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The application of ontologies toward various engineering
domains has gained much momentum recently, such that it
is beneficial to understand the relationship between ontology
building and modeling.

Historically (and we quote https://en.wikipedia.org/wiki/
Ontology): “Ontology is the branch of philosophy that studies
concepts such as existence, being, becoming, and reality” and
goes back to Greek Philosophers, such as Parmenides, Plato
or Aristoteles. It tries to understand how “entities are grouped
into basic categories and which of these entities are funda-
mental” atoms. Also, “Ontology is sometimes referred to as
the science of being.” Ontology tries to determine fundamen-
tal ontological concepts, like particularity and universality,
abstractness and concreteness, or possibility and necessity.
When speaking of “an ontology,” philosophers refer to a con-
crete theory within the science of being. There is a large body
of approaches and associated publications on ontologies that
are deeper than needed for this discussion, but expand on the
application of ontologies for many disciplines.

Ontologies are now prominent in several engineering
domains, but mainly computer science and especially infor-
mation science are responsible for building up practically
usable approaches and tools for ontology application. In com-
puter science, an ontology encompasses a representation,
formal naming, and definition of the categories, properties,
and relations between the concepts, data, and entities that
substantiate one, many, or all domains of discourse. More
simply, an ontology is a way of showing the properties of a
subject area and how they are related, by defining a set of con-
cepts and categories that represent the subject (Wikipedia).

Even though the terms and names used are quite differ-
ent, ontologies can be compared to modeling techniques,
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such as UML class diagrams, where classes and associa-
tions represent entities and relationships. Even hierarchical
ontological decomposition seems to be well-represented in
class diagrams. Of course, there are subtle differences. Fur-
thermore, some constructs that class diagrams offer, such as
multiplicities, are not well-represented in the typical ontol-
ogy approaches, but also the idea of rule-based derivation of
knowledge is not present in class diagrams. A logic-based
extension is needed, such as UML’s object constraint lan-
guage (OCL), to represent such rules.

However, a slight difference appears in the form of usage.
Although class diagrams originally were used to structure a
domain of data for a software system under development,
ontologies were often used to organize data into information
and knowledge in an academic discipline or field. Ontologies
are used for problem solving within such a domain. Interest-
ingly, with a slight difference in their intended meaning, it
seems that these approaches largely overlap. It is therefore
not so surprising that several comparison papers have been
published, sometimes only explaining how to encode UML
in XML or RDF, but also tools have been developed that try
to unify the more data-oriented viewpoint of class diagrams
with the ontological viewpoint.

The UML (which not only contains class diagrams, but
also provides a set of behavior modeling techniques, a logic
language, and a precisely standardized syntax) is easily
able to cover the language constructs that typical ontology
approaches provide. Most engineers describe designs that
contain entities and decomposition, obviously reflecting the
typical structural decomposition of mechanical, biological
and other kinds of complex systems, but neither use other
relationships or ontology rules to build further knowledge.
However, they often are not able to describe behavior or the
dynamic changes of the structure.

Thus, an interesting question to ask is, “Why are ontolo-
gies sometimes (or increasingly) preferred over a full model-
ing language?” If the answer is tied to the potential simplicity
of the underlying ontology language, would it not be better
if we had modeling tools that come with “beginner modes,”
where the model only consists of typical ontology language
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constructs? And it seems that there is also the possibility to
close the gap between these two approaches, namely ontol-
ogy building and modeling, so that they do not compete with
each other in a largely overlapping purpose, but rather merge
their complementary benefits.

As an aside, for all who are deeply interested in under-
standing how ontologies are used in science, we recommend
the paper by Brian Henderson-Sellers on “Bridging meta-
models and ontologies in software engineering” in the
Journal of Systems and Software (2011), where he clearly
worked out how the two forms of uses for ontologies, namely
describing a concrete (data) structure and describing actually
the meta-model of a (data) structure, can be distinguished
from each other.
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