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ABSTRACT
A model refinement step is the process of removing underspecifi-

cation from a model by applying syntactic changes such that the

transformed model’s semantics is subsumed by the semantics of

the original model. Performing a refinement step is error-prone and

thus needs automated and meaningful support for repair in case

an intended refinement step yields an incorrect result. This paper

introduces sufficient conditions on a modeling language that enable

fully automatic calculation of syntactic changes, which transform

one model to a refinement of another model. In contrast to previous

work, this paper’s approach is independent of a concrete modeling

language, computes shortest syntactic changes to maintain the de-

veloper’s intention behind the model as much as possible, and does

not assume availability of powerful model composition operators.

The method relies on partitioning the syntactic change operations

applicable to each model in equivalence classes and on excluding

syntactic changes that are not part of shortest changes leading to a

refining model. This paper contains formal proofs for the modeling

language independent results and shows the method’s applicability

and usefulness by instantiating the framework with three modeling

languages. The results provide a language independent and fully

automated method to repair refinement steps under intuitive as-

sumptions as well as language independent foundational insights

concerning the relation between syntactic changes and the impact

of their application on a model’s semantics.
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1 INTRODUCTION
Models are the primary development artifacts in model-driven soft-

ware development (MDSD). Thus, managing their evolution is an

important task during system development. Existing approaches

mainly consider syntactic model evolution (e.g. [2, 12, 13, 15, 16,

27, 28]). Only a few approaches consider the changes of a model’s

semantics (e.g. [1, 3, 6, 7, 17, 18, 22, 24]) or try to relate syntactic

changes to the impact of their application on a model’s seman-

tics [8, 20]. Research in syntactic differencing already produced

well-accepted approaches abstracting from a modeling language’s

details [2]. Concrete modeling language independent approaches

rarely exist in context of semantic differencing [17, 18]. This might

be due to the high diversity and complexity of modeling language

semantics. Even less approaches combine syntactic with seman-

tic differencing while abstracting from a concrete modeling lan-

guage [7, 20], although this produces general results that apply

to multiple languages. This is surprising because the syntax and

semantics of each modeling language is usually tailored towards

a specific application domain. As the number of domains is rather

infinite and permanently increasing, developing new approaches to

evolutionmanagement for each newly emergingmodeling language

is costly and may be even redundant from a research perspective.

Instead, employing a general definition of modeling language [10],

stating assumptions for a modeling language to hold, and then

developing methods for evolution analysis under the assumptions

enables to provide methods for whole classes of concrete modeling

languages that meet the assumptions.

This paper presents a modeling language independent approach

relating syntactic with semantic differencing. A model is a refine-

ment of another model if the semantics of the latter subsumes the

semantics of the former [11]. A refinement step is the evolution

process of changing a model such that the successor version is a

refinement of the predecessor version. In MDSD, refinement steps

are naturally performed in reaction to changing requirements and

availability of additional information. The idea is to start with an

underspecified model encoding the available information and to

iteratively refine the model when additional information becomes

available until ultimately obtaining a correct system implemen-

tation. Refinement steps are error-prone and the state of the art

provides little support for repairing unsuccessful refinement steps.

More specifically, a developer may introduce a bug to a succes-

sor model version such that it is no refinement of its predecessor.

This bug needs to be detected and fixed. Semantic differencing

approaches are able to detect whether a model is a refinement of

another model. If refinement does not hold, semantic differencing

usually provides a representation that can be used for (manually)

analyzing the syntactic reasons causing the semantic difference.

Such a representation is typically a diff witness [21] or another

model summarizing the semantic difference [7]. A diff witness is
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an element of the semantics of one model, which is no element of

the other model’s semantics. It thus serves as concrete disproof for

refinement. For repairing the intended refinement step, the devel-

oper may use the representation to analyze the evolved model’s

syntax for the reasons causing non-refinement. Based on this, she is

possibly ultimately able to change the evolved model. However, this

change may also fail, whereupon the developer needs to apply the

same workflow again. The process of connecting the representation

that reasons why refinement does not hold to the changes required

to repair the evolved model is manually performed by the devel-

oper without tool support. Instructions in form of a plan containing

syntactic changes that definitely transform the evolved model to

a refinement of the original is missing. Our contribution bridges

this gap: For any modeling language that meets our assumptions

(cf. Sec. 5), it is possible to fully automatically calculate a shortest

change sequence (syntactic changes) that definitely transforms the

evolved model to a refinement of the original. As the developer

intends the evolved model to be a refinement of the original, one

can expect the number of required changes to be small. Further,

applying smallest changes keeps a developer’s intention as much as

possible with respect to the syntax of original the model. Thus, cal-

culating shortest syntactic changes is reasonable. The assumptions

include that the concrete modeling language meets this paper’s gen-

eral definition of modeling language [10], there exists a (possibly

infinite) set of well-defined change operations that can transform

any valid model to any other valid model, consistency and refine-

ment checking between models of the language is decidable, and

change operations can be partitioned into finitely many equivalence

classes characterized by some symmetry condition (cf. Sec. 4).

The next section presents three possible analyses enabled by

instantiating our framework with an activity diagram (AD), a finite

automaton, and a feature model (FM) language. Sec. 3 introduces

the formal foundations that ground our approach. Sec. 4 formally

defines the goal and reveals important properties relating change

operations to the impact of their application on a model’s semantics.

Sec. 5 formalizes our assumptions that guarantee computability

of shortest refinement repairing change sequences and presents

an algorithm to compute them. Sec. 6 informally instantiates the

frameworkwith three concretemodeling languages. Sec. 7 discusses

related work. Sec. 8 concludes.

2 EXAMPLES
This section provides examples illustrating potential use cases for

our approach. To the best of our knowledge, there are no previous

works that support the following analyses.

2.1 Shortest Repair of an Activity Diagram
Refinement Step

Fig. 1 depicts twoADs inspired from [15, 16]. An insurance company

manager aims at improving the efficiency of processing incoming

claims. She thus formalizes the workflow to be executed by em-

ployees on receipt of incoming claims with ad1. This AD is very

underspecified as it models all possible executions that are reason-

able from the manager’s perspective. The manager thus hands the

AD over to an employee, who should refine the workflow to exclude

executions that are not reasonable from an operational perspective.
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Figure 1: Two activity diagrams modeling workflows in con-
text of an insurance company adapted from [15, 16].

The employee edits the workflow to ad2 and informs the man-

ager about the changes. The manager decides to review the changes,

uses semantic differencing and identifies that the new version ad2
is no refinement of the original model ad1. She decides to first iden-
tify the error and to prepare a suggestion for repairing the model,

before consulting the employee. Thus, she uses our framework and

finds out that at least two changes are required. She gets presented

that converting the concurrent fragment between nodes F1 and
J1 to a branching fragment (converting F1 to a decision node and

converting J1 to a merge node) and moving the action node la-

beled Pay Out between the join node J2 and the node labeled

Send Confirmation is a shortest sequence of change opera-

tions for transforming ad2 into a refinement of ad1. She considers
the changes as reasonable. With this information, the manager

consults the employee. It turns out, the employee has accidentally

changed the fragment’s type. Further discussions reveals that pay-

outs should be definitely executed after calculating the exact loss

amount and recalculating the costumer contribution. The manager

applies the fully automatically calculated change operations to ad2
and obtains the final AD, which is a refinement of ad1.

2.2 Shortest Repair of a Finite Automaton
Towards Requirement Satisfaction

Fig. 2 depicts a slightly adapted example from [25]. It shows two

reactive finite automata describing the behavior of a mobile robot.

In this example, we interpret the models as reactive finite safety

automata. Thus, in the automata, all states are final and labels repre-

sent value assignments to communication channels (e.g., emgStop,
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backing
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Transition Name Label

bmpFwd emgStp = False, bump = True   / lMot = FORWARD,  rMot = FORWARD

fwd emgStp = False, bump = False / lMot = FORWARD,  rMot = FORWARD

stp emgStp = False, bump = False / lMot = STOP,     rMot = STOP

left1 emgStp = False, bump = True   / lMot = FORWARD,  rMot = STOP

left2 emgStp = False, bump = False / lMot = FORWARD,  rMot = STOP

bmpBwd emgStp = False, bump = True   / lMot = BACKWARD, rMot = BACKWARD

emgOff1 emgStp = False, bump = True   / lMot = FORWARD,  rMot = FORWARD

emgOff2 emgStp = False, bump = False / lMot = FORWARD,  rMot = FORWARD

emg1 emgStp = True,  bump = False / lMot = STOP,     rMot = STOP

emg2 emgStp = True,  bump = True   / lMot = STOP,     rMot = STOP

anyBump Any possible input/output combination where bump = True

* Any possible input/output combination

Aut impl

arbitraryidle

stp, emg1
*

anyBump

Aut spec

Figure 2: Two reactive automata models adapted from [25].

bump, lMot). In such reactive automata, for each state and each

input channel assignment, there must exists a transition with a

label that subsumes the input channel assignment and originates

from the state. In this example, the input channels are emgStp and

bump of type Bool. Both channels can either be assigned to True
or False. The robot is equipped with an emergency button and a

touch sensor on its front. It is capable of moving forward as well

as turning in any direction. The robot should drive forward until

hitting a wall (indicated by an incoming signal on the touch sensor).

After hitting a wall, the robot should drive a little backwards, turn

by 90 degree in any direction, and then move forward, again. While

the emergency button is pressed, the robot should stop moving and

not perform any action until the button is released. The automaton

impl in Fig. 2 models the robot’s behavior.

During development, the engineering team receives a new re-

quirement: when turned on, the robot must not start moving until

its front touch sensor has been pressed. The engineering team de-

cides to check whether the implementation already satisfies this

property. If not, the team needs to change the implementation ac-

cordingly. The engineering team first formalizes the specification

by creating the automaton spec as depicted in Fig. 2. With this,

the implementation satisfies the property if, and only if, the traces

accepted by the implementation’s automaton impl is a subset of the
traces accepted by the specification’s automaton spec . Using seman-

tic differencing, the team detects the automaton impl admits a trace

that is not possible in the automaton spec . Therefore, refinement

does not hold and the implementation does not satisfy the speci-

fication. The team decides to use our framework for calculating a

shortest change sequence to transform the implementation such

that it satisfies the requirement. It turns out that first adding a loop

to state idle with label emg1 and then removing the transition

optional Or

excludes

requires

Xor x

FM fm1

locking

keyless phone

engine

car

electric hybridgas

FM fm2

car

fingerprint

locking

keyless fingerprintphone

engine

electric gas

mandatory

Figure 3: Two feature models adopted from [20].

from state idle to state stoppedwith label emg1 is such a short-

est sequence (Adding the transition is required for reactiveness).

The engineering team applies the fully automatically calculated

change operations and obtains a new and correct implementation.

2.3 Understanding a Feature Model Evolution
Fig. 3 depicts an example from [20], which is inspired by a similar

FM example from [5]. The models describe possible configurations

for the engine and locking systems of a car. The FM describing the

planned possible configurations is f m1. During development, the

engineering team decides to perform two changes to the FM, one

to increase the model’s understandability and another for adapting

to changed requirements. The resulting model is f m2. The change

for increasing understandability is to remove the feature hybrid
and to change the exclusive choice of a single engine system to an

alternative. With this, simultaneously choosing the features elec-
tric and gas now models a hybrid engine system. The changed

requirements state that exactly one locking systemmust be selected

in each configuration and that the fingerprint locking system does

not require the phone locking system anymore. Thus, the team

moves the fingerprint feature to the group of the locking
feature and makes the choice of a locking system exclusive.

Another engineer, who has not been involved in the changes, is

informed that the number of possible locking system combinations

has been decreased. With this information, she expects the evolved

FM to be a refinement of the original. Using semantic differencing,

the engineer detects that there are valid configurations of f m2

that are no valid configurations of f m1. The FM f m2 is thus no

refinement of f m1. She tries to understand why this is the case

and decides to identify the cause by investigating a shortest change

sequence required to transform f m2 into a refinement of f m1.

She uses our framework and finds out that at least two changes

are required. She gets presented that changing the subgroup of

feature engine to an exclusive alternative and moving feature

fingerprint below phone transform f m2 into a refinement

of f m1. With this information, she understands that the change to
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engine’s subgroup caused that the features electric and gas
can now be chosen simultaneously, which was not possible before.

She further understands that choosing featurefingerprint does

not require choosing feature phone anymore.

3 PRELIMINARIES
This section presents a general and language independent notion of

modeling language that explicitly captures the possibility to model

underspecification via a set-based semantics mapping [9–11, 19,

20]. Inspired by the Diffuse framework [19, 20], we then describe

syntactic differences between models by sequences of change of

operations (cf. Sec. 3.2). Furthermore, Sec. 3.3 recapitulates details

about semantic differencing.

Notation. LetA be an arbitrary non-empty set. We denote byA∗

the set of all finite sequences (words) over the set A where ε ∈ A∗

denotes the empty sequence. We denote by s ·t the concatenation of

two sequences s, t ∈ A∗
. The length of a sequence s ∈ A∗

is denoted

by |s |. The prefix relation ⊑ over sequences is defined as usual by

∀s, t ∈ A∗
: s ⊑ t ⇔ ∃u ∈ A∗

: s · u = t . For every sequence s ∈ A∗

and for every i ∈ N with 0 ≤ i < |s |, the expression s .i denotes
the (i + 1)-th element of the sequence s . Similarly, s↓i denotes the
prefix of the sequence s with length 0 ≤ i ≤ |s | where s↓0 = ε . The
result from removing the first element of a sequence s ∈ A∗

with

|s | ≥ 1 is denoted by rt(s). We sometimes treat an element a ∈ A
as a sequence of length one, e.g., for all all t ∈ A∗

, we define t · a as

the sequence obtained from appending a to the end of t . Similarly,

a · t denotes the sequence obtained from prepending a in front of t .
For a function f , we write f : X → Y if f is a total function from

X to Y . Similarly, f : X ⇀ Y denotes that f is a partial function

from X to Y . We denote by dom(f ) ⊆ X the domain of a (partial)

function f : X ⇀ Y and write f (x) = ⊥ iff x < dom(f ).

3.1 Modeling Language
A modeling language L is a tuple L = (M, S, sem) where M is

a countable set of syntactically correct models, S is a semantics

domain, and sem : M → ℘(S) is a semantics mapping [10]. The

semantics domain S is typically a well understood mathematical

model. The semantics mapping sem maps each syntactically well-

formed modelm ∈ M to its meaning sem(m), which is a subset of

the semantics domain. This set-based mapping enables to easily

model underspecification when understanding each s ∈ sem(m) as
a possible realization of a modelm ∈ M [11]. A modelm ∈ M is

called consistent iff sem(m) , ∅, i.e., the model admits at least one

realization [11], otherwise it is called inconsistent. An inconsistent

model contains some contradictory constraints in itself and thus

has no meaning (an empty semantics).

3.2 Change Operations
Let L = (M, S, sem) be a modeling language. A change operation for
L is a partial function o : M ⇀ M . The function is partial because

applying a change operation may result in a syntactically not well-

formed model. A sequence of change operations is called change
sequence. A set of change operations O is called change operation
suite for L iff each o ∈ O is a change operation for L. Let O be a

change operation suite for L. For all modelsm ∈ M and all change

sequences t ∈ O∗
, the operator ⊕ : M × O∗ ⇀ M for applying

change sequences is defined by the following equation:

m ⊕ t =


m, if t = ε

⊥, if |t | ≥ 1 ∧ t .0(m) = ⊥
t .0(m) ⊕ rt(t), otherwise.

Following [19, 20], for allm ∈ M and t ∈ O∗
, we writem⊕ t ∈ M

to denote thatm ⊕ t , ⊥. Syntactic differencing is decidable for L
with respect to change operation suite O iff there is a computable

function ∆ : M ×M → O∗
such that ∀m,m′ ∈ M :m ⊕ ∆(m,m′) =

m′
. The sequence ∆(m,m′) is called syntactic difference betweenm

andm′
. As models are usually finite structures, ∆ typically exists

when using adequate change operations suites (cf. [2, 4, 20, 27]).

There might be infinitely many functions ∆with the above property.

Our approach only requires that an arbitrary and fixed ∆ is given.

3.3 Semantic Difference and Refinement
The semantic difference [21] between two models is the set of el-

ements in the semantics of the one model that are no members

of the other model’s semantics. For two modelsm,m′ ∈ M , it is

formally defined as δ (m,m′) def

= sem(m) \ sem(m′) [21]. Interpret-
ing the model m as a successor version of the model m′

, the set

δ (m,m′) contains exactly the elements added to the semantics of

m′
during evolution tom. In this paper we are especially interested

in refinements. A model m ∈ M is called refinement of a model

m′ ∈ M iff δ (m,m′) = ∅ [11], i.e., all elements in the semantics

ofm are included in the semantics ofm′
. Refinement is said to be

decidable iff δ (m,m′) = ∅ is decidable for allm,m′ ∈ M .

4 CHANGE OPERATION PROPERTIES
In the following, let L = (M, S, sem) denote an arbitrary modeling

language and O an arbitrary change operation suite for L such

that refinement and syntactic differencing are decidable for L. Let

∆ : M ×M → O∗
be a syntactic differencing operator.

For two models, we study conditions enabling to compute a

change sequence such that applying the sequence to the first model

results in a refinement of the second model. Applying such a se-

quence may lead to an inconsistent model. For repairing a refine-

ment step, computing such a model is often not desired as its seman-

tics is empty, i.e., it has no denotations and thus no useful meaning.

Therefore, we are only interested in change sequences that lead to

consistent models. This motivates the notion of change sequence

that repairs a model towards refining another model:

Definition 1 (Repairs Towards Refining). A change sequence
t ∈ O∗ is said to repair a model m ∈ M towards refining a model
m′ ∈ M iffm ⊕ t ∈ M ∧ ∅ , sem(m ⊕ t) ⊆ sem(m′).

A change sequence t ∈ O∗ is a shortest change sequence that repairs
m ∈ M towards refiningm′ ∈ M iff t repairsm towards refiningm′

and ∀u ∈ O∗
: (m⊕u ∈ M∧∅ , sem(m⊕u) ⊆ sem(m′)) ⇒ |t | ≤ |u |.

Intuitively, the application of a change sequence that repairs a

model towards refining another model to the former model results

in a consistent model that is a refinement of the latter model.

Notation. Let m,m′ ∈ M . We denote by S(m,m′) the set of

all shortest change sequences that repairm towards refiningm′
.

Further, ℓ : M ×M ⇀ N is a partial function that maps all models

m,m′ ∈ M to the length ℓ(m,m′) of all shortest change sequences
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that repairm towards refiningm′
. If no shortest sequence exists, i.e.,

S(m,m′) = ∅, then ℓ(m,m′) = ⊥. Otherwise, if a shortest change
sequence exists, i.e.,S(m,m′) , ∅, then ℓ(m,m′) ∈ N. Theremay be

multiple shortest sequences. Nevertheless, ℓ(m,m′) is well-defined
because all such sequences have the same length:

Lemma 1. For all modelsm,m′ ∈ M and all shortest change se-
quences t ,u ∈ S(m,m′), it holds that |t | = |u |.

Proof. Letm,m′ ∈ M and t ,u ∈ S(m,m′). Suppose that |t | ,
|u |. Assume w.l.o.g. |u | < |t |. Then, by Def. 1, we have t < S(m,m′)
because ∅ , sem(m ⊕ u) ⊆ sem(m′) and ¬(|t | ≤ |u |). �

A change sequence that repairs refinement always exists if, and

only if, the original model is consistent:

Lemma 2. Letm,m′ ∈ M be two models. There exists a change
sequence that repairsm towards refiningm′ iffm′ is consistent.

Proof. Letm,m′ ∈ M be two models.

⇒: Assume there exists a change sequence t that repairs m
towards refining m′

. Then, ∅ , sem(m ⊕ t) ⊆ sem(m′), which
implies sem(m′) , ∅. Thus,m′

is consistent.

⇐: Assumem′
is consistent. Then, it holds sem(m ⊕∆(m,m′)) =

sem(m′) , ∅. Thus, sem(m ⊕ ∆(m,m′)) ⊆ sem(m′) and sem(m ⊕
∆(m,m′)) , ∅, i.e., ∆(m,m′) repairsm towards refiningm′

. �

If a shortest sequence that repairs a model towards refining

another model exists, then its length is bounded by the length of

the syntactic difference between the input models:

Lemma 3. If t ∈ O∗ is a shortest change sequence that repairs
m ∈ M towards refiningm′ ∈ M , then |t | ≤ |∆(m,m′)|.

Proof. Let m,m′ ∈ M be two models. Assume t ∈ O∗
is a

shortest change sequence that repairsm towards refiningm′
. Us-

ing Lemma 2, the existence of t implies thatm′
is consistent, i.e.,

sem(m′) , ∅. Thus, sem(m ⊕ ∆(m,m′)) = sem(m′) , ∅, which
implies sem(m ⊕ ∆(m,m′)) ⊆ sem(m′) and sem(m ⊕ ∆(m,m′)) , ∅.
Therefore, ∆(m,m′) is a change sequence that repairsm towards re-

finingm′
. As t is a shortest change sequence that repairsm towards

refiningm′
, it holds by Def. 1 that |t | ≤ |∆(m,m′)|. �

Lemma 3 shows an upper bound for the length of shortest change

sequences that repair refinement. However, there may still be in-

finitely many change sequences with length less than or equal

to |∆(m,m′)|, which hampers computability. In the following, we

study a sufficient condition that enables to fully automatically cal-

culate change sequences that repair refinement. To this effect, the

following sections first introduce properties of change operations,

before presenting a sufficient condition enabling computability of

shortest sequences and an algorithm for their computation.

4.1 Operations Inducing Equally Quick Repair
Two syntactically different modelsm,m′ ∈ M withm , m′

may

have the same semantics sem(m) = sem(m′). This is the case, for
instance, if the models contain syntactically different elements that

have the same meaning.

As a concrete example, let f m1 be a FM and let p, c be two

features in f m1 such that c is a mandatory child of p. The FM f m1

is equivalent to the FM f m2 that contains exactly the elements

of f m1 except that c is an optional child of p in f m2 and f m2

contains an implies constraint between p and c . The FMs f m1 and

f m2 are syntactically different but semantically equivalent. From a

constructive viewpoint, adding an implies constraint in a FM f m
from a feature p to a feature c where c is an optional child of p has

the same effect on the semantics of f m as making c a mandatory

child of p. Another example are finite automata: Let A be a finite

automaton and let s be a state in A. The automaton A is equivalent

to the automaton A′
that is equal to automaton A except that all

occurrences of state identifier s have been exchanged with a single

other state identifier s ′ not already used in A. This is because A
and A′

are isomorphic with respect to their state labeling and state

labels do not directly influence an automaton’s semantics. From

a constructive viewpoint, let A be a finite automaton and let s, s ′

be two state labels not already used in A. Adding the state s to
A has the same impact on the semantics of A as adding the state

s ′ to A. As a more complex behavior modeling example, let A be

an activity diagram and let Act be an action in A with identifier I
and label L. The identifier is used for connecting nodes within the

activity diagram with another. A label describes the action executed

when visiting an action. The activity diagram A is equivalent to

the activity diagram A′
that is syntactically equal to A except that

all occurrences of identifier I have been exchanged with a single

other node identifier I ′ not already used in A. From a constructive

viewpoint, let A be an activity diagram, I , I ′ be two node identifier

not already used in A and let L be a valid label. Then, adding an

action with identifier I and label L at some position in A has the

same impact on A’s semantics as adding an action with identifier

I ′ and label L at the same position in A.
When using adequate change operations suites, the above men-

tioned change operations are even stronger related to each other:

Every further syntactic change to one of the altered models can be

mimicked by a syntactic change of the same length to the other, in

the sense that the further changed models have the same semantics.

For instance, let f m1 denote the FM resulting from making the

feature c amandatory child ofp and let f m2 denote the FM resulting

from adding the implies constraint fromp to c in f m. The deletion of

the previously added implies constraint in f m2 can be mimicked by

making the feature c an optional child of feature p in f m1 to again

obtain two equivalent feature models. Any syntactic change applied

to f m1 that does not affect any syntactic element referencing the

features c orp can also be applied to the feature model f m2, and vice

versa, to again obtain two equivalent feature models. As another

example, let A be a finite automaton and let s, s ′ be two state labels

not already used in A. Let A1 denote the automaton resulting from

adding state s to the automaton A and let A2 denote the finite

automaton resulting from adding state s ′ to A. Every syntactic

change applied to A1 can be mimicked by a syntactic change to A2

via modifying every syntactic change to state s such that it effects

s ′ instead of s and vice versa. The further modified automata still

remain semantically equivalent. For instance, adding a transition

from state s to another state different from s ′ inA1 can be mimicked

by adding a transition from state s ′ to the same target state in A2.

Similarly, adding state s ′ to A1 can be mimicked by adding state s
to A2 and adding a transition from s to s ′ in A1 can be mimicked

by adding a transition from s ′ to s in A2. The situation is similar in

the activity diagram example. As the changes in each example can
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be mimicked by each other such that the resulting models have the

same semantics, they induce equally quick repairs of the original

model towards refining another model:

Definition 2 (Induce Eqally Quick Repair). Letm,m′ ∈ M .
Two change operations o,o′ ∈ O induce an equally quick repair ofm
towards refiningm′ iff ℓ(o(m),m′) = ℓ(o′(m),m′).

Notation. For allm,m′ ∈ M and all o,o′ ∈ O , we write o ∼m′
m o′

if o and o′ induce an equally quick repair ofm towards refiningm′
.

Intuitively, the above states that every shortest change sequence

that repairs o(m) towards refiningm′
has the same length as every

shortest change sequence that repairs o′(m) towards refiningm′
.

Thus, for every shortest change sequence that repairs o(m) towards
refiningm′

, we can find a shortest change sequence of the same

length that repairs o′(m) towards refiningm′
and vice versa.

Lemma 4. For all modelsm,m′ ∈ M , the relation ∼m′
m is an equiv-

alence relation.

Proof. (Sketch.) Let m,m′ ∈ M and let a,b, c ∈ O . Using the

reflexivity, symmetry, and transitivity of =, we obtain a ∼m′
m a,

a ∼m′
m b ⇔ b ∼m′

m a, (a ∼m′
m b ∧ b ∼m′

m c) ⇒ a ∼m′
m c . �

Notation. For all models m,m′ ∈ M and change operations

o ∈ O , we denote by [o]m′
m

def

= {o′ ∈ O | o ∼m′
m o′} the equivalence

class of o with respect to ∼m′
m . For P ⊆ O , we denote by P/∼m′

m
def

=

{[a]m′
m | a ∈ P} the quotient of P with respect to ∼m′

m .

The next section introduces the notion of change operation that

defers repair. Then, Sec. 5 shows that considering a single repre-

sentative of each equivalence class is sufficient during iterative

computation of shortest change sequences that repair refinement.

4.2 Change Operations That Defer Repair
Various change sequences with different lengths may transform

a model to the same model. Different change sequences may also

transform a model to syntactically different models that are seman-

tically equivalent. Such change sequences may drastically differ in

their lengths. As the goal is to identify shortest change sequences

that repair refinement, the longer repairing sequences are not of in-

terest. Thus, during stepwise computation of sequences that repair

refinement, the identification and exclusion of the longer sequences

is highly desired before completely computing them. In some cases,

investigating a prefix of a change sequence already suffices to de-

termine whether the complete sequence is no shortest sequence

that repairs refinement. For example, the application of a change

operation may add elements to a model’s semantics that are not part

of the semantics of the original model. These elements must be re-

moved again from the semantics by subsequent change operations

to ultimately obtain a refinement. In some cases, the application

of such a change operation is necessary to enable the application

of other change operations. However, when the application is not

necessary, then applying the change operation defers the model’s

repair towards refining the other model.

As a concrete example, let f m1 and f m2 be two feature models

and let f be a feature of f m1. Assume the goal is to compute a

shortest change sequence that repairs f m1 towards refining f m2.

Let t be a change sequence that repairs f m1 towards refining f m2

and contains an operation o that solely adds an implies-constraint

between f and f (i.e., f ⇒ f ). With this, the change operation adds

a tautology. Therefore, under consideration of an adequate change

operation suite, it is possible to shorten the sequence t by simply

deleting the operation that adds the implies-constraint. The result

is another change sequence that repairs f m1 towards refining f m2.

Let f m be the feature model obtained from applying the prefix of t
that ends directly before o to f m1. For any change sequence that

starts with the operation o and repairs f m towards refining f m2,

there exists another, shorter sequence such that the application

of both sequences to the feature model f m result in semantically

equivalent feature models. The operation o defers the repair of f m
towards refining f m2.

As another example, let A1 and A2 be two finite automata and

let l be a transition label not occurring in A2. Assume the goal is

to compute a shortest change sequence that repairs A1 towards

refining A2. Let t be a change sequence that contains an operation

o solely adding a transition with label l to A1. Assume t repairs A1

towards refining A2. Let A3 denote the result from applying t to
A1. Then, the transition added by o is not part of any path from

an initial state to a final state in A3 because otherwise the result

from applying t to A1 would be no refinement of A2. Thus, the

semantics of the automaton obtained from deleting the transition

from A3 is equivalent to A3. Therefore, under consideration of an

adequate change operation suite, the change sequence obtained

from deleting the change operationo from t is another sequence that
repairs A1 towards refining A2. Thus, during iterative computation

of a shortest change sequence, it is reasonable to not consider

the operation o adding the transition with label l . The reason is

similar to the feature model example above: LetA be the automaton

obtained from applying the prefix of t that ends directly before o to
A1. For any change sequence that starts with the operation o and
repairsA towards refiningA2, we can find another, shorter sequence

such that the application of both sequences to the automaton A
result in semantically equivalent automata. The operation o defers
the repair of A towards refining A2. More formally:

Definition 3. Letm,m′ ∈ M be two models. A change operation
o ∈ O defers the repair ofm towards refiningm′ iff

∀t ∈ S(m,m′) : |t | ≥ 1 ⇒ t .0 , o.

Notation. Dm′
m denotes the set of all change operations that

defer the repair ofm ∈ M towards refiningm′ ∈ M .

Every change sequence that repairs refinement and starts with a

change operation that defers the repair is never a shortest change

sequence that repairs refinement. Vice versa, shortest change se-

quences that repair a model towards refining another model never

start with operations that defer the repair of the former towards

refining the latter.

5 REPAIRING REFINEMENT
The following shows that considering subsets of change operations

that induce equally quick repairs during an iterative computation

approach to shortest change sequences that repair refinement is

sufficient. The requirement on each subset is that it contains at least

one representative of each non-deferring equivalence class charac-

terized by the "induce equally quick repair" equivalence relation:
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In the following, we assume for all m,m′ ∈ M , we are given

a set O(m,m′) ⊆ O satisfying O(m,m′)/∼m′
m ∪Dm′

m /∼m′
m = O/∼m′

m .

Stated differently, O(m,m′) contains at least one element e ∈ C of

each equivalence classC ∈ O/∼m′
m satisfyingC∩Dm′

m = ∅. Although
O is typically an infinite set in practice, the finite setsO(m,m′) often
exist (cf. Sec. 6 for three example modeling languages).

If there exists a shortest change sequence that repairs a model

towards refining another model, then there also exists a shortest

change sequence that only contains change operations from the sets

O(m,m′) and repairs the model towards refining the other model:

Theorem 1. Letm,m′ ∈ M be two models. If there exists a shortest
change sequence that repairsm towards refiningm′, then there exists
a shortest change sequence t ∈ O∗ that repairsm towards refiningm′

with t .i ∈ O(m ⊕ t↓i,m′) for all i ∈ N with 0 ≤ i < |t |.

Proof. We show a more general property: For all change se-

quences t ∈ O∗
and all modelsm,m′ ∈ M , if t is a shortest change

sequences that repairsm towards refiningm′
, then there exists a

change sequence u ∈ O∗
such that ∅ , sem(m ⊕ u) ⊆ sem(m′) and

|u | = |t | and u .i ∈ O(m ⊕ u↓i,m′) for all i ∈ N with 0 ≤ i < |u |.
The proof is by induction over the lengths of change sequences.

|t | = 0: Letm,m′ ∈ M be two models. Assume ε is a shortest
change sequence that repairsm towards refiningm′

. As |ε | = 0, the

statement is trivially true for u = ε .
Let n ∈ N. Assume the statement holds for all shortest change

sequences t with |t | ≤ n.
|t | = n+ 1 : Letm,m′ ∈ M be two models. Assume t is a shortest

change sequence that repairs m towards refining m′
and |t | =

n + 1. Def. 3 guarantees that t .0 < Dm′
m . Thus, [t .0]m′

m < D
m′
m /∼m′

m .

Therefore, [t .0]m′
m ∈ O(m,m′)/∼m′

m because [t .0]m′
m ∈ O/∼m′

m and

O(m,m′)/∼m′
m ∪Dm′

m /∼m′
m = O/∼m

′
m . Now leto ∈ O(m,m′) such that

[o]/∼m′
m = [t .0]/∼m′

m . As o and t .0 induce an equally quick repair of

m towards refiningm′
, there exists a shortest change sequence v

that repairs o(m) towards refiningm′
with |v | = |t | − 1.

Using the induction hypothesis, we obtain that there exists a

change sequencew with |w | = |v | such that ∅ , sem(o(m) ⊕w) ⊆
sem(m′) andw .i ∈ O(o(m) ⊕w↓i,m′) for all i ∈ Nwith 0 ≤ i < |w |.

To conclude, we have that |o ·w | = 1 + |w | = 1 + |v | = |t | and
(o ·w).i ∈ O(m ⊕ (o ·w)↓i,m′) for all i ∈ N with 0 ≤ i < |o ·w | and
∅ , sem(m ⊕ o ·w) ⊆ sem(m′). �

Our approach for computing shortest change sequences that

repair refinement relies on iteratively computing shortest sequences

that repair intermediate models towards refining the original. The

search space is reduced by considering single representatives per

equivalence class characterized by the "induce equally quick repair"

relation and ignoring change operations that defer the repair of

intermediate models. Formally, the condition requires O(m,m′)
to be finite for all modelsm,m′

. From a practical viewpoint, this

requires an implementation to be able to calculate the set O(m,m′)
for every two modelsm,m′ ∈ M . It should be noted that the sets

O(m,m′) are not unique and it suffices to compute arbitrary but

fixed sets satisfying the described properties.

For all models m,m′ ∈ M , let C(m,m′) denote the set of all

change sequences t ∈ O∗
such that |t | ≤ |∆(m,m′)| and t .i ∈

O(m ⊕ t↓i,m′) for all i ∈ N with 0 ≤ i < |t |. Combining Thm. 1

with Lemma 2 guarantees that the set C(m,m′) contains a shortest

change sequence that repairsm towards refiningm′
iffm′

is con-

sistent. The following shows that assuming each setO(m,m′) to be
finite implies thatC(m,m′) is finite: We can represent the elements

of C(m,m′) in a rooted tree T (m,m′) = (V , r ,E) with root r = ε
where each node v ∈ V corresponds to a sequence contained in

C(m,m′), i.e., V = C(m,m′). Two nodes v,w ∈ V are connected in

T (m,m′) iff the concatenation of the sequence v with a change op-

eration ofO(m⊕v,m′) is equal tow , i.e., E = {(v,w) ∈ V ×V | ∃o ∈
O(m ⊕ v,m′) : v · o = w}.

Theorem 2. Let m,m′ ∈ M be two models and let T (m,m′) =
(V , r ,E). For all t ∈ O∗ it holds that t ∈ C(m,m′) iff there exists a
path from r to t in T (m,m′).

Proof. Letm,m′,T (m,m′), and t be given as above.

"⇒": Assume t ∈ C(m,m′). Then, |t | ≤ |∆(m,m′)| and t .i ∈
O(m ⊕ t↓i,m′) for all i ∈ N with 0 ≤ i < |t |. It directly follows by

definition of C(m,m′) that t↓i ∈ C(m,m′) for all 0 ≤ i ≤ |t |. Thus,
by definition of V , it holds that t↓i ∈ V for all 0 ≤ i ≤ |t |. Further,
as t .i ∈ C(m ⊕ t↓i,m′) for all 0 ≤ i < |t |, by definition of E, we have
(t↓i, t↓(i + 1)) ∈ E for all 0 ≤ i < |t |. This shows there exists a path
from r = ε to t in T (m,m′).

"⇐": Assume there exists a path from r to t in T (m,m′). Thus,
t ∈ V , which is equivalent to t ∈ C(m,m′). �

With this, if T (m,m′) is finite, it is possible to enumerate all

change sequences in C(m,m′) by enumerating all states reachable

from the root in T (m,m′). This is possible, for instance, by using

a breadth-first search. The following shows, the assumption that

O(m,m′) is finite for allm,m′ ∈ M guarantees thatT (m,m′) is also
finite for allm,m′ ∈ M .

Theorem 3. If for all models n,n′ ∈ M the set O(n,n′) is finite,
then for allm,m′ ∈ M the tree T (m,m′) is finite.

Proof. Assume for all models n,n′ ∈ M the set O(n,n′) is fi-
nite. Let m,m′ ∈ M . Suppose T (m,m′) = (V , r ,E) is infinite. As
for all models n,n′ ∈ M , the set O(n,n′) is finite, the tree T (m,m′)
is finitely branched, i.e., each node has only finitely many succes-

sors. Hence, by König’s Lemma [14], the tree T (m,m′) contains
an infinite branch. Let p = v0, e0,v1, e1, ... be an infinite branch in

T (m,m′). By definition of E it holds that vi @ vi+1 for all i ∈ N.

Thus, |vi | < |vi+1 | for all i ∈ N. As p is infinite and the length

of successively visited nodes in p is monotonically increasing, we

have that for all j ∈ N there exists i ∈ N such that j < |vi |. Hence,
there exists a reachable state v ∈ V such that |v | > |∆(m,m′)|. This
contradicts V = C(m,m′) as by definition of C(m,m′) it holds that
|v | ≤ |∆(m,m′)| for all v ∈ C(m,m′). �

This shows, if for all n,n′ ∈ M the set O(n,n′) is finite, then for

all modelsm,m′
, a shortest change sequence that repairsm towards

refiningm′
is computable by searching the finite tree T (m,m′).

Algo. 1 is a procedure for computing a shortest change sequence

that repairs refinement. The assumption that guarantees the al-

gorithm’s termination is that O(n,n′) is finite for all n,n′ ∈ M .

The algorithm takes two models m and m′
as input. It performs

a breadth-first search on the tree T (m,m′). It returns ⊥ iff no se-

quence that repairs refinement exists (ll. 1-3). This is the case if, and

only if, the input modelm′
is not consistent (cf. Lemma 2). Variable
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Algorithm 1 Computing a shortest change sequence for repairing

refinement under assumption O(n,n′) is finite for all n,n′ ∈ M .

Input: Two modelsm,m′ ∈ M .

Output: Shortest change sequence t ∈ O∗
repairingmwith respect

tom′
, if one exists, and ⊥ otherwise.

1: if sem(m′) = ∅ then
2: return ⊥
3: end if
4: define T as empty queue of O∗

5: add ε to T
6: while T not empty do
7: t = T .dequeue()
8: if m ⊕ t ∈ M ∧ ∅ , sem(m ⊕ t) ⊆ sem(m′) then
9: return t
10: end if
11: if m ⊕ t ∈ M ∧ |t | < |∆(m,m′)| then
12: for all o ∈ O(m ⊕ t ,m′) do
13: T .enqueue(t · o)
14: end for
15: end if
16: end while

T queues the most recently explored nodes (l. 4). The algorithm

starts in the root node ε (l. 5) and visits the tree’s other nodes in in-

creasing size of the lengths encoded by the nodes’ change sequences

(ll. 6-16). In each step of the outer loop, the algorithm first fetches

the oldest recently explored node t (l. 7). In each step, this is the

node labeled with the shortest recently explored change sequence.

The algorithm returns the sequence in case it repairsm towards

refiningm′
(ll. 8-10). Otherwise, in case the sequence’s length is less

than the upper bound for a shortest sequence of change operations

repairingm towards refiningm′
(l. 11), which is given by |∆(m,m′)|

(cf. Lemma 3), the algorithm proceeds as follows: It concatenates

all operations relevant from the intermediate modelm ⊕ t to the

current sequence and enqueues the newly obtained sequences to

the queue T (ll. 12-14). The algorithm terminates as soon as it finds

a shortest change sequence that repairsm towards refiningm′
. The

theorems above ensure the existence of this sequence in casem′
is

consistent (cf. Lemma 2) and thus the algorithm’s termination. The

algorithm’s running time is exponential in the length of a shortest

change sequence that repairsm towards refiningm′
.

6 INSTANTIATIONS OF THE FRAMEWORK
This section describes instantiations of the frameworks to a FM,

an automaton, and an AD language. The section contains minimal

explanations that show the applicability of this paper’s approach.

Sec. 2 presents examples of results produced by prototype imple-

mentations of the instantiations.

6.1 Feature Model Language
FMs are widely used for modeling possible product configurations.

We use a similar syntax as defined in [5] and treat feature models as

trees with the usual cross tree constraints but without propositional

constraints.We denote the set of all valid FMs by FM . The semantics

of a FM is the set of all possible configurations it describes. There

exist translations from FMs to propositional logical formulas for

determining the configurations (e.g., [5]). Let Con denote the set of

all possible configurations, i.e., the set of all sets of features. Then,
the language is defined as (FM,Con, semFM ). Refinement checking

of FMs is decidable [1]. We adapt the syntactic change operations

defined in [28] for:

(1) creating/deleting a feature without children (creation of a

feature in an empty model marks the feature as the root),

(2) creating/deleting cross tree constraints (implies/excludes),

(3) moving a feature to a new parent,

(4) changing the type (and/or/xor) of a group,

(5) making a feature optional or mandatory.

The operations described in 2–5 are uncritical in the sense that they

are only partially defined for FMs that contain the referenced ele-

ments. With this, for every FM f m, only finitely many operations

described by 2–5 are applicable to f m and the applicable operations

can be calculated from f m. Similarly, the feature deletion opera-

tions (described in 1) are only defined for models containing the

features. The calculation of the above mentioned change operations

is straightforward as a FM is always a finite structure. For example,

for each possible feature f there exists an operation df : FM ⇀ FM
for deleting the feature f . The domain dom(df ) is the set of all FMs

in which the feature f exists and has no sub-features. Thus, the

set of feature deletion operations applicable to a FM f m contains

exactly one operation for each feature in f m without children.

The set of operations for creating features (described in 1) is

critical since there are infinitely many feature creation operations

applicable to each feature model (assuming an infinite set of feature

names). Specifically, for each feature f there exists an operation

af : FM ⇀ FM for adding feature f . The domain of af is the set

of all feature models in which f is not present. Let f m and f m′

be two feature models. We argue that for all features f ,д that do

neither exist in f m1 nor in f m2, the operations af and aд induce

an equally quick repair of f m1 towards refining f m2: Assume there

exists a shortest change sequence t that repairs af (f m1) towards
refining f m2. We define u as the change sequence of length |t | ob-
tained from replacing each change operation in t affecting f by the

corresponding operation affecting д and vice versa. The addition of

a cross tree constraint between f and д, for instance, is replaced by
the same cross tree constraint between д and f , e.g., "f implies д"
is replaced by "д implies f ". It is easy to see by construction that

f m1 ⊕ af ⊕ t , ⊥ implies f m1 ⊕ aд ⊕u , ⊥. As the features f and

д do not exist in f m2, there are no configurations in f m1 ⊕ af ⊕ t
and f m1 ⊕ aд ⊕ u that contain f or д, i.e., the features do either

not exist or they are dead. It is easy to see that f m1 ⊕ aд ⊕ u con-

tains д iff f m1 ⊕ af ⊕ t contains f and vice versa. In case any

of the features exists in one of the models, the induced proposi-

tional logical formula [5] is equivalent to the formula obtained by

replacing all occurrences of the features’ corresponding variables

by the constant f alse . This holds because the features are dead. It
is easy to verify that by definition of u, the transformed formulas

for f m1 ⊕ af ⊕ t and f m1 ⊕ aд ⊕ u are equivalent. Analogously,

one can show that for each shortest change sequence t repairing
aд(f m1) towards refining f m2, there exists a change sequence u
with |u | = |t | such that u repairs af (f m1) towards refining f m2.

We can conclude ℓ(af (f m1), f m2) = ℓ(aд(f m1), f m2). Hence, it
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suffices to solely consider exactly one feature addition operation for

each feature that does neither exist in f m1 nor in f m2. The above

argumentation shows a finite set O(f m1, f m2) is computable for

all f m1, f m2 ∈ FM . Thus, our approach is applicable.

6.2 A Language for Reactive Safety Automata
A finite time-synchronous port automaton (TSPA) is a model for

describing the behavior of a reactive system [3]. From this paper’s

viewpoint TSPAs can be interpreted as reactive finite safety au-

tomata where transition labels are finite functions. Each function

models a channel assignment, i.e., a mapping from communication

channel identifiers to messages. Channels are partitioned into input

and output channels [3]. In safety automata, all states are final. Reac-

tivity requires that for each possible input channel assignment and

each state, there exists at least one transition originating from the

state such that the input channel assignment is a subset of the tran-

sition’s label. The semantics of a TSPA are the possible behaviors

(communication histories) that it describes. When interpreting the

TSPA as a finite automaton, the semantics is the language accepted

by the automaton. We use the syntax and behavior semantics for

TSPAs as defined in [3]. We denote the set of all possible TSPAs by

TSPA and the set of all possible behaviors by Beh. Then, the TSPA
modeling language is defined by (TSPA,Beh, semtspa ). Refinement

checking of TSPAs is decidable [3]. We use TSPA change operations

that are inspired by [26] for:

(1) creating a new state,

(2) adding an input/output channel to a TSPA without states,

(3) creating a transition with specific label between states,

(4) deleting a transition if reactivity is preserved,

(5) deleting a state if reactivity is preserved,

(6) changing the initial state,

(7) deleting a channel from a TSPA without states.

The first operation creates a maximally underspecified state that

contains a self-loop for each possible transition label (channel valu-

ation). Changing a TSPA’s set of channels (2, 7) completely changes

the set of the automaton’s transition labels (cf. [3]). New channels

are only allowed to be added or deleted if the input TSPA does not

contain any states (2, 7). This eliminates the necessity for changing

all transition labels when adding a new communication channel

to a non-empty TSPA. The constraint for transition deletion op-

erations (4) is necessary because TSPA well-formedness requires

reactivity. Deleting a state (5) also deletes all transitions originating

from the state or leading to the state. Thus, states are only deletable

if the resulting TSPA is reactive (5). Deleting the initial state is only

possible if the TSPA contains no other states. Only existing states

may be marked as initial (6).

The operations described in 3–7 are uncritical because they are

only partially defined for TSPAs that contain the referenced el-

ements. The set of change operations described by 3–7 that are

applicable to a TSPA is finite and can be calculated from the TSPA.

On the other hand, the set of operations for creating states and

adding communication channels (1,2) are critical: Assuming infin-

itely many state and channel identifiers, there are infinitely many

of such change operations that are applicable to a TSPA. A simi-

lar argumentation as in Sec. 4.1 shows that for all state identifiers

s, t not already present in a TSPA A, the operations addStates and

addStatet induce an equally quick repair towards refining any

other TSPA. Thus, for calculating a shortest change sequence for

repairing refinement, it suffices to consider a single state addition

operation in each computation step. A necessary condition for a

TSPAA to refine a TSPA B is thatA does not use channel identifiers

that are not used in B. Thus, any channel addition operation (2)

that adds a channel not present in B defers the repair of A towards

refining B: Let t be a change sequence starting with a channel ad-

dition operation adding a channel c that is not present in B such

that A ⊕ t is a refinement of B. Then, the channel c added by t .0
needs to be removed by a channel deletion operation contained

in t later because otherwise A ⊕ t would be no refinement of B.
Let 1 ≤ i < |t | be the index of this channel deletion operation.

We define the change sequence u: The sequence u starts with all

channel addition and deletion operations occurring in t up to and

excluding index i that reference channels different from c . The rest
of u is equal to the suffix of t starting with index i + 1 (or ε in case

|t | = i + 1). By definition, channel addition and removal operations

are only applicable to TSPAs without states. Thus, A does not con-

tain any states as t .0 is applicable to A. From this, it is easy to see

that u is applicable to A and A ⊕ u = A ⊕ t . We further have that

|u | ≤ |t | − 2 as u does not contain the addition and deletion opera-

tions of c that are part of t . As |u | < |t |, we can conclude that t is no
shortest change sequence that repairs A towards refining B. This
shows that any change operation adding a channel not existing in B
defers the repair of A towards refining B. Thus, it suffices to solely

consider channel addition operations adding channels that exist

in B, which are always finitely many. The above argumentation

shows the applicability of this paper’s approach.

6.3 Activity Diagram Language
Activity diagrams are widely used in the business process modeling

domain for describing workflows. We use a similar syntax and

operational semantics as defined in [23]. The following two well-

formedness rules also apply [16]: each AD contains exactly one

initial node and exactly one final node. Further, each node is always

part of a path from the initial node to the final node. We reuse the

semantic differencing operator for refinement checking as defined

in [22]. We define the activity diagram language as (AD,T , semAD )
where AD describes the set of all well-formed activity diagrams

and T denotes the set of all execution traces. We adapt preexisting

change operations for business process models [15, 16] for:

(1) inserting an action between two succeeding nodes,

(2) deleting an action,

(3) moving an action between two succeeding nodes,

(4) deleting a fragment (parallel, alternative, cyclic, etc.),

(5) inserting a fragment between two succeeding nodes,

(6) moving a fragment between two succeeding nodes,

(7) converting the type of a fragment to another type.

All the operations described in 1–6 also reconnect the control flow

accordingly [15, 16]. Only finitely many of the operations described

in 2–7 are applicable to each AD. Computation of the operations

is straight-forward from the nodes and structure of an AD. The

operations described in 1 are critical when assuming an infinite

set of possible action labels. Then, infinitely many action insertion

operations are applicable to each AD. However, for all ADs ad1
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and ad2 and all action labels l not occurring in ad2, each action

insertion operation adding an action with label l between two nodes
in ad1 defers the repair of ad1 towards refining ad2. This is the case
because adding such an action adds an execution trace to ad1 that
is no execution trace of ad2. As all nodes are always on a path from

the initial node to a final node, the action must be removed again

to repair ad1 towards refining ad2. Omitting the operations that

add and delete the action with label l leads to a shorter sequence
that repairs ad1 towards refining ad2. Thus, the addition operation

defers the repair of ad1 towards refining ad2. Therefore, it suffices to

consider action insertion operations adding actions that are labeled

as a node in ad2. As activity diagrams are finite structures, ad2
contains only finitely many action labels and thus there are only

finitely many such action insertion operations. This argumentation

shows the applicability of our approach.

7 RELATEDWORK AND DISCUSSION
The related work described in [20] provides an overview of syn-

tactic and semantic differencing approaches. These works are also

related to ours. Syntactic differencing approaches (e.g. [2, 12, 13,

15, 16, 27, 28]) do not consider the impact of syntactic changes on

a model’s semantics. However, they provide a fundamental basis

for frameworks combining semantic and syntactic differencing in

form of change operations. Semantic differencing approaches (e.g.

[1, 3, 17, 18, 22, 24]) provide the other required fundamental basis.

They reveal the semantic differences of models but are not con-

cerned with syntactic differences. If a semantic difference exists,

semantic differencing approaches usually provide a concrete proof

in form of a diff witness. However, semantic differencing does not

reveal the syntactic differences that cause the semantic difference.

It is further hard (often even impossible) to manually detect all syn-

tactic differences responsible for the models’ semantic differences

from a single diff witness.

To the best of our knowledge, this paper is the first approach that

aims at computing syntactic model changes such that one model

becomes a refinement of another model while keeping the number

of model changes as small as possible. The following summarizes

related work combining syntactic and semantic differencing and

approaches that are suited to support the repair of refinement steps.

Diffuse [19, 20] is the first language independent framework

combining semantic with syntactic differencing. This paper and

Diffuse share the same fundamental definition of modeling lan-

guage [9]. Diffuse and this work have slightly different notions

of syntactic difference. In this paper, syntactic differences are se-

quences of change operations, whereas Diffuse describes them with

partially ordered sets of change operations [20]. This paper’s de-

scription is simpler and easier to handle in formal proofs, whereas

Diffuse’s description is more compact in some circumstances. Our

work is easily integrable into the Diffuse framework: Every lin-

earization of a set of change operations is a change sequence. Vice

versa, every change sequence is interpretable as a partially ordered

set of change operations. Diffuse introduces the notions necessary,

exhibiting, and sufficient sets of change operations [20]. Each of

the three notions relates two models, a diff witness, and a concrete

syntactic difference between the models to a subset of the syntactic

difference. Combining our work with Diffuse may be interesting

for lifting the three notions to abstract from a concrete syntactic

difference. For instance, it may be interesting to compute whether

there exists a generally necessary change operation for a witness.

Diffuse enables to determine which change operation should not

have been applied to avoid a specific witness. However, this does

not reveal how to obtain a refinement. Further, omitting changes

to avoid a single witness does not guarantee to obtain a refinement.

The analysis is oriented backwards. In contrast, our approach is

forward oriented and computes what needs to be done to definitely

obtain a refinement.

There exist enumerative and non-enumerative approaches to

semantic differencing [18]. The above mentioned approaches are

all enumerative in the sense that they compute a single witness or

a finite set of witnesses as concrete proof for semantic differences.

Non-enumerative semantic differencing approaches [7] do not cal-

culate witnesses. Instead, they compute an aggregated description

that summarizes semantic differences (not necessarily all) between

the input models. Non-enumerative approaches have been applied

to feature models and automata [7] as well as to class diagrams [6].

As an aggregated description contains more information than a

single witness, it is more suited to manually detect the syntactic

elements causing the models’ semantic differences than a single

witness. Hence, the model describing the semantic difference bet-

ter facilitates manual detection of syntactic changes required to

repair refinement. However, also with existing non-enumerative

approaches, the computation of syntactic changes that repair refine-

ment is not automated as in our approach. The combination of this

paper’s method with non-enumerative approaches is interesting:

One could first use this paper’s approach to calculate a shortest

change sequence that repairs refinement. Afterwards, one could

investigate whether the changes are reasonable based on the output

of a non-enumerative semantic differencing result.

8 CONCLUSION
This paper revealed requirements on a modeling language and its

change operations that are sufficient to guarantee computability of

change sequences that repair refinement. The requirements build

on the notions of change operations that induce an equally quick

repair towards refinement and change operations that defer repair.

Both notions are defined in context of two concrete models, i.e.,
in context of repairing the one model towards refining the other

model. The "induce equally quick repair" relation is an equivalence

relation. Operations that defer repair are not part of shortest change

sequences that repair refinement. Based on this, the main result

is the following: if for all pairs of models, there exists a finite set

containing at least one element of each equivalence class that does

not contain operations that defer repair, then computing a shortest

change sequences that repairs refinement is possible. The result is

a fully automated procedure that computes syntactic changes that

definitely transform a model to a refinement of another model. This

ultimately facilitates developers in identifying and fixing errors in-

troduced in failed model refinement steps. The approach is limited

to modeling languages where refinement is decidable. Further, the

change operation equivalence classes and the operations that defer

repair must be identified manually for each individual modeling
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language. This task may be very challenging and requires the mod-

eling language to exhibit a special kind of symmetry with respect to

the models’ syntax and the semantics mapping. We have applied the

language independent framework to three concrete modeling lan-

guages. As the computational complexity for computing repairing

sequences is high, language specific algorithm adjustments might

be desired in practice. However, it is often not even clear whether

automatic computation of repairing sequences is possible. In these

cases, applying this paper’s results to a concrete modeling language

provides the evidence of feasibility.
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