0 E[GRZZC] J. Gray, B. Rumpe:
*On the relationship between models and ontologies.

www.se-rwth.de/publications/

Software and Systems Modeling (2022) 21:1271-1272
https://doi.org/10.1007/s10270-022-01021-0

- In: Journal Software and Systems Modeling (SoSyM), Volume 21(4), pp. 1271-1272, Springer Berlin / Heidelberg, Juli 2022.

EDITORIAL

()

Check for
updates

On the relationship between models and ontologies

Jeff Gray' - Bernhard Rumpe?

Published online: 21 July 2022
© The Author(s) 2022

The application of ontologies toward various engineering
domains has gained much momentum recently, such that it
is beneficial to understand the relationship between ontology
building and modeling.

Historically (and we quote https://en.wikipedia.org/wiki/
Ontology): “Ontology is the branch of philosophy that studies
concepts such as existence, being, becoming, and reality” and
goes back to Greek Philosophers, such as Parmenides, Plato
or Aristoteles. It tries to understand how “entities are grouped
into basic categories and which of these entities are funda-
mental” atoms. Also, “Ontology is sometimes referred to as
the science of being.” Ontology tries to determine fundamen-
tal ontological concepts, like particularity and universality,
abstractness and concreteness, or possibility and necessity.
When speaking of “an ontology,” philosophers refer to a con-
crete theory within the science of being. There is a large body
of approaches and associated publications on ontologies that
are deeper than needed for this discussion, but expand on the
application of ontologies for many disciplines.

Ontologies are now prominent in several engineering
domains, but mainly computer science and especially infor-
mation science are responsible for building up practically
usable approaches and tools for ontology application. In com-
puter science, an ontology encompasses a representation,
formal naming, and definition of the categories, properties,
and relations between the concepts, data, and entities that
substantiate one, many, or all domains of discourse. More
simply, an ontology is a way of showing the properties of a
subject area and how they are related, by defining a set of con-
cepts and categories that represent the subject (Wikipedia).

Even though the terms and names used are quite differ-
ent, ontologies can be compared to modeling techniques,

B4 Bernhard Rumpe
bernhard.rumpe @sosym.org

Jeft Gray

jeff.gray @sosym.org
1 University of Alabama, Tuscaloosa, AL, USA
2 RWTH Aachen University, Aachen, Germany

such as UML class diagrams, where classes and associa-
tions represent entities and relationships. Even hierarchical
ontological decomposition seems to be well-represented in
class diagrams. Of course, there are subtle differences. Fur-
thermore, some constructs that class diagrams offer, such as
multiplicities, are not well-represented in the typical ontol-
ogy approaches, but also the idea of rule-based derivation of
knowledge is not present in class diagrams. A logic-based
extension is needed, such as UML’s object constraint lan-
guage (OCL), to represent such rules.

However, a slight difference appears in the form of usage.
Although class diagrams originally were used to structure a
domain of data for a software system under development,
ontologies were often used to organize data into information
and knowledge in an academic discipline or field. Ontologies
are used for problem solving within such a domain. Interest-
ingly, with a slight difference in their intended meaning, it
seems that these approaches largely overlap. It is therefore
not so surprising that several comparison papers have been
published, sometimes only explaining how to encode UML
in XML or RDF, but also tools have been developed that try
to unify the more data-oriented viewpoint of class diagrams
with the ontological viewpoint.

The UML (which not only contains class diagrams, but
also provides a set of behavior modeling techniques, a logic
language, and a precisely standardized syntax) is easily
able to cover the language constructs that typical ontology
approaches provide. Most engineers describe designs that
contain entities and decomposition, obviously reflecting the
typical structural decomposition of mechanical, biological
and other kinds of complex systems, but neither use other
relationships or ontology rules to build further knowledge.
However, they often are not able to describe behavior or the
dynamic changes of the structure.

Thus, an interesting question to ask is, “Why are ontolo-
gies sometimes (or increasingly) preferred over a full model-
ing language?” If the answer is tied to the potential simplicity
of the underlying ontology language, would it not be better
if we had modeling tools that come with “beginner modes,”
where the model only consists of typical ontology language

@ Springer



1272

J. Gray and B. Rumpe

constructs? And it seems that there is also the possibility to
close the gap between these two approaches, namely ontol-
ogy building and modeling, so that they do not compete with
each other in a largely overlapping purpose, but rather merge
their complementary benefits.

As an aside, for all who are deeply interested in under-
standing how ontologies are used in science, we recommend
the paper by Brian Henderson-Sellers on “Bridging meta-
models and ontologies in software engineering” in the
Journal of Systems and Software (2011), where he clearly
worked out how the two forms of uses for ontologies, namely
describing a concrete (data) structure and describing actually
the meta-model of a (data) structure, can be distinguished
from each other.

1 Content of this issue

1. Theme Section on Open Environmental Software Sys-
tems Modeling
Guest Editors: Tao Yue, Paolo Arcaini, Ji Wu, and
Xiaowei Huang

2. PoEM 2020 Special Section
Guest Editors: Janis Grabis and Dominik Bork

3. Theme Section on Agile Model-Driven Engineering
Guest Editors: Kevin Lano, Shekoufeh Kolahdouz-
Rahimi, Javier Troya, and Hessa Alfraihi

4. Regular Papers

e “Are models better read on paper or on screen? A com-
parative study” by Mohamed EI-Attar

e “SOCAM: A service-oriented computing architecture
modeling method” by Paola Reyes-Delgado, Hector
Duran-Limon, Manuel Mora, and Laura Rodriguez-
Martinez

@ Springer

e “Model-driven development of asynchronous
message-driven architectures with AsyncAPI” by
Abel Gomez, Markel Iglesias-Urkia, Lorea Belategi,
Xabier Mendialdua, and Jordi Cabot

e “GoRIM: A model-driven method for enhancing
regulatory intelligence” by Daniel Amyot, Okhaide
Akhigbe, Gregory Richards, and Lysanne Lessard

e “Using two case studies to explore the applicability of
VIATRA for the model-driven engineering of mecha-
tronic production systems” by Gennadiy Koltun and
Mathis Pundel

e “Utilizing multi-level concepts for multi-phase
modelling—Context-awareness and process-based con-
straints to enable model evolution” by Tobias Franz,
Christoph Seidl, Philipp M. Fischer, and Andreas
Gerndt

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.





