
On the Need for Artifact Models
in Model-Driven Systems Engineering Projects

Arvid Butting, Timo Greifenberg(B), Bernhard Rumpe,
and Andreas Wortmann

Software Engineering, RWTH Aachen University, Aachen, Germany
greifenberg@se-rwth.de

http://www.se-rwth.de

Abstract. Model-driven development has shown to facilitate systems
engineering. It employs automated transformation of heterogeneous mod-
els into source code artifacts for software products, their testing, and
deployment. To this effect, model-driven processes comprise several
activities, including parsing, model checking, generating, compiling, test-
ing, and packaging. During this, a multitude of artifacts of different kinds
are involved that are related to each other in various ways. The com-
plexity and number of these relations aggravates development, main-
tenance, and evolution of model-driven systems engineering (MDSE).
For future MDSE challenges, such as the development of collaborative
cyber-physical systems for automated driving or Industry 4.0, the under-
standing of these relations must scale with the participating domains,
stakeholders, and modeling techniques. We motivate the need for under-
standing these relations between artifacts of MDSE processes, sketch a
vision of formalizing these using artifact models, and present challenges
towards it.

1 Motivation

The complexity of future interconnected cyber-physical systems, such as the
smart future, fleets of automated cars, or smart grids poses grand challenges to
software engineering. These challenges partly arise from the number of domains,
stakeholders, and modeling techniques required to successfully deploy such sys-
tems. Model-driven engineering has shown to alleviate this, but introduces the
challenge of managing the multitude of different artifacts, such as configura-
tion, models, templates, transformations, and their relations as contributed by
the experts of different domains. Considering, for instance, software engineering
for the factory of the future [10], successful deployment of a virtual factory [9]
requires integration of modeling techniques to describe the factory’s geome-
try, production processes and their optimization, software architecture, produc-
tion systems with their interaction, manufacturing knowledge, and, ultimately,

This research has partly received funding from the German Federal Ministry for
Education and Research under grant no. 01IS16043P. The responsibility for the
content of this publication is with the authors.

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 146–153, 2018.
https://doi.org/10.1007/978-3-319-74730-9_12

[BGRW18] A. Butting, T. Greifenberg, B. Rumpe, A. Wortmann: 
On the Need for Artifact Models in Model-Driven Systems Engineering Projects. 
In: Software Technologies: Applications and Foundations, LNCS 10748, Springer, 2018. 
www.se-rwth.de/publications 



On the Need for Artifact Models 147

general-purpose programming language artifacts. The artifacts contributed by
the respective domain experts are required in different stages of the development
process and exhibit various forms of relations, such as design temporal depen-
dencies, run-time dependencies, or creational dependencies (e.g., a model and
the code generated from it).

Moreover, how artifacts interrelate not only depends on their nature, but
also on the context they are used in and the tools they are used with. For
instance, software architecture models may be used for communication and doc-
umentation, model checking, transformation into source code, or simulation of
the system part under development. In these contexts, the relations required to
understand and process such an artifact may change: whereas the pure archi-
tecture model might be sufficient for communicating its structural properties,
transformation into source code relates it to transformation artifacts and to the
artifacts produced by this transformation.

This paper extends previous work [5] in greater detail for a better understand-
ing on how explicating these artifacts and their relations facilitates traceability
of artifacts, change impact analysis [1], and interoperability of software tools
all of which are crucial to successful model-driven engineering of the future’s
systems of systems.

2 Modeling Artifact Relations

Typical MDSE projects require a multitude of different artifacts addressing the
different domains’ concerns (cf. Fig. 1). Managing the complexity of these arti-
facts requires understanding their relations, which entails understanding the
relations between their languages as well as between the development tools pro-
ducing and processing artifacts. We envision a MDSE future in which these
relations are made explicit and machine-processable using modeling techniques.
To this end, we desire reifying this information as first-level modeling concern
in form of an explicit artifact model defined by the lead architect of the overall
MDSE project. Such a model precisely specifies the kinds of artifacts, tools, lan-
guages, and relations present in the MDSE project an thus enables representing
the MDSE project in a structured way.

Such an artifact model should be capable to describe all different situations
in terms of present artifacts and relations that could arise during its lifetime.
The current situation of the project can be inspected by automatically extract-
ing artifact data from the project according to the artifact models’ entities and
relations. This data corresponds to the artifact model ontologically, i.e., repre-
sents an instance of it at a specific point in time. Analysts or specific software
tools can employ this data to produce an overview of the current state, reporting
issues, and identifying optimization potentials. Ultimately, this aims at enabling
a more efficient development process.

To this end, the artifact model comprises, among others, the organization of
artifacts in the file system, the configuration of the tool chain, the trace of the
last tool chain execution as well as static knowledge relations between artifacts



148 A. Butting et al.

Fig. 1. An artifact model structures the different kinds of artifacts within MDSE
projects. Corresponding artifact data enables analyses of the project state by analysts
and software tools.

leading to an architectural view including input models, artifacts forming specific
tools or the target product, artifacts managed by the tools, output artifacts, and
handcrafted artifacts.

This model depends on the technologies and tools used to develop the target
product. Hence, it must be tailored specifically to each MDSE project. Globally,
parts of such a model could be reused from similar projects (which might be
achieved employing language engineering and composition methods on the arti-
fact modeling language). For instance, model parts describing the interfaces of
tools could be reusable as well as the types of specific artifacts and their relations
might be applicable to multiple projects. Nevertheless, we assume each project
will require manual artifact modeling to adjust existing structures. Ultimately,
creating such an artifact model would

– ease communication, specification, and documentation of artifact, tool, and
language dependencies,

– enable automated dependency analysis between artifacts and tools,
– support change impact analysis in terms of artifact tool, or language changes,
– support checking compliance of tools and proposing artifact, tool, and relation

adaptations to ’glue’ tool chains,
– facilitate an integrated view on the usage of tools in concrete scenarios,
– enable data-driven decision making, and
– enable computation of metrics and project reports to reveal optimization

potentials within the tool chain and the overall MDSE process.



On the Need for Artifact Models 149

Fig. 2. Overview of explicit and implicit relationships between elements in an MDSE
process, where associations colored black are explicitly specified and dashed, blue asso-
ciations are implicitly defined within the underlying languages of the respective artifact,
or derived by taking into account creational dependencies across different stages of a
process. (Color figure online)

3 Example

Consider a company developing a software system using MDSE methodology in
a multi-stage process. A common challenge in MDSE processes is to trace the
impact of changes within an artifact to related artifacts across multiple stages in
the process, and to detect implicit dependencies of different artifacts. An excerpt
of artifacts used in an exemplary process in context of a single employed tool is
depicted in Fig. 2. First, the company specifies requirements (cf. RQ0, . . . , RQ3
in Fig. 2) that the functionality of the developed software should satisfy. In the
next phase, models that reflect the specified requirements are implemented by
modeling experts of the company. Each requirement defines assumptions that
are satisfied by one or more modeling artifacts. The modeling artifacts conform
to different modeling languages such as, e.g., class diagrams, an architecture
description language, and a finite state machine language as depicted in Fig. 2.

The connections between requirements and the modeling artifacts are defined
manually. Then, the ARC2JavaGenerator tool is employed to transform the given
heterogeneous models into Java code. A common difficulty, especially in large
software projects, is to understand the exact mapping between each input and
output artifact(s) of a tool execution. This mapping is usually encapsulated
within the tool. Further, modeling languages typically allow several different



150 A. Butting et al.

kinds of relationships between models and understanding these requires knowl-
edge about the languages.

With an explicit artifact model as envisioned, the relationships between mod-
els and generated Java classes can be derived. Extracting derived information,
from various sources, such as, e.g., import statements in models, as well as the
relationships between generated artifacts and the input models, greatly supports
developers in analyzing dependencies in MDSE projects. For instance, the rela-
tions derived in Fig. 2 (denoted by dashed, blue arrows) could facilitate tracing
and impact analysis as follows:

(1) To evaluate, which generated artifacts are needed to satisfy a specific
requirements, this information can be derived taking into account the rela-
tions between models and requirements, and the relations between a model
and the generated artifacts.

(2) To evaluate, which test case verify which of the requirements, the method in
(1) can be used and, in addition, the relations between test and generated
code must be regarded.

(3) To evaluate whether there exist unused model files, which lead to unneces-
sary complexity for the MDSE project. Those models can be identified by
the mapping between input and output artifacts. If there is no mapping for
an input artifact, this artifact is a candidate for removal.

(4) To evaluate whether there exist unused source code files. In our example, the
generated Java class B is unused, as there is no derived association to this
class from the Java class C generated from the architecture model, which
is the excerpt under investigation here. Identifying unused files that do not
need to be tested, packaged, or deployed leads to a more efficient MDSE
process.

(5) To evaluate whether the transformation satisfies all requirements, the
method in (1) can be used to determine all satisfied requirements. In the
example, the class diagram containing the classes X and Y are not referenced
from the architecture model, but the class diagram satisfies RQ0 and has no
relation to parts of the generated code. This may indicate erroneous models.

(6) To estimate costs for modifications, tracing can calculate, which artifacts
are affected by the modification of a certain artifact. The granularity of the
distinct types of relations investigated in an artifact model influences the
quality of such a change impact analysis.

4 State of the Art

There are various approaches to support model-driven systems engineering. Pop-
ular system engineering tools, such as PTC Integrity Modeler1, Syndeia2, or
Cameo Systems Modeler3 support modeling with SysML [8] and, hence, are able

1 https://www.ptc.com/en/model-based-systems-engineering/integrity-modeler.
2 http://intercax.com/products/syndeia/.
3 https://www.nomagic.com/products/cameo-systems-modeler.

https://www.ptc.com/en/model-based-systems-engineering/integrity-modeler
http://intercax.com/products/syndeia/
https://www.nomagic.com/products/cameo-systems-modeler


On the Need for Artifact Models 151

to manage different kinds of development artifacts in the same tool. One impor-
tant feature of those tools is tracing between the managed artifacts. Nevertheless,
these tools cannot be used out of the box for our intended purpose: (1) SysML
is a general purpose modeling language, i.e., it can be used to describe a large
variety of systems. However, as domain-specific modeling advocates tailoring the
modeling techniques to the participating domains, using general-purpose mod-
eling languages usually leads to a coarse interpretation of diagrams with respect
to the domains. This lack of precision, prevents leveraging the potential of fully
automated, integrated model processing. Consequently, additional formalization
is need to ensure that the semantics of modeled artifacts and relations between
them is unambiguous. This, however, is either not supported by such tools at
all or very limited (cf. stereotypes). (2) As we are especially interested in the
coherences of MDSE processes, there is a need to inspect the artifacts, relations,
and processes of MDSE tools themselves. Considering, for instance, highly cus-
tomizable code generators, it rarely is fully understood which of the artifacts are
in use in the context of a given project at a specific time. Especially when parts
of MDSE tools are automatically generated themselves, tracing of the overall
build process in terms of its artifacts becomes more challenging. This challenge
can also not be solved by the mentioned tools, as they usually do not take the
development tools into account in such a way, but focus on the development
artifacts instead. In MDSE, proper model management is crucial when working
with large collections of models. In [3] the notion of megamodels was introduced,
which still subject to ongoing research [12,13]. Under the assumption that every-
thing is model [2] one could argue that the artifact models proposed in this work
are megamodels too. As we require formal encoding of models and their rela-
tions, there is a difference between megamodels and the proposed artifact models
from our viewpoint. The elements of megamodels represent models and the links
represent relationships between models [12]. The proposed artifact models focus
on the model-driven build process including a whitebox view of the model-driven
development tools. For instance, model elements of artifact models can also rep-
resent tools, artifacts the tools consists of, generated or handcrafted code files
of the target system or configuration files. Links are then relationships between
any of those elements. Nevertheless, there are commonalities with megamodels
as models and their relationships can also become an important part in artifact
models and the corresponding project data.

5 Challenges of Artifact Modeling

There are few approaches towards such an artifact model. The author of [4]
focus on the integration of tools and the specification of tool chains and trans-
formations between artifacts. Thus, artifacts managed within different tools are
related to each other. The authors of [11] focus on an artifact-oriented way to
describe a model-based requirements engineering process. Both approaches con-
sider the requirement and design phases of MDSE projects only, but do not take
code generation phases or implementation phases into account. Also, the tools



152 A. Butting et al.

themselves are not considered in the presented models. The authors of [6], con-
tributed the idea of providing project data to analysts and software tools, but
do not combine this idea with an explicit artifact model. Hence, there are still
open challenges, which have to be overcome towards efficient and sophisticated
artifact modeling.

Methodology. The definition of a methodology on how to create artifact models
tailored to the needs of a particular MDSE project. This includes:

– defining the scope of the MDSE project where artifact modeling can help
taming the complexity,

– the development and selection of suitable modeling languages, tools and
guidelines,

– the creation of model libraries providing reusable concepts common for system
engineering projects, and

– development of reusable algorithms based on artifact models providing valu-
able analysis for common problems of system engineering projects.

Tools. Defining mechanisms, tools, and infrastructure supporting extraction and
understanding of artifact data, including

– visualization capabilities, such as those proposed in [7],
– a methodology for integrating the different automated analysis tools to a

given infrastructure,
– common interfaces for accessing artifact data, and the
– handling large amounts of artifact data efficiently.

Integration. Overcome modeling challenges, such as

– providing ways of defining and ensuring compliance between related software
tools, such as editors, generators, or transformations, and

– integrating process data and historical data into such an artifact model to
enable comprehending the state and changes of artifacts and their relations
over time.

6 Conclusion

Model-driven development facilitates systems engineering. However, to this end
it introduces new challenges, out of which taming the complexity of participating
artifacts and their relations is a very important one. We argue that investigating
and reifying these using an artifact model and corresponding tooling is cru-
cial to the successful deployment of future systems of systems. The ultimate
goal would be, that architects can model their project, including the tools, the
MDSE process and the target system’s architecture with all relevant relations
with minimal effort. The corresponding data should be extracted automatically
and enable overviewing of the project’s current state. This enables making data-
driven decisions regarding tool landscape, processes, and architectures such that



On the Need for Artifact Models 153

the future MDSE projects can be run successfully. In this paper we presented
a small example clarifying the problem. Nevertheless, in complex scenarios with
multi-level generation processes and where models of different engineering disci-
pline are related to describe the target product, the benefit of our approach will
unfold to full extend. To guide this, particular challenges of artifact modeling
future research should investigate were highlighted.

References

1. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

2. Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188
(2005)

3. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
Workshop, 19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (2004)

4. Braun, P.: Metamodellbasierte Kopplung von Werkzeugen in der Softwareentwick-
lung. Logos, Berlin (2004)

5. Butting, A., Greifenberg, T., Rumpe, B., Wortmann, A.: Taming the complexity of
model-driven systems engineering projects. In: Cabot, J., Paige, R., Pierantonio,
A. (eds.) Part of the Grand Challenges in Modeling (GRAND 2017) Workshop
(2017). http://www.edusymp.org/Grand2017/

6. Czerwonka, J., Nagappan, N., Schulte, W., Murphy, B.: CODEMINE: building a
software development data analytics platform at Microsoft. IEEE Softw. 30(4),
64–71 (2013)

7. Greifenberg, T., Look, M., Rumpe, B.: Visualizing MDD projects. In: Software
Engineering Conference (SE 2017). LNI, pp. 101–104. Bonner Köllen Verlag (2017)

8. Object Management Group: OMG Systems Modeling Language (OMG SysML),
May 2017. http://www.omg.org/spec/SysML/1.5/

9. Jain, S., Lechevalier, D.: Standards based generation of a virtual factory model.
In: Proceedings of the 2016 Winter Simulation Conference, pp. 2762–2773. IEEE
Press (2016)

10. Khan, A., Turowski, K.: A survey of current challenges in manufacturing indus-
try and preparation for industry 4.0. In: Abraham, A., Kovalev, S., Tarassov, V.,
Snášel, V. (eds.) Proceedings of the First International Scientific Conference “Intel-
ligent Information Technologies for Industry” (IITI’ 16). AISC, vol. 450, pp. 15–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33609-1 2

11. Méndez Fernández, D., Penzenstadler, B.: Artefact-based requirements engineer-
ing: the AMDiRE approach. Requir. Eng. 20(4), 405–434 (2015)

12. Salay, R., Kokaly, S., Chechik, M., Maibaum, T.: Heterogeneous megamodel slicing
for model evolution. In: ME@ MODELS, pp. 50–59 (2016)

13. Simmonds, J., Perovich, D., Bastarrica, M.C., Silvestre, L.: A megamodel for soft-
ware process line modeling and evolution. In: 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS), pp.
406–415. IEEE (2015)

http://www.edusymp.org/Grand2017/
http://www.omg.org/spec/SysML/1.5/
https://doi.org/10.1007/978-3-319-33609-1_2



