD that
are not instances of another CD depends strongly on these definitions. This section formally
defines a variety of open-world and closed-world semantics for CDs based on this notion.

4.1 Closed-World Semantics of Class Diagrams

This section introduces CD semantics that apply the closed-world assumption. Given a CD
𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H), an 𝑜𝑚 = (O, type,L) satisfies the closed-world assumption
iff CW-1 ∀𝑜 ∈ 𝑂 it holds that type(𝑜) ⊆ C, CW-2 ∀(𝑜, 𝑟, 𝑎, 𝑜′, 𝑟 ′) ∈ L : 𝑎 ∈ A CW-3 for
all 𝑜 ∈ O it holds that type(𝑜) ⊈ A𝑏𝑠

That is, objects may only instantiate classes in the CD, links may only instantiate associations
in the CD, and no object may instantiate only abstract classes. This section introduces two
closed-world semantics of CDs that interpret object structures as simple data structures
in which objects are considered instances of a single class. The other definition considers
objects as instances of possibly many classes reflecting the notion that if an object instantiates
a subclass, it also instantiates the superclass. Considering the semantic domain to represent
simple datastructures with single-instance objects, the semantics of a CD only contains
simple object structures.

Definition 4.1 (Simple Closed-World CD-Semantics) Consider a CD in the sense above,
i. e. 𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H). The simple closed-world semantics, denoted J𝑐𝑑K𝑠𝑐
is the set of all simple object structures 𝑜𝑚 = (O, type,L) such that (1) 𝑜𝑚 satisfies
the closed-world assumptions, i. e. CW-1 to CW-3. (2) for all 𝑜 ∈ O and 𝑐1, 𝑐2 ∈ C
such that 𝑐1 ∈ type(𝑜), it holds that 𝑐1 ≼ 𝑐2 ∈ H ∗ =⇒ ∀𝑎 ∈ A, (𝑟, 𝑟 ′) = 𝑟𝑙𝑠(𝑎),
such that 𝑐𝑙𝑠(𝑟 ′) = 𝑐2, it holds that 𝑚𝑖𝑛𝑐𝑑𝑎 (𝑟) ≤ |L𝑜𝑚 (𝑜, 𝑎, 𝑟) | ≤ 𝑚𝑎𝑥𝑐𝑑𝑎 (𝑟).
(3) for all 𝑜 ∈ O and 𝑐1, 𝑐2 ∈ C such that 𝑐1 ∈ type(𝑜), it holds that
𝑐1 ≼ 𝑐2 ∉ H ∗ =⇒ ∀𝑎 ∈ A, 𝑟 ∈ 𝑟𝑙𝑠(𝑎), 𝑟 ′ ∈ 𝑟𝑙𝑠(𝑎) \ {𝑟}, such that 𝑐𝑙𝑠(𝑟 ′) = 𝑐2,
it holds that L𝑜𝑚 (𝑜, 𝑎, 𝑟) = ∅

The extends relations affect simple object structures only inderectly, i. e. objects and their
links have to also satisfy themultiplicity constraints of inherited associations. The Conditions
(2), and (3) formalize this: Consider an association 𝑎 that a subclass 𝑐2 inherits from its
superclass 𝑐1 in a CD. Then an object of type 𝑐2 has to fulfill the multiplicity constraints
of 𝑎, i. e. the number of outgoing links of type 𝑎 is greater than or equal to 𝑚𝑖𝑛𝑐𝑑𝑎 (𝑐2)
and smaller than or equal to 𝑚𝑎𝑥𝑐𝑑𝑎 (𝑐2), cf. Condition (2). On the other hand, an object
that is not of a subclass type may not have outgoing links that instantiate associations of
another class, cf. Condition (3). Simple object structures do not incorporate the notion that
instances of a subclass type also instantiate the superclass type. When it comes to semantic
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differencing, this may yield results that are incorrect with respect to the understanding of
the developer. Therefore, we define a closed-world semantics, that considers the types of an
object to be a set of classes. Applying the closed-world semantics, the type of an object
must include a class and exactly all of its superclasses as specified by the extends relations
of the CD.

Definition 4.2 (Multi-Instance Closed-World CD-Semantics) Consider the CD 𝑐𝑑 =

(C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H). The multi-instance closed-world semantics J𝑐𝑑K𝑚𝑐 is the set
of all object structures 𝑜𝑚 = (O, type,L) such that (1) 𝑜𝑚 satisfies the closed–
world assumptions, i. e. CW-1 to CW-3. (2) for all 𝑐1 ≼ 𝑐2 ∈ H , 𝑜 ∈ O it holds
that 𝑐1 ∈ type(𝑜) ⇒ 𝑐2 ∈ type(𝑜), (3) for all associations 𝑎 ∈ A, all roles
𝑟 ∈ 𝑟𝑙𝑠(𝑎), 𝑟 ′ ∈ 𝑟𝑙𝑠(𝑎) \ {𝑟}, and all objects 𝑜 ∈ O such that 𝑐𝑙𝑠(𝑟 ′) ∈ type(𝑜), it
holds that 𝑚𝑖𝑛𝑐𝑑𝑎 (𝑟) ≤ |L𝑜𝑚 (𝑜, 𝑎, 𝑟) | ≤ 𝑚𝑎𝑥𝑐𝑑𝑎 (𝑟). (4) for all associations 𝑎 ∈ A, all roles
𝑟 ∈ 𝑟𝑙𝑠(𝑎), 𝑟 ′ ∈ 𝑟𝑙𝑠(𝑎) \ {𝑟}, and all objects 𝑜 ∈ O such that 𝑐𝑙𝑠(𝑟 ′) ∉ type(𝑜), it holds
that L𝑜𝑚 (𝑜, 𝑎, 𝑟) = ∅, and (5) ∀𝑜 ∈ 𝑂 it holds that ∀𝑐1, 𝑐2 ∈ type(𝑜) : 𝑐1 ≼ 𝑐2 ∈ H ∗ or
𝑐2 ≼ 𝑐1 ∈ H ∗.

In the above definition, we consider objects, whose type is a set of classes. Condition (2)
states that objects whose class type includes a subclass must also include all superclasses
according to the extends relation of the CD. Condition (3) assures that any object that
instantiates a subclass that inherits an association from its superclass obeys the multiplicity
constraints prescribed by that association, while Condition (4) assures that an object does
not have outgoing links of an association that its class-type does not inherit. Condition (5)
assures the correct instantiation of the class-hierarchy prescribed by the extends relations in
the CD.

4.2 Open-World Semantics of Class Diagrams

The closed-world assumption reflects the notion that everything which is not modeled by
the CD is not allowed. In contrast, the open-world assumption promotes that whatever
is not modeled is not restricted and therefore allowed. Open-world semantics definitions
therefore, do not restrict object structures to only instantiate elements from the CD. As
for the closed-world, there are multiple ways to define open-world semantics. This section
introduces two kinds of open-world semantics.

Since we have used a constraint-based approach for defining the closed-world semantics, we
might approach the definition of an open-world semantics by simply removing/loosening
some of these constraints.

Definition 4.3 (Loose CD-Semantics) Let 𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H) be a CD in the
above sense. The loose semantics J𝑐𝑑K𝑙 is the set of all object structures 𝑜𝑚 = (O, type,L)
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such that (1) for all 𝑜 ∈ O it holds that type(𝑜) ⊈ A𝑏𝑠 (2) for all 𝑐1 ≼ 𝑐2 ∈ H , 𝑜 ∈ O
it holds that 𝑐1 ∈ type(𝑜) ⇒ 𝑐2 ∈ type(𝑜), (3) for all associations 𝑎 ∈ A, all roles
𝑟 ∈ 𝑟𝑙𝑠(𝑎), 𝑟 ′ ∈ 𝑟𝑙𝑠(𝑎) \ {𝑟}, and all objects 𝑜 ∈ O such that 𝑐𝑙𝑠(𝑟 ′) ∈ type(𝑜), it holds
that 𝑚𝑖𝑛𝑐𝑑𝑎 (𝑟) ≤ |L𝑜𝑚 (𝑜, 𝑎, 𝑟) | ≤ 𝑚𝑎𝑥𝑐𝑑𝑎 (𝑟).

The loose semantics does not require objects and links to be of class, or association
types that are elements of the CD. However, instantiating only abstract classes is not
allowed (cf. Condition (1)). We consider objects to instantiate multiple classes, therefore the
Condition (2) assures that objects of subclass type are also of superclass type. Condition (3)
requires valid object structures to obey the multiplicity constraints prescribed by the CD.

For instance, the object structure 𝑜𝑚3.1 in Figure 2 is an element of the loose open-world
semantics of 𝑐𝑑3.2 as it obeys all extends relations and all multiplicity constraints of
𝑐𝑑3.2. Because 𝑐𝑑3.2 does not restrict the class hierarchy of the class Researcher, by the
open-world assumption, objects of this type may also instantiate other classes. Since the
class Employee is not an element of 𝑐𝑑3.2, the CD does not pose any restrictions on the
instantiation of this class. Therefore, objects whose class type includes Employee may exist
and have outgoing links of the association type do.

An issue regarding the previous definition of open-world semantics is that, given a CD 𝑐𝑑,
there may be object structures in J𝑐𝑑K that cannot occur in the closed-world semantics of
any CD. Consider, for example, the CD 𝑐𝑑4 and the object structure 𝑜𝑚4 in Fig. 3: we find
that 𝑜𝑚 ∈ J𝑐𝑑4K𝑙 . However, there exists no CD 𝑐𝑑 ′ = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H) such that
𝑜𝑚 ∈ J𝑐𝑑 ′K𝑚𝑐. This is because the object 𝑜3 instantiates both classes 𝐴 and 𝐵, thus either
𝐴 ≼ 𝐵 ∈ 𝐻∗ or 𝐴 ≼ 𝐵 ∈ 𝐻∗ would have to hold, but since 𝑜1 and 𝑜2 only instantiate 𝐴
and 𝐵 respectively, 𝐴 ≼ 𝐵 ∉ 𝐻∗ and 𝐴 ≼ 𝐵 ∉ 𝐻∗ would have to hold, as well, which is
impossible.

OM ��4

o1:{A}o3:{A,B} o2:{B}
ab

ab

CD cd4 

A B
11

ba

ab

Fig. 3: object structure 𝑜𝑚4 in the loose semantics of CD 𝑐𝑑4 is not in the closed-world semantics of
any CD.

Under the open-world assumption a CD is considered underspecified. This notion implies
that any object structure within the open-world semantics of a CD 𝑐𝑑, should also be in
the closed-world semantics of some CD 𝑐𝑑 ′ that is an (open-world) refinement of 𝑐𝑑. We
define a new open-world semantics accordingly:
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Definition 4.4 (Expansion-Based Open-World CD-Semantics) We define the simple
expansion-based open-world semantics as

J𝑐𝑑K𝑠𝑜 :=
⋃

𝑐𝑑′∈𝐸𝑋𝑃 (𝑐𝑑)
J𝑐𝑑 ′K𝑠𝑐 .

Analogously, the multi-instance expansion-based open-world semantics is defined as

J𝑐𝑑K𝑚𝑜 :=
⋃

𝑐𝑑′∈𝐸𝑋𝑃 (𝑐𝑑)
J𝑐𝑑 ′K𝑚𝑐 .

An object structure that is an element of the expansion-based open-world semantics is
therefore valid, iff there exists a strict expansion of the CD such that the object structure is
a valid closed-world instance of this strict expansion. The notion of refinement requires
that the properties of the elements of a CD also hold for every refining CD. The 𝑐𝑑 ′ in
Definition 4.4 always refines the original 𝑐𝑑, because for any 𝑐𝑑 ′′ ∈ 𝐸𝑋𝑃(𝑐𝑑 ′), it holds
that 𝑐𝑑 ′′ ∈ 𝐸𝑋𝑃(𝑐𝑑), as well, and thus any object structure in the semantics of 𝑐𝑑 ′ must
also be in the semantics of 𝑐𝑑 ′′.

5 Comparison of Semantics with Regards to Semantic Differencing

CDs evolve naturally during the development process, and semantic evolution analyses,
such as semantic differencing, allow a systematic tracking of these changes with respect
to the modeled system. A successor version containing all previously defined classes and
associations can be interpreted as a refinement of the predecessor version even if new classes
or associations are added, as long as the constraints prescribed by the previous version are
not contradicted. In this case, the addition corresponds to enhancing the model by further
information about the system. During specification, semantic evolution analysis should
interpret the addition of classes and associations as well as extends relations as the process
of removing underspecification. The definition of an open-world CD semantics reflects
this interpretation. In contrast, closed-world CD semantics are not (and do not need to be)
compatible with the above interpretation. Using a closed-world semantics from above, each
instance of a CD must not contain instances of classes and associations that are not used in
the CD. Therefore, adding a class, an association, or an extends relation to a CD, results in
a CD with a closed-world semantics that is incomparable to the closed-world semantics of
the original CD. While this is a limitation in the context of semantic evolution analyses,
it is no limitation, e. g. in the context of finite satisfiability, which is not concerned with
comparing the semantics of the two CDs. In fact, a class that is used in a CD is satisfiable
using the closed-world semantics of [LN94, BM13] iff it is satisfiable in the CD using the
open-world definitions given above.

As seen above, open- and closed-world are not defined independently, but use a paradigm
to define the set of valid object structures. In general, the multi-instance closed-world
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semantics of a CD is a subset of both multi-instance open-world semantics (cf. Definition 4.3
and Definition 4.4), and the simple closed-world semantics of a CD is a subset of the
expansion-based simple open-world semantics. In the context of semantic differencing,
the semantics-defining paradigm also influences the output of a semantic difference. This
section outlines the relations, differences and application scenarios of the above definitions
of CD semantics.

5.1 Simple vs Multi-Instance Semantics

First, let us compare simple and multi-instance semantics under a closed-world approach.We
find that two CDs may be semantically equivalent under the simple closed-world semantics,
but not under the multi-instance closed-world semantics and vice versa. Consider the CDs
in Figure 4 and the object structures in Figure 5: it holds that J𝑐𝑑5.1K𝑠𝑐 = J𝑐𝑑5.2K𝑠𝑐, but
𝑜𝑚5 ∈ J𝑐𝑑5.1K𝑚𝑐\J𝑐𝑑5.2K𝑚𝑐. On the other hand, J𝑐𝑑5.2K𝑚𝑐 = J𝑐𝑑5.3K𝑚𝑐, but 𝑜𝑚5 ∈
J𝑐𝑑5.2K𝑠𝑐\J𝑐𝑑5.3K𝑠𝑐. For all three of our open-world approaches we find that 𝑜𝑚7 is in the
semantic difference of 𝑐𝑑5.1 to 𝑐𝑑5.2 and 𝑐𝑑5.2 is a strict refinement of 𝑐𝑑5.1. It makes
sense that adding an additional abstract super-class would further restrict the semantics and
thus refine an under-specified CD. Note also that 𝑜𝑚6 ∈ J𝑐𝑑5.2K𝑚𝑜\J𝑐𝑑5.3K𝑚𝑜, as well as
𝑜𝑚6 ∈ J𝑐𝑑5.2K𝑙\J𝑐𝑑5.3K𝑙 .
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Fig. 4: CDs to illustrate the difference between the semantics definitions.
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Fig. 5: Object structures to illustrate the difference between the semantics definitions.

5.2 Closed-World vs Open-World Semantics

To outline further differences between closed-world and open-world semantics, consider
the CDs 𝑐𝑑6.1 and 𝑐𝑑6.2: under both simple and multi-instance closed-world semantics
these two CDs are semantically equivalent, as none of their classes can be instantiated. By
adding an additional class 𝐶 as a subclass to 𝐴 in both CDs, we get 𝑐𝑑6.3 and 𝑐𝑑6.4, which
are no longer semantically equivalent. In fact, they are semantically incomparable: 𝑜𝑚8
is in the closed-world semantics of 𝑐𝑑6.3 but not 𝑐𝑑6.4 and 𝑜𝑚9 is in the closed-world
semantics of 𝑐𝑑6.4 but not 𝑐𝑑6.3. This situation in which two previously semantically
equivalent, models become semantically incomparable by adding the same new element
to both, calls into question the well-formedness of these close-world CD-semantics. The
expansion-based open-world semantics, by their very Definition 4.4, do not suffer from this
flaw, and regarding the previous example, we find that 𝑐𝑑6.2 is a strict refinement of 𝑐𝑑6.1
under open-world semantics.

5.3 Relation Between Constraint-Based Open- and Closed-World Semantics

Compared, to the open-world constraint-semantics Definition 4.3, the constraint-based
closed-world Definition 4.2 additionally requires instances of 𝑐𝑑 to solely contain objects
and links, typed with classes and associations used in the CD 𝑐𝑑. These definitions are
related in the sense that removing all objects and links from an instance of the CD, which are
not typed with classes and associations of the CD, yields an object structure that instantiates
the CD considering either definition of semantics.

To this effect, let 𝑐𝑑 = (C,A𝑏𝑠,A, 𝑐𝑙𝑠,M,H) be a CD and let 𝑜𝑚 = (O, class,L) be
an object structure. We denote by 𝑜𝑚 ↓ 𝑐𝑑

def
= (O ′, type′,L ′) the restriction of 𝑜𝑚 to

instances of classes and associations used in 𝑐𝑑, i. e. O ′ = {𝑜 ∈ O | type(𝑜) ∩ C ≠ ∅},
L ′ = {(𝑜, 𝑟, 𝑎, 𝑜′, 𝑟 ′) ∈ L | 𝑎 ∈ A}, type′ : O ′ → ℘fin (C), 𝑜 ↦→ type(𝑜) ∩ C \ ({𝑐2 ∈
C | �𝑐1 ∈ type(𝑜) : 𝑐1 ≼ 𝑐2 ∈ H ∗}) ∪ {𝑐1 ∈ C | �𝑐2 : 𝑐1 ≼ 𝑐2 ∈ H ∗}.
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The following lemma formalizes the relation between the two semantic mappings: If an
object structure is an element of the semantics of a CD, then its restriction to the elements
of the CD is an element of the closed-world CD semantics.

Lemma 5.1 Let 𝑐𝑑 be a CD and let 𝑜𝑚 be an object structure. If 𝑜𝑚 ∈ J𝑐𝑑K𝑙 , then
𝑜𝑚 ↓ 𝑐𝑑 ∈ J𝑐𝑑K𝑚𝑐.

Proof sketch The definitions of 𝑂 ′, type′, and L ′ rule out the existence of objects in
𝑜𝑚 ↓ 𝑐𝑑 of class types or links of association-types that are not defined in the CD. Since an
𝑜𝑚 in the loose open-world semantics does not include objects of abstract types, 𝑜𝑚 ↓ 𝑐𝑑

does not either. Therefore the closed-world assumptions hold for 𝑜𝑚 ↓ 𝑐𝑑. Loose open-world
instances do not include objects whose class type does not include all super-classes of
included sub-classes. Therefore Condition (2) of Theorem 4.2 holds. Instances of the
loose open-world semantics obey the multiplicity constraints defined in the CD. Since,
the restriction removes links that instantiate associations which are not defined in the
CD and since instances of the loose open-world semantics already obey the multiplicity
constraints, the restriction 𝑜𝑚 ↓ 𝑐𝑑 does not include objects with outgoing links that
instantiate associations which the object’s class type does not inherit and all objects continue
to be consistent with the extends relations prescribed in the CD. Therefore, also Conditions
(3) and (4) of Theorem 4.2 hold. The definition of type′ assures that the classes in the
type of an object in 𝑜𝑚 ↓ 𝑐𝑑 are related by extends relations defined in 𝑐𝑑 which implies
Condition (5) of Theorem 4.2.

By Lemma 5.1, the closed-world semantics is a restriction of the open-world semantics, i. e.
every closed-world instance of a CD is also an open-world instance of the CD. This does
not necessarily hold vice-versa. Further, from every open-world instance 𝑜𝑚 of 𝑐𝑑 , we can
construct a closed-world instance by the transformation 𝑜𝑚 ↓ 𝑐𝑑.

6 Related Work

While UML does not define formal semantics of CDs, every tool working with CDs uses
a semantic definition. Commonly, the semantics for generators [SN11, PSB11, SKM07,
SS19, Sw12] is not explicitly defined and the behavior for certain UML-constructs such
as “composition” might vary. Generators use a closed-world semantics and only translate
modeled elements.

An important analysis on CDs are consistency checks. Especially when “nontrivial multi-
plicity constraints (different than 0, 1, *)” [BM13] occur, there might not exist a valid object
structure. In [Sz06] proves the inconsistency of an exemplary CD. [ACIG10] shows that the
complexity of full-satisfiability problems is ExpTime-complete. With restrictions on used
CD concepts, the complexity can be significantly decreased.
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Consistency analysis is often performed using a translation to Alloy [MRR11b, MGB04,
Ka17, SAB09, CGR15] or SMT [Wu17, Pr16, PWD16]. Because the closed-world seman-
tics is always a subset of the open-world semantics, consistency checks on closed-world
semantics can lead to useful results in open-world semantics.

Like consistency analysis, semantic differencing[FLW11, LMK14,Ka17,MRR11a] searches
for a valid witness object structure. In previous work, we have presented a semantic
differencing tool using a translation to Alloy [Ka17, MRR11a].

Refinement is an interesting property in many domains. For example, the refinement calculus
[BW12] can prove the correctness of program modifications. [BS01] proves refinement
properties over distributed systems. Open-world models are useful in combination with a
merge operator [Br06, LWD11], which reduces underspecification.

7 Conclusion

In this paper we have defined multiple closed-world and open-world semantics for CDs that
consider an object either as an instance of a single class or additionally as an instance of
all superclasses. We have analyzed and compared these CD-semantics regarding semantic
differencing, as well as model-evolution.

We found that an open-world semantics definition based on strict expansions adheres to the
notion of underspecification in CDs better than a semantic based on relaxed constraints,
and that it is therefore well-suited for semantic differencing and model evolution, especially
during analysis in the early stages of development, where the addition of new elements
and features should be seen as a refinement. In later stages of the development or when
considering code generation, a closed-world approach might be more appropriate.

Moreover, we consider both the simple as well as the multi-instance semantics to be valid
and useful depending on the circumstances. If one is, for instance, primarily concerned
with development and evolution of data structures, the simple semantics might be the better
choice. However, if the usage of objects as method arguments has to be considered (e. g.
code generation) a multi-instance semantics would seems more appropriate.

Finally, we found that for our semantics definitions a closed-world instance is always an
open-world instance, as well, and that any open-world instance can be transformed into a
corresponding closed-world instance by removing not explicitly modeled elements. However,
we have yet to develop a transformation that reliably produces non-empty instances for
certain edge cases. Nevertheless, we do believe that a reduction of multi-instance expansion-
based open-world semantic differencing to a closed-world semantic differencing should be
possible. Furthermore, it might be interesting to consider a multi-instance semantics that
distinguishes sub- and super-classes instantiated by an object.
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